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The operation ABA in operator algebras

† Marcell Gaál

Abstract. The binary operation aba, called Jordan triple product, and its vari-
ants (such as e.g. the sequential product

√
ab

√
a or the inverted Jordan triple

product ab−1a) appear in several branches of operator theory and matrix anal-
ysis. In this paper we briefly survey some analytic and algebraic properties of
these operations, and investigate their intimate connection to Thompson type
isometries in different operator algebras.
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1. Introduction

This paper is of survey character and it is organized as follows.

The first part is involved with the standard K-loop structure on the positive

definite cone of a C∗-algebra. We investigate some analytic and algebraic prop-

erties of the sequential product.

In the second part we point out the geometric origin of the motivation of

studying Jordan triple product isomorphisms. Moreover, as an application we

describe the structure of isometries with respect to a special class of distance

measures incorporating the Thompson part metric as well.

Finally, in the last section the corresponding structural result concerning the

Thompson part metric is also presented in the setting of JB-algebras.

2. The standard K-loop structure on positive definite operators

The operation
√
ab
√
a called sequential product was introduced first by Gud-

der and Nagy, originally on the so-called Hilbert space effect algebra meaning the
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operator interval [0, I], where I stands for the identity operator on the underlying

Hilbert space, with respect to the usual Löwner ordering. In their quantum me-

chanical interpretation the operator
√
ab
√
a represents a sequential measurement

in which a is performed first and b is second.

In what follows A denotes a unital C∗-algebra, if not stated otherwise, and

A−1
+ stands for its positive invertible elements. Considering the operation a ◦ b =√
ab
√
a on A−1

+ we arrive at a rich mathematical object as (A−1
+ , ◦) provides

a fundamental example of K-loop. To recall the concept of K-loop, we note that

a set S equipped with a binary operation “⋆” is called a quasigroup whenever the

equations

a ⋆ x = b,(2.1)

y ⋆ a = b(2.2)

have unique solutions in S for every a, b ∈ S. A quasigroup with unit is called

a loop. A loop satisfying the identity

a ⋆ (b ⋆ (a ⋆ c)) = (a ⋆ (b ⋆ a)) ⋆ c

is called a Bol loop. A Bol loop with the so-called automorphic inverse property

(a ⋆ b)−1 = a−1 ⋆ b−1

is called a K-loop, or in another words a Bruck loop. Let us mention that the

abstract K-loop structure determines exactly the same structure as the so-called

gyrogroups, see [11]. The theory of such objects has been developed by A.A.

Ungar, see [12]. Note that the Einstein gyrogroup provides a particular important

example of gyrogroups, which is defined on the set of admissible velocities

B = {v ∈ R
3 : ‖v‖ < 1}

equipped with the velocity addition

v ⊕ u =
1

1 + 〈v, u〉
(

v +
1

cv
u+

cv
1 + cv

〈v, u〉v
)

where cv = (1 − ‖v‖2)−1/2 is the Lorentz factor.

The most challenging part in verifying that (A−1
+ , ◦) is indeed a K-loop is to

establish (2.2), that is, one needs to furnish that the equation

ya−1y = b
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has a unique solution y ∈ A−1

+ for every a, b ∈ A−1

+ . This is provided by the

Anderson–Trap theorem which states that the Pusz–Woronowitz geometric mean

a#b = a1/2(a−1/2ba−1/2)1/2a1/2

is the unique solution of the equality in question. After examining the standard

K-loop structure, the question arises naturally when (A−1
+ , ◦) became a Moufang

loop, that is, when it satisfies

(a ⋆ a) ⋆ b = a ⋆ (a ⋆ b),(2.3)

(a ⋆ b) ⋆ b = a ⋆ (b ⋆ b),(2.4)

a ⋆ (b ⋆ a) = (a ⋆ b) ⋆ a.(2.5)

The identity (2.3) is always satisfied, but the first two hold exactly when the

algebra A is commutative, see [2]. Another notable property concerning com-

mutativity is that for a, b ∈ A−1
+ , we have a ◦ b = b ◦ a if and only if ab = ba,

that is, commutativity with respect to the K-loop product is exactly the same as

commutativity with respect to the usual product of the underlying algebra. The

proof of this statement is surprisingly short, it rests on Jacobson’s lemma, which

asserts that σ(ab) ∪ {0} = σ(ba) ∪ {0}, and further elementary manipulations.

3. The (inverted) Jordan triple product and generalized Mazur–Ulam

type theorems

Before moving on to the formulation of generalized Mazur–Ulam type theorem,

let us recall the classical version and share some ideas of the proof.

Theorem 3.1 (Mazur–Ulam, 1932). Let X , Y be real linear normed spaces.

Every surjective isometry T : X → Y is affine.

In the first proof of the Mazur–Ulam theorem, one major step is to show

that an isometry T : X → Y (more precisely, isometric isomorphism) preserves

the geometric midpoint, the arithmetic mean as well. From this it follows that T

respects dyadic convex combinations and thus, by the continuity of the isometry T

we infer that T is affine. In this way a geometric preserver problem in fact can

be reduced to an algebraic one. This idea has been used by L. Molnár and his

coauthors and led to a number of generalized Mazur–Ulam type theorems. Here

we present the most general version. To this end, we need the concept of point-

reflection geometries. Let X be a set equipped with a binary operation “⋄” which

satisfies the following conditions:

(p1) a ⋄ a = a for every a ∈ X ;

(p2) a ⋄ (a ⋄ b) = b for every a, b ∈ X ;
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(p3) the equation x⋄a = b has a unique solution x ∈ X for any given a, b ∈ X .

Then the pair (X , ⋄) is said to be a point-reflection geometry. The announced

Mazur–Ulam type result of Molnár concerning generalized distance measures1

reads as follows.

Theorem 3.2 (L. Molnár, 2015). Assume that (X , ⋄) and (Y, ⋆) form point-

reflection geometries. Let d and ̺ be two generalized distance measures on X
and Y, respectively. Select a, b ∈ X and set

La,b : = {x ∈ X : d(a, x) = d(x, b ⋄ a) = d(a, b)}.

Furthermore, we shall assume the following.

(b1) d(b ⋄ x, b ⋄ x′) = d(x′, x) for x, x′ ∈ X ;

(b2) sup{d(x, b) : x ∈ La,b} < ∞;

(b3) there is a constant K > 1 such that

d(x, b ⋄ x) ≥ K · d(x, b), x ∈ La,b.

Suppose that ϕ : X → Y is a surjective map with

̺(ϕ(x), ϕ(x′)) = d(x, x′), x, x′ ∈ X ,

and also that

(b4) the element c ∈ Y with c ⋆ϕ(a) = ϕ(b⋄a) satisfies ̺(c ⋆ y, c ⋆ y′) = ̺(y′, y)

for y, y′ ∈ Y.
Then we necessarily have

ϕ(b ⋄ a) = ϕ(b) ⋆ ϕ(a).

As noted in [10], the above theorem is of Mazur–Ulam type in the sense that

from this the usual Mazur–Ulam theorem can be concluded with little effort.

Indeed, defining the operations x1 ⋄ x2 = 2x1 − x2 and y1 ⋆ y2 = 2y1 − y2 makes

the real linear spaces X and Y point-reflection geometries. Then by the theorem,

a real linear isometry T satisfies T (2x1 − x2) = 2T (x1) − T (x2) which implies

that T preserves the arithmetic mean, and the standard argument at the end

of the original proof of the Mazur–Ulam theorem (see above) can be applied to

show that T is affine. In the following we show how the above Mazur–Ulam type

theorems are applicable in the study of certain isometries and distance measures

on the positive definite cones of different operator algebras.

Consider the distance measure between positive operators

dN,f(a, b) = N(f(a−1/2ba−1/2))

1If X is a set, a function d : X × X → [0,∞] is called a generalized distance measure if

d(x, y) = 0 holds exactly when x = y.
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whereN is a complete, symmetric norm2 and f : ]0,∞[→ R is a function satisfying

(c1) f(x) = 0 exactly when x = 1;

(c2) there is a real number K > 1 such that |f(x2)| ≥ K · |f(x)| for x ∈]0,∞[.

Note that from the distance measure dN,f one can recover the usual Thompson

metric, by taking N = ‖·‖ and f = log.

Concerning the above type distance measure, it is shown in [10] that a so-called

generalized isometry T , meaning

dN,f(a, b) = dN,f(T (a), T (b)) for a, b ∈ A−1

+ ,

preserves the inverted Jordan triple product, that is, we have

T (ab−1a) = T (a)T (b)−1T (a)

for every a, b ∈ A−1
+ . Then composing our map with a suitable congruence trans-

formation (namely, the congruence by the element T (e)−1/2), it can also be as-

sumed that the transformation in question is a unital Jordan triple isomorphism

as well, that is, T (e) = e and

T (aba) = T (a)T (b)T (a) for a, b ∈ A−1
+ .

The question arises naturally how to proceed. In fact, we have two possibilities.

The first is that we try to describe the Jordan triple isomorphisms directly. This

has been done in [10] in the setting of von Neumann factors that are not of type I2.

More precisely, we have the following result.

Theorem 3.3 (L. Molnár, 2015). Assume that A,B are von Neumann algebras

such that A is a factor not of type I2. Let T : A−1
+ → B−1

+ be a continuous

Jordan triple isomorphism. Then there exists either an algebra ∗-isomorphism, or

there exists an algebra ∗-antiisomorphism θ : A → B, a number ε ∈ {−1, 1}, and
a continuous tracial 3 linear functional τ : A → C which is real valued on the set

of self-adjoint elements and τ(e) 6= −ε such that

T (a) = exp(τ(log a))θ(aε)

holds for every a ∈ A−1
+ . If A is of one of the types I∞, II∞, III, then the func-

tional τ vanishes.

Note that the converse of the above theorem is also true, namely, the last

displayed formula defines a continuous Jordan triple isomorphism. Further we

2A norm on the C∗-algebra A is called symmetric if N(axb) ≤ ‖a‖N(x)‖b‖ holds for every

a, b, x ∈ A.
3A functional τ : A → C is called tracial whenever τ(ab) = τ(ba) holds for all a, b ∈ A.
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mention that in the proof a rather strong result on commutativity preserving

maps between centrally closed prime algebras has been applied. This is the main

reason why the arguments cannot be carried out to a more general setting.

From the above result it can be derived the following structure theorem con-

cerning distance measures. For more details we refer the reader to [10].

Theorem 3.4 (L. Molnár, 2015). Let A,B be von Neumann algebras with com-

plete, symmetric norms N,M , respectively. Assume that f, g : ]0,∞[→ R are

continuous functions both satisfying (c1) and f also fulfilling (c2). Suppose that

A is a factor not of type I2. Let T : A−1
+ → B−1

+ be a surjective map with

dN,f (a, b) = dM,g(T (a), T (b)) for all a, b ∈ A−1
+ .

Then there exists either an algebra ∗-isomorphism, or there exists an algebra
∗-antiisomorphism θ : A → B, a number ε ∈ {−1, 1}, an element d ∈ B−1

+ , and

a continuous tracial linear functional τ : A → C which is real valued on the set of

self-adjoint elements and τ(e) 6= −ε such that

T (a) = exp(τ(log a))dθ(aε)d

holds for every a ∈ A−1
+ . If A is an infinite factor, then the functional τ is missing.

As for the second possibility, we can apply the so-called commutative diagram

argument involving the original Mazur–Ulam theorem to obtain that

T (a) = exp(h(log a))

for every a ∈ A−1
+ where h is a linear isometry on the set of self-adjoint elements.

Once the structure of h is known, it can be applied to describe T . This was the

approach of the proof of [7, Theorem 4.]. To formulate this result, let us consider

the following properties concerning the continuous function f : ]0,∞[ → R:

(c2’) for some real number c > 0, we have |f(x)| ≥ c outside a neighborhood

of 1;

(c3’) function f is differentiable at x = 1 with nonvanishing derivative;

(c4’) |f(t)| 6= |f(t−1)| for some t ∈ ]0,∞[.

Theorem 3.5 (O. Hatori and L. Molnár, 2017). Let A,B be C∗-algebras. Sup-

pose that T : A−1
+ → B−1

+ is a surjection, and consider the following statements.

(1) There are continuous functions f, g : ]0,∞[→ R which satisfy (c1) and

(c2’)–(c3’), and we have

‖f(a−1/2ba−1/2)‖ = ‖g(T (a)−1/2T (b)T (a)−1/2)‖
for every a, b ∈ A−1

+ .
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(2) There is a Jordan ∗-isomorphism J : A → B, an element d ∈ B−1

+ , a cen-

tral projection p and a real number c > 0 such that

T (a) = d(pJ(a)c + p⊥J(a)−c)d

is satisfied for all a ∈ A−1
+ .

(3) There is a Jordan ∗-isomorphism J : A → B, an element d ∈ B−1
+ and

a central projection p such that

T (a) = d(pJ(a) + p⊥J(a)−1)d

holds for all a ∈ A−1
+ .

(4) There is a Jordan ∗-isomorphism J : A → B and an element d ∈ B−1
+ such

that

T (a) = dJ(a)d for all a ∈ A−1
+ .

Then we have (1) =⇒ (2). If f = g, we have (1) =⇒ (3). Moreover, if f = g and

(c4’) holds, then (1) ⇐⇒ (4).

Here the result of Kadison on linear norm isometries between self-adjoint parts

of C∗-algebras has been employed, which asserts that any such map is necessar-

ily implemented by a Jordan ∗-isomorphism and a multiplication by a central

symmetry.

Note that the above result significantly extends the former structural result [5,

Theorem 5] on Thompson isometries on the spaces of positive invertible elements

where only the function f = g = log appeared. In addition, the original formula-

tion of the above mentioned Hatori–Molnár theorem contains further character-

izations of Jordan ∗-isomorphisms incorporating the spectrum and the spectral

radius as well. For more details see [7, (4.1) and (4.2) in Theorem 4].

We remark that the proof techniques surveyed in the current section with

smaller modifications can be applied to obtain structural result on isometries of

certain compact Lie groups. As for investigations in this direction, we mention

the publications [1], [3], [4], [6].

4. Thompson isometries of JB algebras

In the previous section the structural results were formulated for C∗-algebras

or for certain class of von Neumann algebras. Very recently B. Lemmens, M. Roe-

lands and M. Wortel in [9] pointed out that as for the structural result concerning

the Thompson isometries the C∗-algebra setting is slightly restrictive, since the

result of O. Hatori and L. Molnár remains valid in the more abstract setting

of JB algebras too. Recall that a Jordan algebra (A, ◦) is a commutative, not

necessarily associative algebra such that

a ◦ (b ◦ a2) = (a ◦ b) ◦ a2
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holds for every element a, b ∈ A. A JB algebra is a normed, complete real Jordan

algebra satisfying

‖a ◦ b‖ ≤ ‖a‖ · ‖b‖,
‖a2‖ = ‖a‖2,
‖a2‖ ≤ ‖a2 + b2‖

for all a, b ∈ A. Important examples of JB algebras are given by the Euclidean Jor-

dan algebras and by the self-adjoint part of a C∗-algebra whenever it is equipped

with the Jordan product a ◦ b = (ab+ ba)/2.

Denote by JB[a, e] the JB algebra generated by a and the unit element e. Then

the spectrum of a consists of those real numbers λ such that a−λe is not invertible

in JB[a, e]. An element with nonnegative spectrum is called positive. The cone

of positive elements is denoted by A+ and its interior, which consists of positive

elements with strictly positive spectrum, is denoted by A◦
+. In any JB algebra A◦

+

makes A an order unit space with order unit e, that is, we have

‖a‖ = inf{t > 0: − te ≤ a ≤ te}.

So the Thompson metric dT can be defined on A◦
+ as follows. For a, b ∈ A◦

+, we

set
M(a/b) = inf{t > 0: a ≤ tb}

and then

dT (a, b) = logmax{M(a/b),M(b/a)}.
In terms of the quadratic representation, one can derive a straightforward formula

for dT . To do so, define the triple product {·, ·, ·} as

{a, b, c} := (a ◦ b) ◦ c+ (c ◦ b) ◦ a− (a ◦ c)

for every a, b, c ∈ A. Then the linear transformation Ua : A → A which is given

by
Ua(b) := {a, b, a}

is called the quadratic representation of a, and we can write

dT (a, b) = ‖ logUb−1/2(a)‖

for every a, b ∈ A◦
+. In [9] the authors achieved the following result concerning

Thompson isometries in the setting of JB algebras.

Theorem 4.1 (B. Lemmens, M. Roelands and M. Wortel, 2018). Let A,B be

JB algebras. A map T : A◦
+ → B◦

+ is a bijective isometry with respect to the

Thompson metric if and only if there is a Jordan isomorphism J : A → B, an
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element b ∈ B◦
+, and a central projection p such that

T (a) = Ub(pJ(a) + p⊥J(a)−1)

for all a ∈ A◦
+.

The proof basically follows the arguments given in [5], but it is adjusted to

the setting of JB algebras. For instance, the Jordan triple product is replaced

by Uab, the Pusz–Woronowitz geometric mean turns to Ua1/2(Ua−1/2b)1/2 and so

on. Moreover, the proof rests heavily on the forthcoming result [8, Theorem 1.4]

on bijective linear isometries of JB algebras, which plays the role of Kadison’s

result on linear norm isometries of self-adjoint elements.

Theorem 4.2 (J.M. Isidro and Á. Rodŕıguez-Palacios, 1995). Let h : A → B be

a bijective linear isometry. Then h(a) = sJ(a) where s is a central symmetry and

J : A → B is a Jordan isomorphism.
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