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Abstract. We introduce a method for construction of a covariant differential calculus over
a Hopf algebra A from a quantized calculus da = [D, a], a ∈ A, where D is a candidate for
a Dirac operator for A. We recover the method of construction of a bicovariant differential
calculus given by T. Brzeziński and S.Majid created from a central element of the dual Hopf
algebra A◦. We apply this method to the Dirac operator for the quantum SL(2) given by
S.Majid. We find that the differential calculus obtained by our method is the standard
bicovariant 4D-calculus. We also apply this method to the Dirac operator for the quantum
SL(2) given by P.N.Bibikov and P.P.Kulish and show that the resulted differential calculus
is 8-dimensional.
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1. Introduction

In Connes’ noncommutative differential geometry, the quantized differential calcu-

lus over a *-algebra A is given by dDa = [D, a], built on a “Dirac operator”D, acting

on a Hilbert space H (see [3]). On the other hand, in the theory of quantum groups

one usually needs covariant differential calculi over a Hopf algebra A (see [7]). Since

Connes’ calculus is not covariant, it seems that these two theories do not match with

each other. Our goal in this paper is to convert any differential calculus over a Hopf

algebra to a covariant one.
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Our strategy to do this task is as follows. Let (Γ, d) be a left covariant first order

differential calculus (l.c.FODC) over a Hopf algebra A and let ω : A → invΓ be the

fundamental map generating the space of left invariant 1-forms, i.e.

(1.1) ω(a) := S(a(1))da(2), a ∈ A,

where S is the antipode of A (see [4]). It is known that Γ is freely generated by the

set ω(A) as a left A-module and ω(A) is closed under the right adjoint action of A

on Γ. Namely, we have

(1.2) Adr(b)ω(a) = ω(ab), a, b ∈ A,

where Adr(b)(̺) = S(b(1))̺b(2), b ∈ A, ̺ ∈ Γ. On the other hand, if (Γ, d) is a FODC

(not necessarily l.c.) over the Hopf algebra A, then we can still define the map ω

by (1.1). We have Γ = Aω(A) = ω(A)A and ω obeys the relation (1.2), but since Γ

is not freely generated by the set ω(A) as a left A-module, in general Γ is not left

covariant. The simple but essential idea of this paper is to replace the not necessarily

free left action of A on ω(A) by the formal free left action. Hence we convert any

FODC, Γ, to a l.c.FODC, which is the smallest l.c.FODC with Γ as its quotient.

In Connes’ approach, the essential idea is to define the differential by da = [D, a],

a ∈ A. But in our approach, the essential idea is to introduce left invariant 1-forms

as operators

ω(a) := S(a(1))[D, a(2)], a ∈ A,

and then construct a covariant FODC based on these invariant forms (see [7]). We

apply this method to an operator constructed from a central element of the dual

Hopf algebra A◦ and we find that our method gives a bicovariant FODC over A

which coincides with the FODC given in [2]. We also apply this method to the Dirac

operator for A = SLq(2) constructed by Majid in [6]. We show that the FODC

obtained by this Dirac operator is bicovariant and 4-dimensional, and it is indeed

the standard 4D-calculus of SLq(2). Finally, we apply our method to the Dirac

operator constructed by Bibikov and Kulish over SLq(2) (see [1]), and show that it

is 8-dimensional.
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2. Preliminaries

Throughout this paper, we follow the notation of [4]. A denotes a Hopf algebra

over C with coproduct ∆, antipode S and counit ε. We use the Sweedler’s notation

∆(a) =
∑

a(1) ⊗ a(2) and most often we omit the summation symbol. For a ∈ A, we

use the notation a = a− ǫ(a)1. We first recall some concepts from [4].

A first order differential calculus (abbreviated a FODC) over an algebra X is a

X-bimodule Γ with a linear mapping d : X → Γ such that (i) d satisfies the Leibniz

rule d(xy) = x · dy + dx · y for any x, y ∈ X , (ii) Γ is the linear span of elements

x · dy · z with x, y, z ∈ X. A left-covariant bimodule (abbreviated l.c. bimodule) over

Hopf algebra A is a bimodule Γ over A which is a left comodule of A with coaction

∆Γ : Γ → A ⊗ Γ, such that ∆Γ(a̺b) = ∆(a)∆Γ(̺)∆(b) for a, b ∈ A and ̺ ∈ Γ. In

Sweedler’s notation, the last condition can be written as
∑

(a̺b)(−1) ⊗ (a̺b)(0) =
∑

a(1)̺(−1)b(1) ⊗ a(2)̺(0)b(2). An element ̺ of a left-covariant bimodule Γ is called

left-invariant if ∆Γ(̺) = 1 ⊗ ̺. The vector space of left-invariant elements of Γ is

denoted by invΓ. A FODC Γ over A is called left-covariant if it is left-covariant as

an A-bimodule with the left coaction ∆Γ : Γ → A ⊗ Γ and, moreover, ∆Γ(adb) =

∆(a)(id⊗d)∆(b) for all a, b ∈ A.

There is a well-known one-to-one correspondence between l.c.A-bimodules and

right A-modules as follows (see [4], Chapter 13, pages 474–475). Let (Λ, ⊳) be a right

A-module. By defining

b(a⊗ α)c := bac(1) ⊗ α ⊳ c(2),(2.1)

∆Γ(a⊗ α) := a(1) ⊗ a(2) ⊗ α(2.2)

for all a, b, c ∈ A, α ∈ Λ, the vector space Γ := A⊗Λ becomes a l.c. bimodule over A

(see [4]). Conversely, let Γ be a l.c. bimodule over A and let Λ be the subspace of

left invariant elements of Γ. For a ∈ A, α ∈ Λ, we set

(2.3) α ⊳ a := Adr(a)α = S(a(1))αa(2).

This is a right A-module structure on Λ. Let Γ′ := A⊗Λ denote the l.c.A-bimodule

given by (2.1) and (2.2) with respect to this right A-action (2.3). It is known that Γ

and Γ′ are isomorphic as l.c.A-bimodules (see [4]). Now let (Γ, d) be a l.c.FODC

over the Hopf algebra A. We define the fundamental form of Γ as the map

(2.4) ω(a) := S(a(1))da(2), a ∈ A,

the fundamental ideal of Γ as the following right ideal of ker ǫ,

(2.5) R = {a ∈ ker ǫ : ω(a) = 0},
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and the tangent space of Γ as the following set of linear forms on A,

(2.6) T = {X ∈ A′ : X(1) = X(a) = 0 for all a ∈ R}.

3. Covariantization of a FODC

Definition 3.1. A differential right module (abbreviated DRM) over a Hopf

algebra A is a triple (Λ, ⊳, ω), where

(i) (Λ, ⊳) is a right A-module, ⊳ : Λ ⊗A→ Λ, and

(ii) ω : A→ Λ is a surjective linear map satisfying

(3.1) ω(ab) = ω(a) ⊳ b+ ǫ(a)ω(b), a, b ∈ A.

Lemma 3.1. There is a correspondence between the classes of all l.c.FODC’s

(Γ, d,∆Γ) and all DRM’s (Λ, ⊳, ω) over a Hopf algebra A as follows:

(i) If (Γ, d,∆Γ) is a l.c.FODC over A, then Λ is defined as the space of left invariant

1-forms, ⊳ is defined by (2.3) and ω is the fundamental form of Γ.

(ii) Conversely, given a DRM (Λ, ⊳, ω) then Γ := A ⊗ Λ equipped with (2.1), (2.2)

and

(3.2) da := a(1) ⊗ ω(a(2)), a ∈ A.

P r o o f. (i) As we mentioned in the previous section, (Λ, ⊳) is a right A-module.

We have

ω(ab) = S((ab)(1))d(ab)(2) = S(b(1))S(a(1))a(2)db(2) + S(b(1))S(a(1))da(2)b(2)

= ǫ(a)S(b(1))db(2) + S(b(1))ω(a)b(2) = ǫ(a)ω(b) + ω(a) ⊳ b,

so ω(ab) = ω(a) ⊳ b + ǫ(a)ω(b). Now we show that ω is surjective. By the definition

of a FODC, we have Γ = AdA. According to Chapter 13 of [4], first we show that for

any a ∈ A, ω(a) = P (da), where P := ·(S⊗ idA)∆Γ has been introduced in Lemma 1

of Chapter 13 of [4] (page 473–474). Here · : A⊗ Γ → Γ is the left action of A on Γ.

We have

P (da) = ·((S ⊗ idA)∆Γ(da)) = ·((S ⊗ idA)(a(1) ⊗ da(2))) = S(a(1))da(2) = ω(a).
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Also, if α ∈ Λ then P (α) = α (see [4]). Now since Γ = AdA then for α ∈ Λ ⊆ Γ there

exist some elements xi, yi ∈ A such that α =
∑

i

xidyi. According to the formula (3)

on page 473 of [4], α = P (α) =
∑

i

ǫ(xi)ω(yi) = ω
(
∑

ǫ(xi)yi
)

. Thus ω is surjective.

(ii) In the previous section we mentioned that (Γ,∆Γ) is a l.c.A-bimodule. Now

we have

d(ab) = (ab)(1) ⊗ ω((ab)(2)) = a(1)b(1) ⊗ ω(a(2)b(2))

= a(1)b(1) ⊗ (ω(a(2)) ⊳ b(2) + ǫ(a(2))ω(b(2)))

= a(1)b(1) ⊗ ω(a(2)) ⊳ b(2) + ab(1) ⊗ ω(b(2))

= a(1)b(1) ⊗ ω(a(2)) ⊳ b(2) + a(b(1) ⊗ ω(b(2)))

= (a(1) ⊗ ω(a(2)))b + a(b(1) ⊗ ω(b(2))) = (da)b + a(db).

So the linear map d satisfies the Leibniz rule. To show that Γ = AdA, let ̺ =

a ⊗ α ∈ Γ. By the surjectivity of ω, there is an element b ∈ A such that α = ω(b).

Therefore ̺ = a⊗ ω(b) and

̺ = a⊗ ω(b) = a(1⊗ ω(b)) = a(ǫ(b(1))⊗ ω(b(2))) = a(S(b(1))b(2) ⊗ ω(b(3)))

= (aS(b(1)))(b(2) ⊗ ω(b(3))) = (aS(b(1)))(db(2)).

Thus ̺ ∈ AdA and (Γ, d) is a FODC. Finally, for all a ∈ A we have

∆Γ(da) = ∆Γ(a(1) ⊗ ω(a(2))) = a(1) ⊗ a(2) ⊗ ω(a(3))

= a(1) ⊗ da(2) = (id⊗d)(a(1) ⊗ a(2)) = (id⊗d)(∆(a)).

Thus (Γ, d,∆Γ) is a l.c.FODC. �

Proposition 3.1. Let (Λ, ⊳, ω) be the DRM associated with a l.c.FODC (Γ, d,∆Γ)

by part (i) of Lemma 3.1 and also (Γ′, d′,∆Γ′) be the l.c.FODC constructed from

this DRM (Λ, ⊳, ω) by part (ii) of Lemma 3.1. Then (Γ, d,∆Γ) and (Γ′, d′,∆Γ′) are

isomorphic as l.c.FODC’s.

P r o o f. We have

(Γ, d,∆Γ)
part (i) of Lemma 3.1

// (Λ, ⊳, ω)
part (ii) of Lemma 3.1

// (Γ′, d′,∆Γ′) .

We define

ν : Γ → Γ′, ν(α) = (id⊗P ) ◦∆Γ(α),

where the map P was introduced in the proof of Lemma 3.1. It is well-known that ν

is an isomorphism of l.c. bimodules ([4], page 475). We must show that for all a ∈ A,

ν(da) = d′a.

We have ν(da) = a(1) ⊗ P (da(2)) = a(1) ⊗ S(a(2))da(3) = a(1) ⊗ ω(a(2)) = d′a. �
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Theorem 3.1. Let (Γ, d) be a FODC over A. Then we obtain a DRM (Λ, ⊳, ω)

over A by defining Λ = ω(A), where ω : A → Γ is the fundamental form of Γ

and α ⊳ a = S(a(1))αa(2). Hence, by part (ii) of Lemma 3.1 we obtain a l.c.FODC

(Γ′, d′,∆Γ′). The map ζ : Γ′ → Γ, a⊗b 7→ ab for a ∈ A, b ∈ Λ = ω(A), is a surjective

map of FODC’s such that ζ(invΓ
′) ⊆ ω(A) and (Γ′, d′,∆Γ′) is the smallest l.c.FODC

among all l.c.FODC’s for which there exists a map ζ with the above mentioned

properties. Finally, if (Γ, d,∆Γ) is a l.c.FODC, then (Γ, d,∆Γ) and (Γ′, d′,∆Γ′) are

isomorphic as l.c.FODC’s.

P r o o f. It is clear that Λ is a vector space. We have

ω(ab) = S((ab)(1))d(ab)(2)

= S(b(1))S(a(1))a(2)db(2) + S(b(1))S(a(1))da(2)b(2)

= ǫ(a)ω(b) + ω(a) ⊳ b

for all a, b ∈ A. Thus ω(a) ⊳ b = ω(ab − ǫ(a)b). This identity shows that Λ is closed

with respect to ⊳. Also it is well-known that ⊳ is a right action of A on Γ. Thus ⊳ is

a well-defined right action of A on Λ. Thus (Λ, ⊳, ω) is a DRM over A. Next we have

ζ(a(c⊗ e)b) = ζ(acb(1) ⊗ (e ⊳ b(2))) = ζ(acb(1) ⊗ S(b(2))eb(3))

= acb(1)S(b(2))eb(3) = acǫ(b(1))eb(2) = aceb = aζ(c⊗ e)b

for all a, b, c ∈ A, e ∈ Λ. Also

ζ(d′a) = ζ(a(1) ⊗ ω(a(2))) = a(1)ω(a(2)) = a(1)S(a(2))da(3) = ǫ(a(1))da(2) = da.

Thus ζ is a map of FODC’s. Next, since Γ = AdA, then for α ∈ Γ there exist some

elements xi, yi ∈ A such that α =
∑

i

xidyi. Thus α =
∑

i

xidyi =
∑

i

xiζ(d
′yi) =

ζ
(

∑

i

xid
′yi

)

and therefore ζ is surjective and Γ′/ ker(ζ) ≃ Γ.

Now, for α =
∑

i

ai ⊗ βi ∈ invΓ
′, ai ∈ A and βi ∈ ω(A) we have ∆Γ′(α) = 1 ⊗ α,

i.e.
∑

i

(ai)(1) ⊗ (ai)(2) ⊗ βi =
∑

i

1⊗ ai ⊗ βi. Thus by applying the mapping

(mA ⊗ idΓ)(S ⊗ idA ⊗ idΓ)

followed by the left action of A on Γ to both sides of the latter equation, where

mA : A ⊗ A → A is the product of A, we get
∑

i

S((ai)(1))(ai)(2)βi =
∑

i

S(1)aiβi,

so
∑

i

ǫ(ai)βi =
∑

i

aiβi, and hence ζ(α) =
∑

i

aiβi =
∑

i

ǫ(ai)βi ∈ ω(A). Therefore

ζ(invΓ
′) ⊆ ω(A).
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Next, we show that Γ′ is the smallest l.c.FODC pre-quotient of Γ. Suppose

that (Υ,∆Υ), ∆Υ(α) = α(−1) ⊗ α(0) is an arbitrary l.c.FODC and ψ : Υ → Γ is

a surjective map of FODC’s such that ψ(invΥ) ⊆ ω(A). We define ψ : Υ → Γ′,

ψ := (id⊗ψ)(id⊗PΥ)∆Υ, where again PΥ = ·(S ⊗ id)∆Υ, i.e. PΥ(α) = S(α(−1))α(0).

It follows that for all α ∈ Υ

(ζ ◦ ψ)(α) = ζ(α(−2) ⊗ ψ(S(α(−1))α(0))) = α(−2)ψ(S(α(−1))α(0))

= ψ(α(−2)S(α(−1))α(0)) = ψ(α).

Therefore, ζ ◦ ψ = ψ.

Finally, if (Γ, d) is left-covariant, then Λ = ω(A) = invΓ. Therefore, by Proposi-

tion 3.1, (Γ, d) is isomorphic with (Γ′, d′). �

Corollary 3.1. Let V be a complex vector space and π : A→ L(V ) be an algebra

representation of the Hopf algebra A in V , where L(V ) denotes the algebra of linear

endomorphisms of V . Also, let D be a linear operator on V . Then the map d :

A → L(V ), da := [D, π(a)] is a differential operator and the space Γ := A(dA)A

equipped with d and A-bimodule structure given by aT := π(a)T , Ta := Tπ(a) for

all a ∈ A and T ∈ L(V ) is a FODC over A. Then by Theorem 3.1 we obtain a DRM

Λ = ωD(A) where ωD : A→ L(V ),

(3.3) ωD(a) := π(S(a(1)))[D, π(a(2))], a ∈ A.

Here the bracket denotes the commutator of two operators.

The proof is obvious. We denote the l.c.FODC associated with this triple by ΓD.

R em a r k 3.1. Let (A,H,D) be a commutative spectral triple where A is the

Hopf algebra of smooth functions over a Lie group. Then, since it is known that the

quantized calculus da = [D, a] is the classical calculus, which is automatically bico-

variant (see [3]), we conclude that covariantization of this calculus by our approach

using the Dirac operator D gives the classical calculus.

According to the previous Corollary, we have the following result.

Proposition 3.2. Let a 7→ La for a ∈ A denote the left regular representation of

a Hopf algebra A on itself, where La(b) = ab, b ∈ A, and let ϕ be a linear functional

on A. We define the operator Dϕ on A by

(3.4) Dϕ(a) := a(1)ϕ(a(2)), a ∈ A.
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(i) The map (3.3), which we denote by ωϕ, takes the form

(3.5) (ωϕ(a))(x) = x(1)ϕ(ax(2)), a, x ∈ A.

We denote the associated l.c.FODC by Γϕ.

(ii) The fundamental ideal of Γϕ is

(3.6) Rϕ = {a ∈ ker ǫ : ϕ(ax) = 0 for all x ∈ A}.

(iii) If the dual Hopf algebra A◦ (see [1]) separates the elements of A and ϕ ∈ A◦ is

a central element, then the tangent space of Γϕ is

(3.7) Tϕ = span{Xa := ϕ(2)(a)ϕ(1) − ϕ(a)ǫ : a ∈ A},

where ∆ϕ = ϕ(1) ⊗ ϕ(2) is the coproduct of Hopf algebra A
◦. Moreover, Γϕ is

finite-dimensional and bicovariant. Finally we have Dϕ(a) := ϕ(a(1))a(2).

P r o o f. We have

π : A→ L(A), a 7→ La.

For x ∈ A, π(ab)(x) = Lab(x) = ab(x) = La(Lb(x)) = (π(a)π(b))(x). Thus π is a

linear representation.

(i) According to the definition of Dϕ,

(ωϕ(a))(x) = (π(S(a(1)))[Dϕ, π(a(2))])(x)

= π(S(a(1)))(Dϕπ(a(2))(x) − π(a(2))Dϕ(x))

= π(S(a(1)))(Dϕ(a(2)x)− π(a(2))x(1)ϕ(x(2)))

= π(S(a(1)))Dϕ(a(2)x)− π(S(a(1))a(2))x(1)ϕ(x(2))

= S(a(1))a(2)x(1)ϕ(a(3)x(2))− S(a(1))a(2)x(1)ϕ(x(2))

= x(1)ϕ(ǫ(a(1))a(2)x(2))− ǫ(a)x(1)ϕ(x(2))

= x(1)ϕ(ax(2) − ǫ(a)x(2)) = x(1)ϕ(ax(2)).

(ii) Let R be the fundamental ideal of Γ. We show that R = Rϕ. First, we prove

that R ⊆ Rϕ. For a ∈ R, we have a = a and ω(a) = 0, thus ωϕ(a)(x) = 0, and so

x(1)ϕ(ax(2)) = 0. We get ǫ(x(1)ϕ(ax(2))) = 0, so ϕ(ax) = 0. Therefore a ∈ Rϕ. If

a ∈ Rϕ, then for each x ∈ A, ϕ(ax) = 0, therefore x(1)ϕ(ax(2)) = 0, and ω(a) = 0

and so Rϕ ⊆ R. Hence R = Rϕ.
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(iii) We recall that A◦ = {f ∈ A′ : ∆(f) ∈ A′ ⊗ A′}, where ∆(f)(a ⊗ b) = f(ab)

and A′ is the space of all linear functionals on A. Now let ϕ ∈ A◦ and ∆(ϕ) =

ϕ(1) ⊗ ϕ(2). Let R
′ := {a ∈ ker ǫ : Xb(a) = 0 for all b ∈ A}. We have

R′ = {a ∈ ker ǫ : ϕ(1)(a)ϕ(2)(b) = 0 for all b ∈ A}

= {a ∈ ker ǫ : ϕ(ab) = 0 for all b ∈ A} = Rϕ.

Thus R′ is a right ideal of ker ǫ and we obtain a FODC Γ′. It is well-known that if

there are two FODC’s with the same fundamental ideal, then they are isomorphic

(see [4], Chapter 14, the proof of Proposition 5 for the existence and Proposition 1,

part (ii) for the uniqueness). Here, R′ is equal to Rϕ, so Γ′ is isomorphic to Γϕ,

and thus they have identical tangent spaces. On the other hand, Γ′ is a bicovariant

finite-dimensional FODC over A such that its tangent space is given by

T ′ = {Xa = ϕ(2)(a)ϕ(1) − ϕ(a)ǫ : a ∈ A}

(see [4], page 502, Proposition 11). Thus Γϕ is also a bicovariant finite-dimensional

FODC over A and (3.7) is proved.

To prove the last assertion, we let h be an arbitrary linear form in A◦. We have

h(ϕ(a(1))a(2)) = ϕ(a(1))h(a(2)) = (ϕh)(a) = (hϕ)(a)

= h(a(1))ϕ(a(2)) = h(a(1)ϕ(a(2)))

for all a ∈ A. But since A◦ separates the elements of A, we conclude that

ϕ(a(1))a(2) = a(1)ϕ(a(2)), a ∈ A.

Thus Dϕ(a) = ϕ(a(1))a(2). �

So, we observe that if we choose the operator D in Corollary 3.1 of the form Dϕ

then the covariant FODC constructed by our method coincides with the covariant

FODC constructed by the method mentioned in [2]. Thus we can construct, for ex-

ample, the standard 4D-calculus over SLq(2) through our method of covariantization

by choosing ϕ to be the Casimir element. In the next section, we construct examples

of covariant FODC’s from operators which are not of this form.
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4. Example: The l.c.FODC associated with the Dirac-Majid operator

of the quantum group SLq(2)

In this section, we use our method to answer the question whether there exists a

suitably defined operator on some Hilbert space such that the FODC associated to

it is the 4D-calculus on quantum SL(2). We find that the FODC associated to the

Dirac operator of Majid (see [6]) is 4-dimensional and coincides with the standard

4D-calculus on quantum SL(2).

We take A = SLq(2) and let A
◦ be its dual Hopf algebra (see [4]). It is well-

known that this is a coquasitriangular Hopf algebra (see [4], Chapter 10, [5],

Chapter 2 and [6]). Thus it is equipped with the standard universal R-form

R: A ⊗ A → C. Consider the linear form Q = R21R: A ⊗ A → C, namely

Q(a⊗ b) = R(b(1), a(1))R(a(2), b(2)). We view it as a linear map Q: A → A◦ by eval-

uation, i.e. 〈Q(a), b〉 = Q(a⊗ b) for a, b ∈ A. Let W be the spin 1
2 -corepresentation

of A (see [4]), which we view as a two-dimensional representation of A◦ with action

α : A◦⊗W →W or equivalently α : A◦ → L(W ) where L(W ) is the algebra of linear

operators onW . If t11 = a, t12 = b, t21 = c, t22 = d are the standard generators of A

then a basis for W is {a, b}. If we identify W with C
2 via a 7→ e1, b 7→ e2, where

{e1, e2} is the canonical basis of C
2, then α(x) is the matrix (α(x))ij = 〈x, tij〉,

x ∈ A◦.

Next, we represent A on the vector space A⊕A ≃ A⊗ C
2 as

(4.1) θ : A → L(A⊕A), θ(a)

(

x

y

)

=

(

ax

ay

)

, x, y ∈ A.

The Dirac operator defined by Majid (see [6]) on the linear space A⊕A is

(4.2) D =

(

∂ij −

2
∑

k=1

Ai
k(β(S

−1(tkj)))

)

16i,j62

.

In other words, for a =
(

a1

a2

)

∈ A⊕A the entries of Da =

(

(Da)1

(Da)2

)

are given by

(4.3) (Da)i =

2
∑

j=1

∂ij(a
j)−

2
∑

j,k=1

Ai
k(β(S

−1(tkj)))a
j ,

where

∂ij(x) = x(1)〈L̄
i
j , x̄(2)〉 = x(1)〈L

i
j , x(2)〉 ∀x ∈ A

and L̄i
j , L

i
j ∈ A◦ are defined by L̄i

j(a) = Q(a, tij) for all a ∈ A, Li
j = L̄i

j − δij1, δ
i
j is

the Kronecker delta, β(a) = (α ◦Q)(a), a = a− ǫ(a)1, and Ai
j : L(W ) → C are some
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given linear functionals called connections. In the sequel, we need the following L±

functionals on A,

(4.4) L+i
j (a) = R(a, tij), L−i

j (a) = R(S(tij), a).

It is known that

(4.5) ∆(L+i
j ) =

∑

k

L+i
k ⊗ L+k

j , ∆(L−i
j ) =

∑

k

L−i
k ⊗ L−k

j ,

and

(4.6) L̄i
j =

∑

k

S(L−i
k )L+k

j .

We conclude that

(4.7) ∆(L̄i
j) =

2
∑

k,l=1

L̄k
l ⊗ S(L−i

k )L+l
j ,

because

∆(L̄i
j) = ∆

(

∑

m

S(L−i
m )L+m

j

)

=
∑

m

(

∑

k

S(L−k
m

)

⊗ S(L−i
k ))

(

∑

l

L+m
l ⊗ L+l

j

)

=
∑

m,k,l

S(L−k
m )L+m

l ⊗ S(L−i
k )L+l

j =
∑

k,l

L̄k
l ⊗ S(L−i

k )L+l
j .

Lemma 4.1. There is a faithful representation of M2(A
◦), the algebra of 2 × 2-

matrices over A◦, in the vector space A⊕A given by

φ : M2(A
◦) → L(A⊕A), u = (uij)

2
i,j=1 7→ (Duij

)2i,j=1.

Namely

φ(u)

(

a1

a2

)

=

(

Du11a
1 +Du12a

2

Du21a
1 +Du22a

2

)

∀ a1, a2 ∈ A,

where

(4.8) Dx(a) := a(1)〈x, a(2)〉, a ∈ A, x ∈ A◦.
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P r o o f. It is clear that φ is linear and we show that φ is multiplicative. We first

show thatD is a faithful representation ofA◦ in the vector space A. For each x ∈ A◦,

Dx is linear and also it is clear that D is linear. We show that D is multiplicative.

Dxy(a) = a(1)〈xy, a(2)〉 = a(1)〈x, a(2)〉〈y, a(3)〉 = Dx(a(1)〈y, a(2)〉) = (Dx ◦Dy)(a).

To show that D is faithful, let Dx = 0. Thus Dx(a) = 0 for all a ∈ A, so

a(1)〈x, a(2)〉 = 0. By applying the counit map to the latter, we get 〈x, a〉 = 0 for

all a ∈ A. Thus we conclude that x = 0.

Now for all u, v ∈M2(A
◦), we have

(

φ(uv)

(

a1

a2

))i

=
∑

j

D(uv)ija
j =

∑

j,k

Duikvkj
aj

=
∑

j,k

Duik
Dvkj

aj =

(

φ(u)φ(v)

(

a1

a2

))i

.

Thus φ is a representation. The faithfulness of φ is obtained by the faithfulness

of D. �

Henceforth, we embed M2(A
◦) in L(A ⊕A) by identifying (uij), ui,j ∈ A◦, with

the linear operator (Duij
) on A⊕A.

Theorem 4.1. By applying our method of covariantization to Majid’s Dirac op-

erator of the quantum group SLq(2), the associated fundamental form is

(4.9) ωM (a) =
2

∑

k,l=1

〈L̄k
l , a〉(S(L

−i
k )L+l

j )2i,j=1,

the associated fundamental ideal is

(4.10) RM = ker ǫ ∩ kerβ = {a ∈ ker ǫ : L̄i
j(a) = 0 for all i, j = 1, 2},

and the associated tangent space is

(4.11) TM = span{L̄i
j − ǫU (L̄

i
j)1 : i, j = 1, 2}.

The l.c.FODC associated to this operator denoted by ΓM is nothing other than the

well-known 4D-calculus over quantum group SLq(2) and therefore is bicovariant.
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P r o o f. According to the representation (4.1) and Corollary 3.1, for a ∈ ker ǫ,

x1, x2 ∈ A we have

ωM (a)

(

x1

x2

)

= θ(S(a(1)))Dθ(a(2))

(

x1

x2

)

= θ(S(a(1)))D

(

a(2)x
1

a(2)x
2

)

= θ(S(a(1)))









2
∑

j=1

∂1j (a(2)x
j)−

2
∑

j,k=1

A1
k(β(S

−1(tkj)))a(2)x
j

2
∑

j=1

∂2j (a(2)x
j)−

2
∑

j,k=1

A2
k(β(S

−1(tkj)))a(2)x
j









=









S(a(1))
2
∑

j=1

∂1j (a(2)x
j)−

2
∑

j,k=1

A1
k(β(S

−1(tkj)))S(a(1))a(2)x
j

S(a(1))
2
∑

j=1

∂2j (a(2)x
j)−

2
∑

j,k=1

A2
k(β(S

−1(tkj)))S(a(1))a(2)x
j









=









S(a(1))
2
∑

j=1

∂1j (a(2)x
j)−

2
∑

j,k=1

A1
k(β(S

−1(tkj)))ǫ(a)x
j

S(a(1))
2
∑

j=1

∂2j (a(2)x
j)−

2
∑

j,k=1

A2
k(β(S

−1(tkj)))ǫ(a)x
j









=









S(a(1))
2
∑

j=1

∂1j (a(2)x
j)

S(a(1))
2
∑

j=1

∂2j (a(2)x
j)









=









S(a(1))
2
∑

j=1

a(2)x
j
(1)〈L

1
j , a(3)x

j
(2)〉

S(a(1))
2
∑

j=1

a(2)x
j
(1)〈L

2
j , a(3)x

j
(2)〉









=









2
∑

j=1

xj(1)〈L
1
j , ax

j
(2)〉

2
∑

j=1

xj(1)〈L
2
j , ax

j
(2)〉









=









2
∑

j=1

xj(1)〈L̄
1
j − δ1j 1, ax

j
(2)〉

2
∑

j=1

xj(1)〈L̄
2
j − δ2j 1, ax

j
(2)〉









=









2
∑

j=1

xj(1)〈L̄
1
j , ax

j
(2)〉

2
∑

j=1

xj(1)〈L̄
2
j , ax

j
(2)〉









=





∑

j,k,l

xj(1)〈L̄
k
l , a〉〈S(L

−1
k )L+l

j , xj(2)〉

∑

j,k,l

xj(1)〈L̄
k
l , a〉〈S(L

−2
k )L+l

j , xj(2)〉





=





∑

k,l

〈L̄k
l , a〉S(L

−1
k )L+l

1

∑

k,l

〈L̄k
l , a〉S(L

−1
k )L+l

2

∑

k,l

〈L̄k
l , a〉S(L

−2
k )L+l

1

∑

k,l

〈L̄k
l , a〉S(L

−2
k )L+l

2





(

x1

x2

)

=

( 2
∑

k,l=1

〈L̄k
l , a〉S(L

−i
k )L+l

j

)2

i,j=1

(

x1

x2

)

=

2
∑

k,l=1

〈L̄k
l , a〉(S(L

−i
k )L+l

j )2i,j=1

(

x1

x2

)

.

In the above, we used the facts ε(a) = 0 in the first equation in line 5, 〈1, ax〉 =

ε(ax) = ε(a)ε(x) = 0 at the begining of line 7 and the faithful representation (4.8),

u 7→ Du, where u = S(L−i
k )L+l

j , at the begining of line 8. So, we proved (4.9) for
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a ∈ ker ǫ and the general case is the result of the identity ωM (a) = ωM (a). To

prove (4.10), we write ∆(L̄i
j) as

∑

L̄i
j (1) ⊗ L̄i

j(2) such that for each fixed i, j, the set

of all L̄i
j(2) is linearly independent. Now we rewrite the above calculation of ωM (a)

until line 7 and then continue as follows:

ωM (a)

(

x1

x2

)

=









2
∑

j=1

xj(1)〈L̄
1
j , ax

j
(2)〉

2
∑

j=1

xj(1)〈L̄
2
j , ax

j
(2)〉









=





∑

j

∑

xj(1)〈L̄
1
j (1), a〉〈L̄

1
j (2), x

j
(2)〉

∑

j

∑

xj(1)〈L̄
2
j (1), a〉〈L̄

2
j (2), x

j
(2)〉





=

(∑

〈L̄1
1(1), a〉L̄

1
1(2)

∑

〈L̄1
2(1), a〉L̄

1
2(2)

∑

〈L̄2
1(1), a〉L̄

2
1(2)

∑

〈L̄2
2(1), a〉L̄

2
2(2)

)(

x1

x2

)

.

Now using this computation and our assumption on the linear independence of

functionals L̄i
j (2) for each fixed i, j, and putting x

2 = 0 or x1 = 0, we find that

RM = {a ∈ ker ǫ : L̄i
j(1)(a) = 0 for all i, j and for all (1)}. Thus RM ⊆ {a ∈ ker ǫ :

L̄i
j(ab) = 0 for all i, j = 1, 2 and for all b ∈ A}. Conversely, if a ∈ ker ǫ and L̄i

j(ab) = 0

for all b ∈ A, then
∑

L̄i
j(1)(a)L̄

i
j (2) = 0 for all i, j, so we find that L̄i

j (1)(a) = 0 for all

i, j, (1). Thus

RM = {a ∈ ker ǫ : L̄i
j(ab) = 0 for all i, j = 1, 2 and for all b ∈ A}.

On the other hand, by definition we have β(a)ij = L̄i
j(a) for a ∈ ker ǫ. Therefore

RM = {a ∈ ker ǫ : β(ab) = 0 for all b ∈ A}. It is well-known that the set {a ∈ ker ǫ :

β(a) = 0} is the fundamental ideal associated to the 4D-calculus over A (see [6]),

thus it is a right ideal of ker ǫ. So we find that {a ∈ ker ǫ : β(ab) = 0 for all

b ∈ A} = {a ∈ ker ǫ : β(a) = 0} (since for b ∈ A we have β(ab) = β(ab̄) + ǫ(b)β(a)).

Hence,

RM = {a ∈ ker ǫ : β(a) = 0} = {a ∈ ker ǫ : L̄i
j(a) = 0 for all i, j = 1, 2}.

Thus the proof of (4.10) is now complete and since the fundamental ideal of ΓM

is equal with the fundamental ideal of the 4D-calculus, we conclude that these two

l.c.FODC’s coincide. Next, let

T ′ := span

{

X i,j
b :=

∑

k,l

〈S(L−i
k )L+l

j , b〉L̄k
l − 〈L̄i

j , b〉1: i, j = 1, 2, b ∈ A

}

.

By using (4.7), if we set R′ := {a ∈ ker ǫ : X(a) = 0 for all X ∈ T ′} then we

have R′ = {a ∈ ker ǫ : L̄i
j(ab) = 0 for all i, j = 1, 2 and for all b ∈ A}. Thus R′

is a right ideal of ker ǫ and therefore there exists a unique l.c.FODC over A such

that its fundamental ideal is R′ and its tangent space is T ′ (see [7] or the proof
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of Proposition 5 of Chapter 14 in [4]). But since R′ = RM , we find that indeed

this latter FODC is ΓM , which is in turn the 4D-calculus, hence TM = T ′. On the

other hand, it is obvious that T ′ ⊆ span{L̄i
j − 〈L̄i

j , 1〉1: i, j = 1, 2}. But since TM is

four-dimensional we conclude that T ′ is also four-dimensional and we find that T ′ =

span{L̄i
j − 〈L̄i

j , 1〉1: i, j = 1, 2}. So, we recovered the 4D-calculus over A = SLq(2)

via our method of covariantization. �

5. Example: The l.c.FODC associated with the

Dirac-Kulish-Bibikov operator of SUq(2)

Let A = SUq(2) and U = Uq(su2). Here, we use the notation of [1]. Hence,

we denote the generators of U by k, e, f , k−1. There is a standard nondegenerate

dual pairing 〈, 〉 : U ⊗ A → C between U and A which enables us to regard U as a

subalgebra of A◦. Thus we regard each u ∈ U as a linear functional over A and write

u(a) instead of 〈u, a〉. Let π1 : U → L(C2) be the spin 1
2 -representation. That is

(5.1) π1(k) =

[

q−1/2 0

0 q1/2

]

, π1(e) =

[

0 1

0 0

]

, π1(f) =

[

0 0

1 0

]

.

Also we have another representation (4.8) of U induced from the dual pairing

(5.2) π2 : U → L(A), π2(u)(a) = a(1)u(a(2)).

Thus, we obtain a representation π : U → L(C2 ⊗A), π(u) = π1(u(1))⊗ π2(u(2)). We

set K := π(k), K−1 := π(k−1), E := π(e), F := π(f). Now let C ∈ U denote the

Casimir element. The Dirac operator is defined by

(5.3) DKB = λ−2(π(C) − µ idC2 ⊗π2(C)) ∈ L(C2 ⊗A),

where λ = q−q−1 and µ = (q2 − q−2)/(q − q−1). Next, we represent A on the vector

space C2 ⊗A by the left regular representation in the second component, i.e.

(5.4) θ : A→ L(C2 ⊗A), θ(a)(x ⊗ y) := x⊗ ay, x ∈ C
2, y ∈ A.

Theorem 5.1. For the Dirac operator D = DKB, the associated fundamental

form is

(5.5) ωKB(a) = λ−2(C(2)(a)− ǫU (C(2))ǫA(a))(π1(C(1))− µǫU (C(1)) idC2)⊗ π2(C(3)),
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the associated fundamental ideal is

(5.6) RKB = {a ∈ ker ǫA : C(bac) = 0 for all b, c ∈ A},

the associated tangent space is

(5.7) TKB = span{Xb,c := C(1)(b)C(3)(c)C(2) − C(bc)ǫA : b, c ∈ A},

and the resulted l.c.FODC is 8-dimensional.

P r o o f. We have

ωKB(a) = θ(S(a(1)))[D, θ(a(2))] = θ(S(a(1)))Dθ(a(2))− θ(S(a(1)))θ(a(2))D

= θ(S(a(1)))Dθ(a(2))− θ(S(a(1))a(2))D = θ(S(a(1)))Dθ(a(2))− ǫA(a)D.

Thus for a ∈ ker ǫA,

λ2ωKB(a)(x⊗ y) = λ2θ(S(a(1)))D(x ⊗ a(2)y)

= θ(S(a(1)))(π1(C(1))(x) ⊗ a(2)y(1)C(2)(a(3)y(2))

− µx⊗ a(2)y(1)C(a(3)y(2)))

= π1(C(1))(x) ⊗ y(1)C(2)(ay(2))− µx⊗ y(1)C(ay(2))

= π1(C(1))(x) ⊗ y(1)C(2)(a)C(3)(y(2))− µx⊗ y(1)C(1)(a)C(2)(y(2))

= C(2)(a)π1(C(1))(x)⊗ y(1)C(3)(y(2))− µC(1)(a)x⊗ y(1)C(2)(y(2))

= (C(2)(a)π1(C(1))⊗ π2(C(3))− µC(1)(a) id⊗π2(C(2)))(x ⊗ y)

= C(2)(a)((π1(C(1))− µǫU (C(1)))⊗ π2(C(3)))(x ⊗ y).

Now, since for a ∈ A we have a ∈ ker ǫA, ωKB(a) = ωKB(a) and for u ∈ U we

have u(a) = u(a − ǫA(a)1) = u(a) − ǫA(a)ǫU (u), we get ωKB(a) = λ−2(C(2)(a) −

ǫU (C(2))ǫA(a))(π1(C(1))−µǫU (C(1)) id)⊗π2(C(3)). Thus the proof of (5.5) is complete.

Now we prove (5.6). Let C(1)(1)′ ⊗ C(1)(2)′ ⊗ C(2) ∈ U⊗3 be a presentation of

∆2
U (C) = ∆U (∆U ⊗ idU )(C) such that the set {C(2) : for all (2)} is linearly indepen-

dent and for each fixed index (1), the set {π1(C(1)(1)′ )−µǫU(C(1)(1)′ ) idC2 : for all (1)′}

is also linearly independent (we call such presentation an extraordinary presentation

and the existence of such presentation will be shown below). Note that this assump-

tion implies that for each fixed index (1), the set {C(1)(1)′ : for all (1)
′} is linearly

independent: for in general the image of a set of linearly dependent vectors under

any linear operator is also linearly dependent. Now since the representation π2 is

faithful (see previous section), we conclude that the set {π2(C(2)) : for all (2)} is also

linearly independent. Now let a ∈ RKB, i.e. a ∈ ker ǫA and ωKB(a) = 0, and let
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P1, P2 : C
2 → C be the canonical projections. So by combining the operators Pi⊗idA

with the operator ωKB(a), we get

C(1)(2)′ (a)Pi(π1(C(1)(1)′ )− µǫU (C(1)(1)′ ) id)π2(C(2)) = 0, i = 1, 2.

Thus for each fixed index (1) we have C(1)(2)′ (a)(π1(C(1)(1)′ ) − µǫU (C(1)(1)′ ) id) = 0,

and by our assumption we find that C(1)(2)′ (a) = 0 for each (1) and (2)′. The converse

is obviously true, i.e., if a ∈ ker ǫA and C(1)(2)′ (a) = 0 for each (1) and (2)′, then

ωKB(a) = 0. Thus the fundamental ideal is

RKB = {a ∈ ker ǫA : ωKB(a) = 0} = {a ∈ ker ǫA : C(1)(2)′(a) = 0 for all (1), (2)′}

⊆ {a ∈ ker ǫA : C(bac) = 0 for all b, c ∈ A}.

Conversely, let a ∈ ker ǫA such that C(bac) = 0 for all b, c ∈ A. Then

C(1)(1)′ (b)C(1)(2)′ (a)C(2) = 0 ∀ b ∈ A,

but since {C(2) : for all (2)} is linearly independent, we find that for each fixed in-

dex (1) and for all b ∈ A we have C(1)(1)′ (b)C(1)(2)′ (a) = 0. Thus for each fixed

index (1), C(1)(2)′ (a)C(1)(1)′ = 0. But since {C(1)(1)′ : for all (1)
′} is linearly indepen-

dent, we find that C(1)(2)′ (a) = 0. Hence,

{a ∈ ker ǫA : C(bac) = 0 for all b, c ∈ A} ⊆ {a ∈ ker ǫA : C(1)(2)′ (a) = 0} = RKB.

Thus the proof of (5.6) is complete and we have also shown that under an extraor-

dinary presentation of ∆2
U (C) we have

(5.8) RKB = {a ∈ ker ǫA : C(1)(2)′(a) = 0 for all (1), (2)′}.

Now we prove (5.7). It is known that if T is a finite-dimensional vector space

of linear functionals on a Hopf algebra A such that X(1) = 0 for all X ∈ T and

the set R = {a ∈ ker ǫA : X(a) = 0 for all X ∈ T } is a right ideal of ker ǫA, then

there exists a unique l.c.FODC Γ over A such that its fundamental ideal is R and its

tangent space is T (see [4], Chapter 14, the proof of Proposition 5 for the existence

and Proposition 1, part (ii) for the uniqueness). Now let
∑

C(1) ⊗ C(2) ⊗ C(3) be an

ordinary presentation of ∆2
U (C) ∈ U⊗3 and let T = span{Xb,c := C(1)(b)C(3)(c)C(2)−

ǫU (C(2))ǫA : b, c ∈ A}. We have T ⊂ span{C(2) − ǫU (C(2))ǫA : for all (2)} and thus T

is finite-dimensional and

R := {a ∈ ker ǫA : X(a) = 0 for all X ∈ T }

= {a ∈ ker ǫA : C(bac) = 0 for all b, c ∈ A}.
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Thus R is a right ideal of ker ǫA and since R = RKB, we conclude that the l.c.FODC

obtained from T is ΓKB, so TKB = T . To find the dimension of ΓKB we find a basis

for TKB. Above we showed that T ⊂ T ′ := span{C(2) − ǫU (C(2))ǫA : for all (2)} and

in the previous paragraph we also showed that for an extraordinary presentation

of ∆2
U (C), the right ideal R

′ := {a ∈ ker ǫA : X(a) = 0 for all a ∈ T ′} is equal

with RKB. Thus by the uniqueness, we conclude that the l.c.FODC obtained from T ′

is isomorphic with ΓKB and thus TKB = T ′. Therefore the dimension of ΓKB is the

dimension of

(5.9) T ′ := span{C(1)(2)′ − ǫU (C(1)(2)′ )ǫA : for all (1), (2)′}

under an extraordinary presentation of C(1)(1)′⊗C(1)(2)′⊗C(2) ∈ U⊗3. To complete the

proof and to find the dimension of this calculus, we find an extraordinary presentation

of∆2
U (C) for q 6= −1, 0, 1. The Casimir element is given by C = q−1k2+qk−2+λ2fe.

We have

∆2
U (C) = (∆⊗ id)∆(C) = C(1)(1)′ ⊗ C(1)(2)′ ⊗ C(2)

= ((q−1k2 + λ2fe)⊗ k2 + k−2 ⊗ λ2fe+ fk−1 ⊗ λ2ke+ k−1e⊗ λ2fk)⊗ k2

+ k−2 ⊗ qk−2 ⊗ k−2 + (k−2 ⊗ λ2fk−1 + fk−1 ⊗ λ2 · 1)⊗ ke

+ (k−2 ⊗ λ2k−1e+ k−1e⊗ λ21)⊗ fk + k−2 ⊗ λ2k−2 ⊗ fe.

Thus the set of all C(2)’s is {k
2, k−2, ke, fk, fe}, which is linearly independent because

it is a subset of the standard basis of U , and we have four sets of the elements C(1)(1)’s,

S1 = {q−1k2 + λ2fe, k−2, fk−1, k−1e}, S2 = {k−2},

S3 = {k−2, fk−1}, S4 = {k−2, k−1e}.

Let τ := π1 − µǫU idC2 . We should show that each of the sets τ(Si), i = 1, . . . , 4, is

linearly independent. A simple calculation shows that τ(S1) is

{[

q−2 − q−1µ 0

0 1 + λ2 − q−1µ

]

,

[

q − µ 0

0 q−1 − µ

]

,

[

0 0

q−1/2 0

]

,

[

0 q−1/2

0 0

]}

.

Since (q−2 − q−1µ)(q − µ)−1 6= (1 + λ2 − q−1µ)(q−1 − µ)−1 for q 6= ±1, 0, this

set is linearly independent. Similarly the other sets τ(Si), i = 2, 3, 4, are linearly

independent. Hence the proof now is complete and the dimension of the associ-

ated l.c.FODC is the dimension of the vector space span{C(1)(2)′ − ǫU (C(1)(2)′ )ǫA :

for all (1), (2)′} = span{k2 − µǫA, fe, ke, fk, k
−2 − µǫA, fk

−1, (1 − µ)ǫA, k
−1e} =

span{k2, fe, ke, fk, k−2, fk−1, 1, k−1e}, which is 8-dimensional. �
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R em a r k 5.1. Comparing Majid’s Dirac operator with Kulish-Bibikov’s Dirac

operator, we observe that the former gives better l.c.FODC than the latter and the

natural question arises that given a quantum group, which Dirac operator gives the

most suitable covariant FODC on this quantum group?
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