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Classification of quasigroups according

to directions of translations II

Fedir Sokhatsky, Alla Lutsenko

Abstract. In each quasigroup Q there are defined six types of translations: the
left, right and middle translations and their inverses. Two translations may
coincide as permutations of Q, and yet be different when considered upon the

web of the quasigroup. We shall call each of the translation types a direction
and will associate it with one of the elements ι, l, r, s, ls and rs, i.e., the elements
of a symmetric group S3. Properties of the directions are considered in part 1
of “Classification of quasigroups according to directions of translations I” by
F. M. Sokhatsky and A.V. Lutsenko.

Let σM denote the set of all translations of a direction σ ∈ S3. The conditions
σM = κM, where σ, κ ∈ S3 and σ 6= κ, define nine quasigroup varieties. Four of
them are well known: LIP , RIP , MIP and CIP . The remaining five quasigroup
varieties are relatively new because they are left and right inverses of CIP variety
and generalization of commutative, left and right symmetric quasigroups.

Keywords: quasigroup; parastrophe; parastrophic symmetry; parastrophic orbit;
translation; direction; matrix quasigroup

Classification: 20N05

1. Introduction

In quasigroup theory many types of inverse properties come under consider-

ation. The most prominent types are known under abbreviations IP, LIP, RIP,

CIP, WIP and AAIP, cf. [1], [2], [6], [4] and [13]. Loops with these properties

are closely connected to some of the most widely studied varieties of loops, e.g.

Moufang loops, Bol loops and Bruck loops. For example, a loop is Moufang if

and only if all its loop isotopes are IP loops. Recall also that the class of IP loops

itself has a number of strong properties: (1) the left, right and middle nuclei co-

incide, (2) isotopic IP loops are pseudo-isomorphic, and (3) any two commutative

IP loops that are isotopic are also isomorphic [13]. Cf. [6], [7] and [8] for further

generalizations and applications.
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Thus, the study of the relationships between classes of quasigroups with differ-

ent inversion properties are topical. In particular, the description of parastrophy

orbits of these quasigroup classes should be studied.

Let σM denote the set of all σ-translations in a quasigroup. It is easy to verify

that the class of all LIP quasigroups is exactly the class of quasigroups with
lM = lsM; the class of all CIP quasigroups is exactly the class of quasigroups

with lM = rM. The symmetric group S3 acts on the set of all quasigroup classes

defined by the equalities σM = κM, σ 6= κ. It is proved that there are three

orbits under this action and each orbit has three pairwise parastrophic classes

(Theorem 4). The first one is the orbit consisting of the well-known classes:

MIP , LIP , RIP . Note that these classes of quasigroups were considered in

detail in [15].

The second orbit corresponds to the well-known class of cross inverse quasi-

groups. The two classes parastrophic to the CIP quasigroups have not been

described before. We shall call them the left and right cross inverse quasigroups.

The classical CIP quasigroup are called, in this context, middle cross inverse.

The third orbit consists of three new classes whose quasigroups are certain

generalizations of commutative, left symmetric and right symmetric quasigroups,

respectively. They are called middle, left and right mirror quasigroups.

All nine classes of quasigroups are varieties, the defining identities may be found

in Theorem 5, Theorem 6 and Theorem 7. Each variety has some inverse prop-

erty. The corresponding inversion mappings are presented in the above described

theorems.

2. Preliminaries

We shall be using notions and notations defined in [16]. From Theorem 1 in [16]

we obtained following corollary.

Corollary 1. Let S3 act on a set K. If k is such an element of K that sk = k

and k does not coincide with another element from Po(k), then k is singly sym-

metric.

Proof: Since sk = k, then the element k is neither asymmetric nor semisymmet-

ric. It is not totally symmetric, because k 6= σk for some σ in S3. �

According to [16, Definition 2], a σ-parastrophe σ(ω = υ) of an identity ω = υ

is an identity which is obtained from ω = υ by replacing the main functional

variable with its σ-parastrophe.

For example, sl-parastrophe of the commutativity law x·y = y ·x is the identity

x
(sl)−1

· y = y
(sl)−1

· x, i.e., x
sr
· y = y

sr
· x. By definition of s-parastrophe, y

r
·x = x

r
· y.
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By definition of r-parastrophe, y ·
(

x
r
·y
)

= x. If z := x
r
·y, then y = x ·z, therefore,

(x ·z) ·z = x. Thus, the left symmetry law is sl-parastrophe of the commutativity

law.

Corollary 2 ([14]). An identity ω = υ defines a variety of quasigroups A if and

only if a σ-parastrophe σ(ω = υ) of this identity defines the variety σA, where

σ ∈ S3.

Two identities are called, see [14]:

1) equivalent, if they define the same variety;

2) σ-parastrophically equivalent, if they define σ-parastrophic varieties;

3) parastrophically equivalent, if they are σ-parastrophically equivalent for

some σ.

Some of inversion mappings have invertibility properties of their elements, for

example, IP quasigroups. Recall the definitions of quasigroups with an inverse

property, see [1], [2], [15], [6], [5].

A quasigroup (Q; ·) is called: an LIP quasigroup, an RIP quasigroup, an

MIP quasigroup, if there exist transformations λ, ̺, µ called a left, right, middle

inversion mapping such that for all x and y the respective equalities are true:

λ(x) · xy = y; yx · ̺(x) = y; xy = µ(yx).

A quasigroup (Q; ·) will be called: a middle CIP quasigroup, a left CIP quasi-

group, a right CIP quasigroup, if there exist transformations α, β, γ called a mid-

dle, left, right inversion mapping such that for all x and y the respective equalities

are true:

xy · α(x) = y; yx · y = β(x); y · xy = γ(x).

Note that the middle CIP quasigroup is the well known CIP quasigroup.

It is easy to show, see [2], [5], [6], that the formulas

(1) xy · γ(x) = y, x · yγ(x) = y, γ(x) · yx = y, γ(x)y · x = y

are equivalent in a quasigroup (Q; ·). In other words, each of these formulas

describes the class of all middle CIP quasigroup. Moreover in [5], it has been

proved that the class of all CIP quasigroups is a variety.

A loop (Q; ·) is CIP , if the identity xy · x−1 = y holds.

A quasigroup (Q; ·) will be called: a middle mirror quasigroup, a left mirror

quasigroup, a right mirror quasigroup, if there exists a transformation ϕ, δ, ξ called

a middle, left, right inversion mapping such that for all x and y the respective
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equalities are true:

ϕ(x) · y = y · x; y · yx = δ(x); xy · y = ξ(x).

3. Sets of translations having the same direction

The σ-direction set of translations, i.e., the set of all translations of the direc-

tion σ of a quasigroup (Q; ◦) is defined by

σM◦ := {σM◦

x : x ∈ Q}, σ ∈ S3.

We will also write σMτ instead of σM
τ

◦. Let

M◦ := {ιM◦, lM◦, rM◦, sM◦, lsM◦, lrM◦}.

Some quasigroups satisfy the property: two or more sets of translations of the

same directions coincide. For example, an LIP quasigroup, i.e., a quasigroup

with the left inverse property, is defined by

(∃α)(∀x, y) α(x) ◦ (x ◦ y) = y.

This condition is equivalent to (∃α)(∀x) L◦

α(x) = (L◦

x)
−1. Using [16, (14)], it is

transformed to

(∃α)(∀x) lsM◦

α(x) =
lM◦

x .

Since α is a bijection of the set Q, the condition means that the sets lsM◦ and
lM◦ are equal.

Therefore, a quasigroup (Q; ◦) has the left inverse property if and only if

lsM◦ = lM◦,

that is its translation sets of the directions ls and l coincide. Consequently, the

class of all LIP quasigroups is defined by the equality

lsM· = lM·

of terms in which (·) is a functional variable taking its values among the main

operations in the class of quasigroups. For short, we will omit the sign (·).

Definition 1. A term σMy := x
rσ−1

· y is called an abstract translation of the direc-

tion σ defined by y; σM is called an abstract set of translations of the direction σ;

the formula σM = κM is the brief notation of the formula

(∃α)(∀x)(∀ y) x
rσ−1

· y = x
rκ−1

· α(y).
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This equality will be called an abstract equality of two translation sets of the

directions σ and κ.

In Theorem 4, we will determine all classes of quasigroups which are defined

by the above considered equalities.

To do this, we need the following property.

Lemma 3. For all σ, κ ∈ S3, the κ-direction set of translations of the σ-parastro-

phe of a quasigroup has the direction νκ in the νσ-parastrophe of the quasigroup:

κMσ = νκMνσ.

Proof: Let (Q; ·) be a quasigroup, then according to [16, Lemma 6] the equality
νκMνσ

a = κMσ
a holds for all σ, κ ∈ S3 and for all a ∈ Q. That is why the sets κMσ

and νκMνσ consist of exactly the same elements and therefore they are equal. �

Two conditions are known to be: equivalent, if they determine the same class

of quasigroups; parastrophically equivalent, if they determine parastrophic classes

of quasigroups.

Theorem 4. Each equality of two translation sets of different directions deter-

mines exactly one class of quasigroups. Namely,

◦ the parastrophy orbit of (middle, left, right) inverse property quasigroups:

ιM = sM M−1
x = Mµ(x) yz = µ(zy) MIP quas. I = sI

lM = lsM L−1
x = Lλ(x) λ(x) · xy = y LIP quas. lI = lsI

rM = rsM R−1
x = R̺(x) yx · ̺(x) = y RIP quas. rI = rsI

◦ the parastrophy orbit of cross inverse quasigroups:

lM = rM L−1
x = Rα(x) α(x) · yx = y CIP quas. C = sC

rsM = lsM R−1
x = Lα(x) MCIP quas.

ιM = rsM R−1
x = Mβ(x) xy · x = β(y) LCIP quas. lC = lsC

sM = rM M−1
x = Rβ(x)

lsM = ιM Lx = Mγ(x) x · yx = γ(y) RCIP quas. rC = rsC

sM = lM M−1
x = L−1

γ(x)

◦ the parastrophy orbit of mirror quasigroups:

srM = rM Lx = Rϕ(x) ϕ(x) · y = y · x MM quas. M = sM

lM = rsM R−1
x = L−1

ϕ(x)
rM = ιM Rx = Mδ(x) x · xy = δ(y) LM quas. l

M = ls
M

sM = rsM M−1
x = R−1

δ(x)
lM = ιM L−1

x = Mξ(x) xy · y = ξ(x) RM quas. rM = rsM

sM = lsM M−1
x = Lξ(x)
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Proof: Let σM = κM be an equality of abstract translation sets. Lemma 3

implies that the equality is parastrophically equivalent to ιM = σ−1κM. That is

why it is enough to consider the equalities

ιM = lM, ιM = rM, ιM = sM, M = slM, M = srM.

By Lemma 3, the equality ιM = rsM is parastrophically equivalent to lsM =
(ls)(rs)M, i.e., ιM = lsM is parastrophically equivalent to rM = rlsM, in other

words, rM = lM.

The equality ιM = lM is parastrophically equivalent to sM = slM and this

equality is equivalent to (sM)−1 = (slM)−1. According to [16, (12)], it is ιM =
rM which is parastrophically equivalent to sM = srM.

Thus, each abstract translation set is parastrophically equivalent to at least

one of the equalities

(2) ιM = sM, rM = lM, srM = rM.

We denote the quasigroup classes defined by these equalities with I,C,M, respec-

tively.

By Lemma 3, s-parastrophes of these classes are respectively determined by

sM = ssM, srM = slM, ssrM = srM.

Since sr = ls and sl = rs, the second equality is lsM = rsM. By [16, (12)], it

is (lM)−1 = (rM)−1 which is equivalent to the second equality in (2). Thence,

s-parastrophe of each of these classes coincides with itself:

(3) s
I = I, s

C = C, s
M = M.

According to Corollary 1 to prove that each of the classes is singly symmetric,

it is enough to prove that l-parastrophes of these classes does not coincide with

themselves. For this aim, we will find conditions which determine these classes of

quasigroups.

By Definition 1, the equalities (2) are respectively equivalent to the formulas

(∃α)(∀x, y) x
r
· y = x

rs
· µ(y), (∃β)(∀x, y) x · y = x

rl
· α(y),

(∃ γ)(∀x, y) x
s
· y = x · ϕ(y).

As rs = sl, then

(∃α)(∀x, y) x
r
· y = µ(y)

l
· x, (∃α)(∀x, y) α(y) = x

l
· xy,

(∃α)(∀x, y) xy = y · ϕ(x).
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The first equality can be written as µ(y) =
(

x
r
· y

)

· x. Replace x
r
· y with z, i.e.,

xz = y, consequenly µ(xz) = zx. Therefore, the classes I,C,M are respectively

determined by:

(4)
(∃α)(∀x, y) µ(xy) = yx, (∃α)(∀x, y) α(y) · xy = x,

(∃α)(∀x, y) xy = y · ϕ(x).

There are at least two ways of finding the conditions to describe the σ-parastro-

phes σI, σC, σM of these classes of quasigroups: 1) find σ-parastrophes of (4)

replacing the main functional variable (·) with its σ−1-parastrophe
( σ−1

·
)

; 2) find

σ-parastrophes of the equalities (2) using Lemma 3 and then find the conditions

using Definition 1. We will illustrate both of them if σ = l and σ = r.

Let σ = l. To find l-parastrophes of the conditions (4), we replace (·) with
( l
·
)

because l−1 = l:

(∃α)(∀x, y) λ
(

x
l
· y

)

= y
l
· x, (∃α)(∀x, y) β(y)

l
·
(

x
l
· y

)

= x,

(∃α)(∀x, y) x
l
· y = y

l
· δ(x).

Let z := x
l
· y, i.e., zy = x, then

(∃α)(∀x, z) λ(z) = y
l
· zy, (∃α)(∀x, z) β(y)

l
· z = zy,

(∃α)(∀x, z) z = y
l
· δ(zy)

that is,

(∃α)(∀x, z) λ(z) · zy = y, (∃α)(∀x, z) zy · z = β(y),

(∃α)(∀x, z) z · δ(zy) = y.

We multiply the third equality by z from the left and replace zy with y in this

way z(z · λ(y)) = y. Thus, the quasigroup classes lI, lC, lM are described by the

conditions

(5)
(∃α)(∀x, z) λ(x) · xy = y, (∃α)(∀x, z) xy · x = β(y),

(∃α)(∀x, z) x · xy = δ(y).

Let σ = r. To find r-parastrophes of the equalities (2) we use Lemma 3:

rM = rsM, M = rlM, rsrM =M,

that is,
rM = slM, M = srM, lM =M.
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By Definition 1 (for brief, we omit the quantifiers),

xy = x
rsr
· ̺(y), x

r
· y = x

s
· γ(y), x

rl
· y = x

r
· ξ(y),

i.e.,

xy = x
l
· ̺(y), x

r
· y = γ(y) · x, y

r
· x = x

r
· ξ(y).

Using the properties of the left and right inverses, we have

xy · ̺(y) = x, x(γ(y) · x) = y, x
(

y
r
· x

)

= ξ(y).

We replace y with γ−1(y) in the second equality and transform the third equality

replacing y
r
· x =: z and yz = x: yz · z = ξ(y).

Thus, the quasigroup classes l
I, lC, lM are described by the conditions

yx · ̺(x) = y, x · yx = γ(y), xy · y = ξ(x).

Since S3 acts on each of the sets Po(I),Po(C),Po(M) and (3) holds, then ac-

cording to Corollary 1 to show that each of the classes I,C,M is singly symmetric,

it is enough to prove the following inequalities:

I 6= l
I, C 6= l

C, M 6= l
M.

The first inequality is proved in [15].

Consider a quasigroup (Z5; ◦), where Z5 is a ring of modulo 5 and

x ◦ y := 2x+ 2 + 3y.

Let α(x) := 3x+ 1, then (Z5; ◦) has the cross invertible property:

α(x) ◦ (y ◦ x) = 2α(x) + 2 + 3(2y + 2 + 3x) = 2(3x+ 1) + y + 3− x = y,

that is, (Z5; ◦) belongs to C and therefore
(

Z5;
l
◦
)

belongs to lC. It is easy to

verify that

x
l
◦ y = 3x+ 4 + y.

Suppose, the quasigroup
(

Z5;
l
◦
)

belongs to C. It means that there is a bijection β

of Z5 such that

β(x)
l
◦
(

y
l
◦ x

)

= y

holds. This equality is equivalent to 3β(x) + 4 + (3y + 4 + x) = y, i.e., 3β(x) =

4x + 2y + 3 and so β(x) = 2x + y + 4. A contradiction, because β(x) depends

on y. Consequently, the quasigroup
(

Z5;
l
◦
)

does not belong to C and that is why

C 6= l
C.
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Let a quasigroup (Z7; ∗) be defined by x ∗ y := 4x+ 2+ 4y. The quasigroup is

commutative, therefore it belongs to M if α = ι. It is easy to verify that

x
l
∗ y = 2x+ 3 + 6y.

The quasigroup
(

Z7;
l
∗
)

belongs to l
M by definition. If it belongs to M, then

there exists a bijection γ of Z7 such that γ(x)
l
∗ y = y

l
∗ x for all x and y in Z7.

Consequently, 2γ(x) + 3 + 6y = 2y + 3 + 6x and suchwise γ(x) = 5y + 3x. But

γ is a unary operation (bijection). Thus, the quasigroup
(

Z7;
l
◦
)

does not belong

to the class M and in this way M 6= lM.

Thereby, each of the classes I,C,M is singly symmetric. It remains to prove,

that all the orbits Po(I),Po(C),Po(M) are pairwise different.

All groups belong to lI. A group belonging to a class from Po(C) or Po(M) is

commutative. Therefore, Po(I) 6= Po(C) and Po(I) 6= Po(M).

A loop belonging to a class from Po(C) satisfies xy ·y = x and so yy = e. Every

commutative group belongs to the class M and so a commutative group of degree

greater than 2 belongs to no class from Po(C). Therefore, Po(C) 6= Po(M). �

For example when α = β = γ = ι, the subvariety is the variety of all semi-

symmetric quasigroup, which are investigated in [9], [11], [12].

In the next theorems we find identities of varieties of the parastrophy orbits.

Theorem 5. Each variety of the parastrophy orbit of inverse property quasi-

groups can be described by the following identities:

Variety Defining Inversion Defining

formula mapping identity

I = sI xy = µ(yx) (∀ z) µ = LzR
−1
z = lsMz

rsMz yx = z ·
(

xy
l
· z

)

lI = srI λ(x) · xy = y (∀ z) λ = M−1
z Rz = sMz

rMz

(

z
l
· xz

)

· xy = y
rI = slI yx · ̺(x) = y (∀ z) ̺ = MzLz = ιMz

lsMz yx ·
(

zx
r
· z

)

= y

Proof: In [15], it was proved that the middle, left and right IP quasigroup

varieties belong to the same parastrophy orbit. We show these varieties as being

defined by the identities presented in the table.

Let I denote the class of all middle IP quasigroups, that is, the quasigroups

(Q; ·) with the equality xy = µ(yx) for some transformation µ of the set Q.

The equality can be written as Ly = µRy. Thus, µ = LyR
−1
y for all y ∈ Q.

Substituting LzR
−1
z for µ in yx = µ(xy), we have yx = LzR

−1
z (xy). Applying

[16, (6)] and [16, (7)],



318 F. Sokhatsky, A. Lutsenko

(6) yx = z ·
(

xy
l
· z

)

is obtained.

Vice versa, let
(

Q; ·,
l
·,

r
·
)

be a quasigroup satisfying (6). The identity can be

written as

z ·
(

x
l
· z

)

= y ·
(

x
l
· y

)

, i.e., LzR
−1
z = LyR

−1
y := µ for all y, z ∈ Q.

The bijection µ does not depend on y and z, therefore it is a functional constant.

Replacing z ·
(

x
l
· z

)

with µ(x) in the identity (6), we get yx = µ(xy). It means

that the quasigroup has the middle invertible property.

Consequently, the class of quasigroups with the middle invertible property is

a variety I which is defined by the identity (6).

By Theorem 4, lI and rI are the classes of all left and right IP quasigroups,

i.e., quasigroups (Q; ·) and (D; ◦), respectively, with the defining formulas

λ(x) · xy = y and (y ◦ x) ◦ ̺(x) = y.

According to the definitions of translations, these equalities can be written as

(7) Myλ(x) = Ry(x) and Ly,◦x ◦ ̺(x) = y.

That is, we have

λ = M−1
y Ry, ̺ = My,◦Ly,◦

for all y ∈ Q. Replacing λ with M−1
z Rz and ̺ with Mz,◦Lz,◦ in the equalities

λ(x) · xy = y and (y ◦ x) ◦ ̺(x) = y, respectively, we obtain:

M−1
z Rz(x) · xy = y and (y ◦ x) ◦Mz,◦Lz,◦(x) = y.

Taking into account [16, (6)] and [16, (7)], we have

(8)
(

z
l
· xz

)

· xy = y and (y ◦ x) ◦
(

(z ◦ x)
r
◦ z

)

= y.

Vice versa, let
(

Q; ·,
l
·,

r
·
)

and
(

Q; ◦,
l
◦,

r
◦
)

be quasigroups satisfying (8). The

identities can be written as

z
l
· xz = y

l
· xy, (y ◦ x) ◦

(

(z ◦ x)
r
◦ z

)

= y,

i.e.,

M−1
z Rz = M−1

y Ry := λ, Mz,◦Lz,◦ = My,◦Ly,◦ := ̺
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for all y, z ∈ Q. Hence, the bijections λ and ̺ do not depend on y and z and are

functional constants. Replacing z
l
· xz with λ(x) and (z ◦ x)

r
◦ z with ̺(x) in (8),

the equalities λ(x) · xy = y and (y ◦ x) ◦ ̺(x) = y are obtained.

Thus, I, lI and rI are quasigroup varieties defined by the identities (6) and (8),

respectively.

The theorem has been proved. �

Theorem 6. Each variety of the parastrophy orbit of cross inverse property

quasigroups can be described by the following identities:

Variety Defining Inversion Defining

formula mapping identity

C = sC xy · α(x) = y (∀ z) α = MzRz = ιMz
rMz xy ·

(

xz
r
· z

)

= y
lC = srC yx · y = β(x) (∀ z) β = RzLz = rMz

lsMz yx · y = zx · z
rC = slC y · xy = γ(x) (∀ z) γ = LzRz = lsMz

rMz y · xy = z · xz

Proof: Let C denote the class of all CIP (cross inverse property) quasigroups,

i.e., the quasigroups (Q; ·) by the defining formula xy · α(x) = y for some trans-

formation α of the set Q.

By Corollary 2, the variety sC is defined by

(

x
s
· y

) s
· α(x) = y, i.e., α(x) · yx = y.

Replacing x with α−1(x), we get x · (y · α−1(x)) = y, therefore

x(y · α−1(x)) · α−1(x) = y · α−1(x).

Changing y with y · α−1(x), we obtain (x · y) · α−1(x) = y. Since the formulas

(∃α)(∀x, y) xy · α(x) = y and (∃α)(∀x, y) xy · α−1(x) = y

are equivalent, then C = s
C.

Pursuant to the definition of the right translation, the equality xy ·α(x) = y can

be written as Ryx · α(x) = y. By the definition of a middle translation, we have

α = MyRy for all y ∈ Q. Substituting MzRz for α in the equality xy · α(x) = y,

the equality

xy ·MzRz(x) = y

is obtained.

Taking into account the equality Mz(x) = x
r
· z, we have

(9) xy ·
(

xz
r
· z

)

= y.
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Conversely, let
(

Q; ·,
l
·,

r
·
)

be a quasigroup satisfying the identity (9). The identity

can be written as

xy
r
· y = xz

r
· z, i.e., MyRy = MzRz := α for all y, z ∈ Q.

Thus, the bijection α does not depend on y and z and is a functional constant.

Replacing xz
r
· z with α(x) in (9), xy · α(x) = y is obtained. It means that the

quasigroup has a cross invertible property.

Therefore, the class of quasigroups with the cross invertible property is a vari-

ety C defined by the identity (9).

It remains to find the identities of the varieties and their inversion mappings.

According to Corollary 2, the varieties lC and rC are respectively described by

the formulas
(

x
l
◦ y

) l
◦ β(x) = y and

(

x
r
∗ y

) r
∗ γ(x) = y

for some tranformations β and γ. In other words, the affiliation of the quasigroups

(A; ◦) and (B; ∗) to lC and rC means that these identities hold. It is easy to verify

that the transformations β and γ are invertible and the formulas are equivalent

to

(10) (y ◦ x) ◦ y = β−1(x) and x ∗ (y ∗ x) = γ−1(y).

Thus, β−1 = Ry,◦Ly,◦ and γ−1 = Lx,∗Rx,∗ for all x, y. Since both β and γ are

constant functions, then neither β nor γ depends on y and x, respectively. Hence,

replacing them with a new variable z, we obtain the identities

(11) (y ◦ x) ◦ y = (z ◦ x) ◦ z, x ∗ (y ∗ x) = z ∗ (y ∗ z).

Vice versa, let the quasigroups (A; ◦) and (B; ∗) satisfy the identities (11). They

can be written as Ry,◦Ly,◦ = Rz,◦Lz,◦ =: β−1 and Lx,∗Rx,∗ = Lz,∗Rz,∗ := γ−1.

It follows that both relationships do not depend on any variables and define some

constant functions β and γ. That is why (11) implies (10). Thus, the identities

(11) define the varieties lC and rC.

The theorem has been proved. �

Theorem 7. Each variety of the parastrophy orbit of mirror quasigroups can be

described by the following identities:

Variety Defining Inversion Defining

formula mapping identity

M = sM ϕ(x) · y = y · x (∀ z) ϕ = R−1
z Lz = rsMz

lsMz

(

zx
l
· z

)

· y = yx
lM = srM y · yx = δ(x) (∀ z) δ = L2

z = (lsMz)
2 y · yx = z · zx

rM = slM xy · y = ξ(x) (∀ z) ξ = R2
z = (rMz)

2 xy · y = xz · z
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Proof: Let M denote the class of quasigroups defined by the following condition:

there exists a transformation ϕ such that the equality ϕ(x) · y = y · x is true for

all x, y. According to Corollary 2, the variety sM is defined by ϕ(x)
s
· y = y

s
· x,

i.e., y · ϕ(x) = x · y. As a result of fixing y, ϕ is bijective. Accordingly, x can be

replaced with ϕ−1(x), and we get y · x = ϕ−1(x) · y, suchwise ϕ−1(x) · y = y · x.

Since the formulas

(∃α)(∀x, y) ϕ(x) · y = y · x and (∃ϕ)(∀x, y) ϕ−1(x) · y = y · x

are equivalent, then M = sM. The formula ϕ(x) · y = y · x can be written as

Ryϕ = Ly. Thence, ϕ = R−1
y Ly for all y ∈ Q. Substituting R−1

z Lz for ϕ in the

equality ϕ(x) · y = y · x, we obtain R−1
z Lz(x) · y = y · x. Taking into account the

equality R−1
z (x) = x

l
· z, we have

(12)
(

zx
l
· z

)

· y = yx.

Vice versa, let
(

Q; ·,
l
·,

r
·
)

be a quasigroup satisfying the identity (12) that is

equivalent to zx
l
· z = yx

l
· y, i.e., R−1

z Lz = R−1
y Ly := ϕ for all y, z ∈ Q. Hence,

the bijection ϕ is a functional constant. Replacing zx
l
· z with ϕ(x) in the

identity (12), we get ϕ(x) · y = yx. Thus, the class of quasigroups which is

defined by the identity (12) is a variety M.

The identities of the varieties and the inversion mapping still need to be found.

According to Corollary 2, the varieties lM and rM are respectively described by

the formulas

δ(x)
l
∗ y = y

l
∗ x, ξ(x)

r
· y = y

r
· x

for some tranformations δ and ξ. Namely, the affiliation of quasigroups (A; ∗) and

(B; ·) to lM and rM, respectively, means that these identities hold. As a result

of fixing y, both β and ξ are bijective. Using the definitions of the left inverse
( l
◦
)

and the right inverse
( r
◦
)

, it is easy to verify that the formulas are equivalent to

(13) y ∗ (y ∗ x) = δ(x) and (y · x) · x = ξ(y).

Therefore, δ = L2
y,∗ and ξ = R2

x,· for all x, y. Since both δ and ξ are constant

functions, then neither δ nor ξ depend on y and x. Hence, replacing them with

a new variable z, we obtain

y ∗ (y ∗ x) = L2
y,∗(x) and (y · x) · x = R2

x,·(y)

which are respectively equivalent to the identities

(14) y ∗ (y ∗ x) = z ∗ (z ∗ x) and (y · x) · x = (y · z) · z.
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Conversely, let quasigroups (A; ∗) and (B; ·) simultaneously satisfy the identi-

ties (14). These identities can be written as L2
y,∗ = L2

z,∗ =: δ and R2
x,· = R2

z,· := ξ.

Thereby, both relationships do not depend on variables and define some constant

functions δ and ξ. That is why (14) implies (13).

Thus, the identities (14) define the varieties lM and rM, respectively. The

theorem has been proved. �

The identities yx · y = zx · z, y · xy = z · xz, y · yx = z · zx, xy · y = xz · z from

Theorem 6 and Theorem 7 were found in [10]. See also [3].
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