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Abstract. Let K be a field, and let G be a group. In the present paper, we investigate
when the group ring K[G] has finite weak dimension and finite Gorenstein weak dimen-
sion. We give some analogous versions of Serre’s theorem for the weak dimension and the
Gorenstein weak dimension.

Keywords: weak dimension; Gorenstein weak dimension; principal module; group ring

MSC 2020 : 16S34, 16E10, 16E30

1. Introduction

Let R be a ring and G a group (finite or infinite). We denote the group ring of G

over R by R[G] with the elements of G as a basis and with multiplication defined

distributively using the group multiplication in G. This subject is a meeting place

of group theory and ring theory. In recent decades, representation and homological

properties of group rings have been extensively studied (cf. [1], [4], [6], [9], [14], [15],

[17], [18], [19]). Among others, Connell in [6] considered necessary and sufficient

conditions on R and G so that R[G] have some ring theoretic properties such as

being Artinian, regular, self-injective and semiprime. Let p be a prime. A group G

is called a p′-group provided that G has no element of order p. Let K be a field of

characteristic p and let H be a subgroup of G of finite index. There is the well-known

Serre’s theorem (see [15]), i.e., if G is a p′-group, then the global dimension ofK[H ] is

equal to that ofK[G]. In [1], Auslander showed that if G is a commutative group and

the order of any element inG is unit inK, then the weak dimension ofK[G] equals the
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rank of G. Futhermore, it was shown in [17] that the weak dimension ofK[G] is equal

to the Hirsch number ofG for a fieldK of characteristic 0 and a solvable group G. On

the other hand, Govorov proved that a module is flat if and only if it is a direct limit

of free modules, which is also called the Govorov-Lazard theorem, see [10]. Recently,

Benson and Goodearl in [4] showed that flat modules and projective modules over

a group ring have a close connection. For a ring R and a finite group G, a flat R[G]-

module which is projective as an R-module is necessarily a projective R[G]-module.

Motivated by this, we consider, in Section 3 of this paper, the finiteness of the

weak dimension of group rings. It is shown that the weak dimension of K[G] is equal

to the flat dimension of a principal K[G]-module. Moreover, we obtain some results

which generalize several properties of the global dimension of group rings. More

precisely, we prove the following:

Theorem 3.10. Let K be a field, and let H be a normal subgroup of a group G.

If wD(K[H ]) and wD(K[G/H ]) are finite, then so is wD(K[G]), and we have

wD(K[G]) 6 wD(K[H ]) + wD(K[G/H ]).

Theorem 3.13. Let K be a field of characteristic p, and let H be a subgroup of

a group G of finite index. If G is a p′-group, then wD(K[H ]) = wD(K[G]).

Auslander and Bridger in [2] introduced G-dimensions for finitely generated mod-

ules over commutative Noetherian rings. As an extension of the G-dimension, the

Gorenstein projective dimension and the Gorenstein flat dimension of modules (nec-

essarily finitely generated) over a general ring were defined (cf. [8], [12]). Further-

more, the Gorenstein global dimension and the Gorenstein weak dimension of a ring

were given, see [3]. Those dimensions are refinements of the classical homological

dimensions. In Section 4, we investigate the finiteness of the Gorenstein weak di-

mension of group rings. The main results of this section are the following:

Theorem 4.7. Let K be a field, and let H be a normal subgroup of a group G. If

GwD(K[H ]) andGwD(K[G/H ]) are finite, then so is GwD(K[G]), and the following

hold:

(1) GwD(K[G]) 6 GwD(K[H ]) +GwD(K[G/H ]).

(2) If G/H is locally finite, then GwD(K[G]) = GwD(K[H ]).

Proposition 4.9. Let K be a field, and let H be a subgroup of a group G of

finite index. If K[G] is right coherent and GwD(K[G]) is finite, then GwD(K[G]) =

GwD(K[H ]).
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2. Preliminaries

In this section, we set notations and discuss basic facts which will be useful in

the sequel. Unless otherwise stated, R denotes an associative ring with identity

and all modules are left R-modules. For an R-module M , fdR(M) and GfdR(M)

denote the flat dimension and the Gorenstein flat dimension of M , respectively. We

write wD(R) and GwD(R) for the weak dimension and the left Gorenstein weak

dimension of a ring R, respectively. More concepts and notations can be found

in [2], [13], and [15].

Module structure over group rings

(1) Let V and W be K[G]-modules. Then V ⊗K W becomes a K[G]-module under

the diagonal action g(v ⊗w) = (gv)⊗ (gw) for all v ∈ V , w ∈ W and g ∈ G. It

is trivial that V ⊗K W ∼= W ⊗K V .

(2) The principal K[G]-module V0 is a one-dimensional K-vector space in which

gv = v for all v ∈ V0 and g ∈ G. For example, K with trivial G-action is

a principal K[G]-module.

(3) Let H be a subgroup of G. Following [14], for a K[H ]-moduleM , we define the

induced module M ↑GH := K[G]⊗K[H] M with K[G] acting on the left side and

the coinduced module HomK[H](K[G],M). Moreover, every K[G]-module N

can be viewed as a K[H ]-module. We denote this restricted module by N ↓GH
(sometime we omit the symbol ↓GH if these is not risk of confusion). Since K[G]

is a left and right free K[H ]-module, the induced functor and the restricted

functor are exact, and preserve projective modules. The coinduced functor

preserves injective modules.

Gorenstein dimension

A complete flat resolution is an exact sequence of flat R-modules

. . . → F1 → F0 → F 0 → F 1 → . . . ,

which remains exact after applying the functor I ⊗R − for any injective right

R-module I. An R-module M is called Gorenstein flat (see [12]) if it is a syzygy of

a complete flat resolution, i.e., M = Ker(F 0 → F 1). The Gorenstein flat dimension

GfdR(M) is at most n if there is an exact sequence

0 → Gn → Gn−1 → . . . → G1 → G0 → M → 0

with every Gi Gorenstein flat. A ring R is right coherent if every finitely generated

right ideal of R is finitely presented. The following result is due to [12], Theorem 3.14.

Proposition 2.1. Let R be a right coherent ring, and let M be a left R-module

with finite Gorenstein flat dimension. Then the following are equivalent:
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(1) GfdR(M) 6 n;

(2) TorRi (L,M) = 0 for all right R-modules L with finite injective dimension, and

all i > n;

(3) TorRi (I,M) = 0 for all injective right R-modules I, and all i > n;

(4) for every exact sequence

0 → Kn → Gn−1 → . . . → G1 → G0 → M → 0,

where G0, . . . , Gn−1 are Gorenstein flat, then also Kn is Gorenstein flat.

Following [3], the left Gorenstein weak dimension of a ring R is defined as

GwD(R) = sup{GfdR(M) : M is an R-module}.

Recall that the weak dimension of R is the supremum of flat dimensions of all

R-modules. It is clear that GwD(R) 6 wD(R) and GwD(R) = wD(R) provided

that wD(R) is finite. Recall that a ring is called a left IF -ring (see [5]) if every left

injective module is flat. Dually, there is the definition of a right IF -ring. The ring

is called an IF -ring provided that it is a right and left IF -ring. It was shown that

GwD(R) = 0 if and only if R is an IF -ring.

3. Weak dimension

We start with the following lemmas.

Lemma 3.1. Let K be a field, and let H be a normal subgroup of G. If F is a flat

K[G/H ]-module and a K[G]-module M is flat as a K[H ]-module, then F ⊗K M is

flat as a K[G]-module.

P r o o f. By the Govorov-Lazard theorem, a flat module is a direct limit of free

modules. Noting that the direct limit commutes with the tensor functor, and a direct

limit (direct sum) of flat modules is also flat, we assume that F = K[G/H ]. It is

easy to verify that

K[G/H ]⊗K M ∼= M ↓GH↑GH

by defining

σ : gH ⊗ x 7→ g ⊗ g−1x, gH ∈ G/H, x ∈ M,

and

τ : g ⊗ x 7→ gH ⊗ gx, g ∈ G, x ∈ M.

Thus, the result follows from [19], Proposition 2.2. �
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Lemma 3.2. Let M be a K[G]-module. If F is a flat K[G]-module, then so is

F ⊗K M .

P r o o f. Let H = {1} in Lemma 3.1. �

By Lemma 3.2, we have immediately the following:

Lemma 3.3. If N is a K[G]-module, then fdK[G](N⊗KM) 6 fdK[G](N) for any

K[G]-module M .

The following result will be used in the sequel.

Proposition 3.4. Let K be a field, and let G be a group. If V0 is a principal

K[G]-module, then

wD(K[G]) = fdK[G](V0).

P r o o f. It is only to prove that wD(K[G]) 6 fdK[G](V0). Now suppose that

fdK[G](V0) = n < ∞. Then there is an exact sequence of K[G]-modules

0 → Fn → . . . → F0 → V0 → 0,

where each Fi is flat. For any K[G]-moduleM , it is flat as a K-module. So, it yields

an exact sequence of K[G]-modules

0 → Fn ⊗K M → . . . → F0 ⊗K M → V0 ⊗K M → 0.

By Lemma 3.2, Fi ⊗K M is flat for all i. Thus, fdK[G](V0 ⊗K M) 6 n. It is easy

to verify that V0 ⊗K M ∼= M as K[G]-modules. Then fdK[G](M) 6 n, and hence

wD(K[G]) 6 n. �

A group is locally finite if every finite subset generates a finite subgroup. Now we

list some characteristics of the weak dimension of group rings.

Proposition 3.5. Let K be a field, and let G be a group.

(1) If H is a subgroup of G, then wD(K[H ]) 6 wD(K[G]).

(2) wD(K[G]) = 0 if and only if G is locally finite and the order of any finite

subgroup of G is unit in K.

(3) If G is an infinite cyclic group, then wD(K[G]) = 1.

P r o o f. (1) It follows from [19], Theorem 2.7.

(2) The result can be found in [6].

(3) It follows from [1], Lemma 8. �
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It was shown that if the global dimension of K[G], where K is a field of character-

istic p, is finite, then G is a p′-group (see [15], Corollary 10.3.7). Now we can extend

this result to the weak dimension.

Proposition 3.6. Let K be a field of characteristic p, and let G be a group. If

wD(K[G]) is finite, then G is a p′-group.

P r o o f. Suppose that H = (x) is a cyclic subgroup of order p. Let R := K[H ]

and let

a = 1− x, b = 1 + x+ . . .+ xp−1 ∈ R.

By [13], Lemma 6.2, lR(a) = Rb. Thus, we have the exact sequence of R-modules

0 → Rb → R → Ra → 0.

By Proposition 3.5 (1), wD(R) is finite, and hence let fdR(Ra) = n < ∞. By [4],

Lemma 3.2 (b) and Theorem 3.4, Ra is projective, and so R ≃ Ra⊕ Rb. But b 6= 0

annihilates both Ra and Rb, a contradiction. Therefore, G is a p′-group. �

Example 3.7. Let K be a field of characteristic 3, and let G be the symmetric

group of degree 3. By the proposition above, wD(K[G]) is infinite.

It is natural to ask when the weak dimension of K[G] is finite. By Proposition 3.5

and [1], Proposition 6, we have the following:

Corollary 3.8. Let K be a field, and let G be a locally finite group. Then the

following are equivalent:

(1) wD(K[G]) = 0;

(2) wD(K[G]) is finite;

(3) the order of any element of G is unit in K.

A group G is called polycyclic-by-finite if there is a subnormal series for G,

{1} = G0 ⊳ G1 ⊳ . . . ⊳ Gn = G,

where Gi/Gi−1 is either cyclic or finite. By Proposition 3.6 and [15], Theo-

rem 10.3.13, we have the following result:

Corollary 3.9. Let K be a field of characteristic p, and let G be a polycyclic-by-

finite group. Then the following are equivalent:

(1) wD(K[G]) is finite;

(2) G is a p′-group.
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Let H be a normal subgroup of a group G. The following theorem establishes

the estimate for the weak dimension of K[G] by the corresponding values of K[H ]

and K[G/H ].

Theorem 3.10. Let K be a field, and let H be a normal subgroup of a group G.

If wD(K[H ]) and wD(K[G/H ]) are finite, then so is wD(K[G]), furthermore,

wD(K[G]) 6 wD(K[H ]) + wD(K[G/H ]).

P r o o f. Suppose that wD(K[H ]) = n and wD(K[G/H ]) = m are finite.

If V0 is a principal K[H ]-module, then there is an exact sequence of K[H ]-modules

0 → Fn → . . . → F0 → V0 → 0,

where each Fi is flat. By [19], Proposition 2.2, there is an exact sequence of

K[G]-modules

0 → Fn ↑GH→ . . . → F0 ↑GH→ V0 ↑GH→ 0,

and each Fi ↑
G
H is flat. On the other hand, V0 ↑GH

∼= K[G/H ] as K[G]-modules, and

hence

fdK[G](K[G/H ]) = fdK[G](V0 ↑GH) 6 n.

Thus, for every free K[G/H ]-module F , fdK[G](F ) 6 n. By the Govorov-Lazard

theorem and Theorem 8.11 in [16], fdK[G](Q) 6 n for any flat K[G/H ]-module Q.

If W0 is a principal K[G/H ]-module, in view of Proposition 3.4,

fdK[G/H](W0) = wD(K[G/H ]) = m.

Then we have the exact sequences of K[G/H ]-modules

0 → Wi+1 → Qi → Wi → 0, i = 0, 1, . . . ,m− 1,

where Qi, i = 0, 1, . . . ,m − 1 and Wm are flat K[G/H ]-modules. The exact se-

quences above are also exact sequences of K[G]-modules, and W0 is also a principal

K[G]-module. To prove fdK[G](Wi) 6 n + m − i, we carry out the inverse induc-

tion on i.

(1) fdK[G](Wm) 6 n+m−m because Wm is a flat K[G/H ]-module.

(2) Suppose that fdK[G](Wt) 6 n + m − t for 1 < t < m. Then fdK[G](Wt) and

fdK[G](Qt−1) are finite and fdK[G](Qt−1) 6 n.

(3) If Wt−1 is not flat, then

fdK[G](Wt−1) 6 1+sup{fdK[G](Wt), fdK[G](Qt−1)} 6 1+(n+m−t) = n+m−(t−1).

In particular, when i = 0 we have fdK[G](W0) 6 n + m. Therefore, in view of

Proposition 3.4, wD(K[G]) = fdK[G](W0) 6 n+m. �
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By Proposition 3.5 (2) and Theorem 3.10, we have:

Corollary 3.11. Let K be a field, and let H be a normal subgroup of G of finite

index. If [G : H ] is unit in K, then wD(K[H ]) = wD(K[G]).

Proposition 3.12. Let K be a field, and let H be a subgroup of G of finite index.

If wD(K[G]) is finite, then wD(K[H ]) = wD(K[G]).

P r o o f. By Proposition 3.5 statement (1), it is enough to prove that wD(K[H ]) >

wD(K[G]). So suppose that wD(K[G]) = n < ∞. Let V0 be a principal

K[G]-module. By Proposition 3.4, fdK[G](V0) = n. Then, for any right K[G]-

module L, Tor
K[G]
n+1 (L, V0) = 0, and there is at least one right K[G]-module N ,

TorK[G]
n (N, V0) 6= 0. Consider the following exact sequence of right K[G]-modules:

0 → N
f
→ HomK[H](K[G], N) → Coker f → 0,

where f(n)(
∑

g∈G

rgg) = n
∑

g∈G

rgg for n ∈ N and
∑

g∈G

rgg ∈ K[G]. Applying the

functor −⊗K[G] V0 to it, we get a long exact sequence

0 = Tor
K[G]
n+1 (Coker f, V0) → TorK[G]

n (N, V0) → TorK[G]
n (HomK(K[G], N), V0) → . . .

Since TorK[G]
n (N, V0) 6= 0, TorK[G]

n (HomK[H](K[G], N), V0) 6= 0. In addition, by [18],

Lemma 9.2 and [16], Corollary 11.63, we get

TorK[G]
n (HomK[H](K[G], N), V0) ∼= TorK[G]

n (N ⊗K[H] K[G], V0) ∼= TorK[H]
n (N, V0).

Thus, TorK[H]
n (N, V0) 6= 0, and so fdK[H](V0) > n. Noting that V0 is also a principal

K[H ]-module, wD(K[H ]) = fdK[H](V0) > n. �

The following result provides an analogous version of Serre’s theorem for the weak

dimension. The idea of the proof is similar to the proof of [15], Theorem 3.12.

Theorem 3.13. Let K be a field of characteristic p, and let H be a subgroup

of G of finite index. If G is a p′-group, then wD(K[H ]) = wD(K[G]).

P r o o f. By Proposition 3.12, it suffices to show that wD(K[G]) is finite while

wD(K[H ]) is finite. Let V0 be a principal K[H ]-module and let

0 → Fn → . . . → F0 → V0 → 0

be a finite flat resolution of V0. Suppose that [G : H ] = m, and let

(3.1) . . . → Qn → . . . → Q0 → B → 0,
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where

B = ⊗mV0 = V0 ⊗K V0 ⊗ . . .⊗K V0

and

Qt =
∑

i1+...+im=t

Fi1 ⊗K Fi2 ⊗ . . .⊗K Fim .

Choose a coset representative xi so that G = ∪xiH . If g ∈ G, let g−1xi = xvih
−1
vi

with hvi ∈ H and define

g(f1 ⊗ f2 ⊗ . . .⊗ fm) = hv1fv1 ⊗ hv2fv2 ⊗ . . .⊗ hvmfvm .

Thus, we define an action of G on Qi. On the other hand, B = V0 ⊗K V0 ⊗ . . . ⊗K

V0
∼= K, and hence B is isomorphic to the principal K[G]-module. By the proof

of [15], Theorem 3.12, (3.1) is an exact sequence of K[G]-modules. It will now suffice

to prove that each Qi is a flat K[G]-module. Noting that a flat module is a direct

limit of free modules, the direct limit commutes with the tensor functor, and the

direct limit (direct sum) of flat modules is also flat, it is only to show that ⊗mPi

is flat for free K[H ]-modules Pi. It is true by the proof of [15], Theorem 3.12

again. Thus, (3.1) is a finite flat resolution of B, and hence fdK[G](B) is finite. By

Proposition 3.4, wD(K[G]) is finite, as desired. �

4. Gorenstein weak dimension

In this section, we will consider the finiteness of the Gorenstein weak dimension.

Lemma 4.1. Let M be a K[G]-module. If F is a Gorenstein flat K[G]-module,

then so is F ⊗K M .

P r o o f. If F is Gorenstein flat, then there is a complete flat resolution

F ◦ := . . . → F1 → F0 → F 0 → F 1 → . . . ,

and F = Ker(F 0 → F 1). Since each K-module is flat, we have the following exact

sequence of K[G]-modules:

F ◦ ⊗K M := . . . → F1 ⊗K M → F0 ⊗K M → F 0 ⊗K M → F 1 ⊗K M → . . . ,

and F ⊗K M = Ker(F 0 ⊗K M → F 1 ⊗K M). By Lemma 3.2, all Fi ⊗K M and all

F i ⊗K M are flat. Now it is enough to show that I ⊗K[G] (F
◦ ⊗K M) is exact for

any injective right K[G]-module I. In fact, we have

I ⊗K[G] (F
◦ ⊗K M) ∼= (I ⊗K[G] F

◦)⊗K M.

Noting that F ◦ is a complete flat resolution, the right complex is exact, as desired.

�
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By Lemma 4.1, the following result similar to Proposition 3.4 can be proven.

Proposition 4.2. Let K be a field and let G be a group. If V0 is a principal

K[G]-module, then GwD(K[G]) = GfdK[G](V0).

The next results give some characteristics of the Gorenstein weak dimension of

group rings.

Proposition 4.3. Let K be a field, and let G be a group.

(1) If H is a subgroup of G and K[H ] is right coherent, then GwD(K[H ]) 6

GwD(K[G]).

(2) If H is a subgroup of G of finite index, then GwD(K[H ]) 6 GwD(K[G]).

(3) GwD(K[G]) = 0 if and only if G is locally finite.

(4) If G is an infinite cyclic group, then GwD(K[G]) = 1.

P r o o f. (1) It is the result of [19], Theorem 2.8.

(2) We first show that if M is a Gorenstein flat K[G]-module, then M ↓GH is

Gorenstein flat as a K[H ]-module. Let

F ◦ := . . . → F1 → F0 → F 0 → F 1 → . . .

be a complete flat resolution such that M = Ker(F 0 → F 1). It gives rise to an exact

sequence of flat K[H ]-modules

F ◦ ↓GH := . . . → F1 ↓GH→ F0 ↓GH→ F 0 ↓GH→ F 1 ↓GH→ . . . ,

and M ↓GH= Ker(F 0 ↓GH→ F 1 ↓GH). Let I be any injective right K[H ]-module. Then

the coinduced module HomK[H](K[G], I) is injective as a K[G]-module. Since H is

of finite index, in view of [18], Lemma 9.2,

I ⊗K[H] F
◦ ↓GH

∼= (I ⊗K[H] K[G])⊗K[G] F
◦ ∼= HomK[H](K[G], I)⊗K[G] F

◦.

Noting that the right complex is exact, then M ↓GH is Gorenstein flat.

If GwD(K[G]) = ∞, there is nothing to show. Assume GwD(K[G]) = n. For any

K[H ]-module V , there is an exact sequence of K[G]- modules

0 → Qn → . . . → Q1 → Q0 → V ↑GH→ 0

with each Qi Gorenstein flat. Then there is an exact sequence of K[H ]-modules

0 → Qn ↓GH→ . . . → Q1 ↓GH→ Q0 ↓GH→ V ↑GH↓GH→ 0,
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where each Qi ↓GH is Gorenstein flat. Thus, GfdK[H](V ↑GH↓GH) 6 n. Then

GfdK[H](V ) 6 n because V is isomorphic to a direct summand of V ↑GH↓GH . There-

fore, GwD(K[H ]) 6 n.

(3) It follows from [5], Theorem 3.

(4) By Proposition 3.5 (3), GwD(K[G]) = wD(K[G]) = 1. �

Remark 4.4. Let K be a field of characteristic 3, and let G be the symmetric

group of order 3 (see Example 3.7). Then, GwD(K[G]) = 0 but wD(K[G]) is infinite.

Following [7], sfli(R) denotes the supremum of the flat lengths of all injective

R-modules. We study the invariant because it is deeply related to Gorenstein weak

dimension. If GwD(R) is finite, in view of [7], Lemma 5.1, so is sfli(Rop). However,

there is a right IF -ring which is not left IF (see [5], Example 2). Thus, there exists

a ring with a finite sfli(Rop) which has infinite Gorenstein weak dimension. But,

since the group ring K[G] is isomorphic to its opposite ring, the following result

follows from [7], Theorem 5.3.

Proposition 4.5. Let K be a field, and let G be a group. Then the following are

equivalent:

(1) GwD(K[G]) is finite;

(2) sfli(K[G]) is finite.

In this case, GwD(K[G]) = sfli(K[G]).

For a group ring K[G], the ring homomorphism ε : K[G] → K,
∑

rgg →
∑

rg, is

called the augmentation mapping of K[G] and its kernel, denoted by ∆(K[G]), is

∆(K[G]) =

{

∑

g∈G

ag(g − 1): 1 6= g, ag ∈ K

}

.

Proposition 4.6. Let K be a field, and let H be a normal subgroup of G. Then

(1) sfli(K[G]) 6 sfli(K[H ]) + sfli(K[G/H ]).

(2) If G/H is locally finite, then sfli(K[H ]) = sfli(K[G]).

P r o o f. (1) For convenience, we set G/H := G. Suppose that sfli(K[H ]) = n

and sfli(K[G]) = m are finite. For any injective K[G]-module I, it is sufficient to

show that fdK[G](I) 6 m+ n. Note that the augmentation sequence

0 → ∆(K[G]) → K[G] → K → 0

yields an exact sequence of K[G]-modules

0 → K → A → B → 0,
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where A = HomK(K[G],K) and B = HomK(∆(K[G]),K). Hence I is a direct

summand of A⊗K I, and so it is enough to prove that fdK[G](A⊗K I) 6 m+ n.

Since K is an injective K-module, A is an injective K[G]-module, and hence

fdK[G](A) 6 m. Let

F ◦ := 0 → Fm → Fm−1 → . . . → F0 → A → 0

be a K[G]-flat resolution of A. Choose a K[G]-flat resolution of I and

Q◦ := 0 → Qn → Qn−1 → . . . → Q0 → I → 0

is the truncation, where Qi is K[G]-flat for i = 0, . . . , n − 1 and Qn is K[H ]-flat.

Then the total complex F ◦ ⊗K Q◦ is a K[G]-complex over A⊗K I of length m+ n.

Since A is flat as a K-module, F ◦ ⊗K Q◦ is a K[G]-resolution of A ⊗K I by the

Künneth formula. Finally, we claim that F ◦ ⊗K Q◦ is a K[G]-flat resolution. To

prove this, it suffices to show that Fm ⊗K Qn is a flat K[G]-module. By Lemma 3.1,

it is true because Fm is K[G]-flat and Qn is K[H ]-flat.

(2) By Proposition 4.3 and the result above, it is enough to show that sfli(K[H ]) 6

sfli(K[G]). Now assume that sfli(K[G]) is finite and I is an injective K[H ]-module,

by [14], Corollary 2.2 and the fact that the coinduced functor preserves injec-

tive modules, HomK[H](K[G], I) ↓GH is injective. Since I is a direct summand of

HomK[H](K[G], I) ↓GH , in view of [19], Remark 2.9,

fdK[H](I) 6 fdK[H](HomK[H](K[G], I) ↓GH) 6 fdK[G](HomK[H](K[G], I)).

Thus, sfli(K[H ]) 6 sfli(K[G]). �

By Propositions 4.5 and 4.6, we get the next result.

Theorem 4.7. Let K be a field, and let H be a normal subgroup of a group G. If

GwD(K[H ]) andGwD(K[G/H ]) are finite, then so is GwD(K[G]), and the following

hold:

(1) GwD(K[G]) 6 GwD(K[H ]) +GwD(K[G/H ]).

(2) If G/H is locally finite, then GwD(K[G]) = GwD(K[H ]).

Lemma 4.8. Let K be a field, and let H be a subgroup of G. If K[G] is right

coherent, then the following hold:

(1) If H is of finite index, then K[H ] is right coherent.

(2) If H is a finite generated normal subgroup of G, then K[G/H ] is right coherent.
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P r o o f. (1) To prove that K[H ] is right coherent, it is enough to show that
∏

F

is flat for any flat K[H ]-module F . Since H is of finite index, we have the following

isomorphisms:

K[G]⊗K[H]

(

∏

F
)

∼= HomK[H]

(

K[G],
∏

F
)

∼=
∏

HomK[H](K[G], F )

∼=
∏

(K[G]⊗K[H] F ).

By [19], Proposition 2.2,K[G]⊗K[H]F is a flatK[G]-module. Then
∏

(K[G]⊗K[H]F )

is flat because K[G] is right coherent, and so K[G] ⊗K[H] (
∏

F ) is flat. By [19],

Proposition 2.2 again, (
∏

F ) ↑GH↓GH is flat as a K[H ]-module. Thus,
∏

F is flat

because
∏

F is a direct summand of (
∏

F ) ↑GH↓GH .

(2) By [6], Proposition 1, K[G/H ] ∼= K[G]/ωH , where ωH is a right ideal of K[G]

generated by {hi − 1: hi ∈ H}. Since H is finite generated, ωH is finite generated.

Thus, K[G/H ] is right coherent in terms of [9], Theorem 4.1.1. �

Similarly to Proposition 3.12, one can prove the next results:

Proposition 4.9. Let K be a field, and let H be a subgroup of a group G of

finite index. If K[G] is right coherent and GwD(K[G]) is finite, then GwD(K[G]) =

GwD(K[H ]).

P r o o f. By Proposition 4.3 (2), GwD(K[H ]) 6 GwD(K[G]). So suppose that

GwD(K[G]) = n < ∞. Let V0 be a principal K[G]-module. By Proposition 4.2,

GfdK[G](V0) = GwD(K[G]) = n.

Then, in view of Proposition 2.1, Tor
K[G]
n+1 (L, V0) = 0 for any injective right

K[G]-module L, and there is at least one injective right K[G]-module N ,

TorK[G]
n (N, V0) 6= 0.

Consider the split exact sequence of right K[G]-modules

0 → N
f
→ HomK[H](K[G], N) → Coker f → 0.

Since N is also injective as a right K[H ]-module, we see that the coinduced module

HomK[H](K[G], N) is injective, and hence Coker f is injective. Applying the functor

−⊗K[G] V0 to it, we get a long exact sequence

0=Tor
K[G]
n+1 (Coker f, V0)→TorK[G]

n (N, V0)→TorK[G]
n (HomK[H](K[G], N), V0)→ . . .

Since TorK[G]
n (N, V0) 6= 0, TorK[G]

n (HomK[H](K[G], N), V0) 6= 0. In addition, by [18],

Lemma 9.2 and [16], Corollary 11.63, we get

TorK[G]
n (HomK[H](K[G], N), V0) ∼= TorK[G]

n (N ⊗K[H] K[G], V0) ∼= TorK[H]
n (N, V0).
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Thus, TorK[H]
n (N, V0) 6= 0, and so GfdK[H](V0) > n in terms of Proposition 2.1 and

Lemma 4.8. Therefore, by Proposition 4.2, GwD(K[H ]) = GfdK[H](V0) > n. �

Corollary 4.10. Let K be a field, and let H be a subgroup of a group G of

finite index. If K[G] is right coherent and sfli(K[G]) is finite, then GwD(K[G]) =

GwD(K[H ]).

Question 4.11. Holm in [11] mentioned the meta-theorem: every result in classi-

cal homological algebra has a counterpart in Gorenstein homological algebra. Thus,

the question is whether the condition that K[G] is right coherent in Proposition 4.9

and the corresponding corollary can be omitted or not.
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