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Abstract. We have established sufficient conditions for oscillation of a class of first or-
der neutral impulsive difference equations with deviating arguments and fixed moments of
impulsive effect.
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1. INTRODUCTION

Consider a class of first order nonlinear neutral difference equations of the form

(1.1) A(y(n) +p(n)y(n — 7)) + q(n)F(y(n — o)) = 0,

where p, ¢ are real valued functions with discrete arguments such that ¢(n) > 0,
Ip(n)| < oo for n € N(ng) = {ng,n0 +1,...}, F € C(R,R) satisfying the property
xF(x) > 0 for  # 0 and A is the forward difference operator defined by Au(n) =

u(n + 1) — u(n). Let mq,mso,ms,... be the moments of impulsive effect with the
property
(Ag) 0<my <mg < ..., lim m; =00
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for the neutral equation (1.1) satisfying
(1.2) A(y(m; —1) +p(m; — y(m; —7—1)) +r(m; —1)F(y(m; —o —1)) =0,

where 7,0 > 0 are integers, r > 0 is a real valued function and A is the difference
operator defined by

A(y(m; —1) +p(m; — Dy(m; — 7 — 1))
= y(m;) +p(m;j)y(m; — ) — (y(m; — 1) + p(m; — y(m; — 7 — 1)).

Many researchers have profound a good deal of research work on oscillatory and
asymptotic behaviour of solutions of (1.1) (see for e.g. [6], [7], [9], [8]). Eventhough,
(1.2) is another difference equation, still less attention has been given for its study.
Moreover, there is no such work for (1.1) when the impulsive equation (1.2) joins to
form an impulsive difference system of the form

A(y(n) +p(n)y(n — 7)) + gn)F(y(n — o)) =0, n#m;, jeN,
(E1) A(y(m; — 1) +p(m; — Dy(m; — 7 — 1))
+r(m; —1)F(y(m; —o —1)) =0.

In this work, our objective is to study the oscillatory behaviour of solutions of sys-
tem (E1) when |p(n)| < co. For details about the impulsive differential/difference
equations we refer the reader to the monograph [1] and some of the works [2], [3],
[10]-[15] and the references cited therein.

In [4], Li et al. have established the oscillation criteria for third order difference
equations with impulse of the form

APy(n) +p(n)y(n —7) =0, n#n,
y(nk) = ary(nk — 1), keN,
Ay(ng) = brAy(nk — 1), keN,
A?y(ng) = cxA%y(nk, — 1), keN

(E2)

and the same is extended in [5] for nonlinear third order difference equations of the
form

() { Ay(n) + p(n) f(y(n =) =0, n#ng,

Aly(ng) = gi,kAiy(nk -1, 1=0,1,2, keN,

where a; ;, < g;.x(u)/u < b; . Unlike the above method, our impulsive effect satisfies
another neutral equation (1.2) subject to the difference equation (1.1). The present
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work for the impulsive difference system (E;) is a different approach as compared
to the existing works in the literature. We may note that in present years much
effort has been given to the study of functional difference equations of neutral type.
However, the impulsive difference equations of neutral type especially (E;) is not well
studied. Hence, in this work, an attempt is made to study the impulsive system (E;).

Definition 1.1. By a solution of (E;) we mean a real valued function y(n)
defined on N(ng — ¢) which satisfies (E1) for n > ng with the initial conditions

y(Z):()O(Z), i:no_g7"'an05
where ¢(i), i =ng — o, ...,no are given real constants and ¢ = max{r,o}.

Definition 1.2. A nontrivial solution y(n) of (E;) is said to be nonoscillatory
if it is either eventually positive or eventually negative. Otherwise, the solution is
called oscillatory. (E;) is said to be oscillatory if all its solutions are oscillatory.

Definition 1.3. A solution y(n) of (E1) is said to be regular if it is defined on
N(0) and sup{|y(n)|: » = N > 0} > 0, where N is a positive integer. A regular
solution y(n) of (E;) is said to be eventually positive (eventually negative) if there
exists ng > 0 such that y(n) > 0 (y(n) < 0) for n > ng.

2. OSCILLATION CRITERIA

In this section, we discuss the oscillation properties of solutions of the impulsive
system (E;). Throughout our discussion we use the following notations:

{ z(n) = y(n) + p(n)y(n — 1),

(2.1)
z(m; — 1) =y(m; — 1)+ p(m; — L)y(m; — 7 —1).

Theorem 2.1. Let —co < —a < p(n) < —1, a > 0. Assume that (Ag) and 7 > o
hold. Furthermore, assume that
(A1) P(-u) = —F(u), u€ R,
(Ag) F(uv) = F(u)F(v), u,v € R,
(As) F is superlinear and

+oo 00 z(mj)
dx / g dx
< o0, ¢>0, E — < 00,
~/:|:c F(J?) j=17% ) F(J?)

(mjfl
(Aa) X2 q(n) + > r(mj —1) = o0, m; > 1
n=1 Jj=1
hold. Then (E,) is oscillatory.
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Proof. On the contrary, let y(n) be a regular solution of (E;) such that y(n) > 0
or y(n) < 0 for n = ng. Without loss of generality and due to (A7), we may assume
that y(n) >0, y(n —7) > 0, y(n — o) > 0 for n = ny = ng + o. Using (2.1) in (E;),
we obtain

(2.2) Az(n) = —q(m)F(y(n— ) <0, n+#my,
(2.3) Ax(my —1) = —r(m; — DF(ym; o —1)) <0, jeN

for n > ni. So, there exists ny > ny such that z(n) is nonincreasing for n > n,. We

assert that z(n) < 0 for n > ns. If not, let there exist n3 > ny such that z(n) > 0
for n > n3. As a result,

yn—=27) = ... 2 y(ns3)

\Y
|
=
3
S
3
|
2
\Y
=
S
|
2
\Y

y(n)
implies that y(n) is bounded from below by a positive constant (say) B. Analogously,
y(m; —1) 2 y(mj —7—1) > y(m; —27 = 1) > ... > y(n3)

due to nonimpulsive points m; —1, m;—7—1, ..., and so on. Summing (2.2) from ng
to n — 1 and then using (2.3), we obtain

Z A(s) + Z a(s)F(y(s — ) =0,
that is,
SORECSRD W U Z a(s)F(y(s — ) = 0.
Therefore
)=~ 3 vl = VPG~ D) - :Z a(5)P(y(s — o)
implies that |
o) < 2(ns) —F(B)(j:z_; W+ S rim - D) -0 asns
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a contradiction to the fact that z(n) > 0 for n > ns. Hence, z(n) < 0 for n > ns.
Therefore, we can find an ng > ny such that

z(n) > p(n)y(n — 1) > —ay(n — 1),
z(m; —1) > p(m; — Dy(m; —7—1) > —ay(m; — 7 — 1)

implies that z(n+7—0) > —ay(n — o) and z(m; +7—0—1) > —ay(m; —o — 1)
for n > ng. Thus, (E1) becomes

Az(n) 4+ Fq(il) F(z(n+71—-0)) <0, n # m;,
(Fs) (—a) 1
Arimy— 1)+ " D o ns 4 o~ 1)) <0, jeEN.

F(-a)

Since z is nonincreasing for n > nz and m; 4+ 7 — o — 1 are nonimpulsive points, then
it follows that

F(—a)
Az(m; 1)+7";””‘(J’_a)1)F(z(m] 1))<0, jeN,
that is,
Axn) | q(n) .
Fm) t ) 2% T
Az(mj—1)  r(mj—1) )
Flatm; =1) T Fl=a) = JEN

If z(n+1) <u<z(n) and z(m;) < z < z(m; — 1), then the preceding inequalities

reduce to (1)
A du q(n)
- T 2 Oa n # mgj,
/Z(n) F(u) = F(-a) ’
m) - dz r(my —1)
+ =2 >0, jeN.
/z(mj—n F(z)  F(-a)
Therefore
n 2(s+1) du z(n+1) Qo
> als) < - / -—Fa) [
s=na s(na) (W)
i Z(m7)
r(m; —1) < /
j=1 i—1) F
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that is,
o0 oo
D oals)+ Y r(my -
s=ng j=1

due to (Aj), a contradiction to (A4). This completes the proof of the theorem. O

Theorem 2.2. Assume that all conditions of Theorem 2.1 hold except (Ags).
Then every bounded solution of (E1) oscillates.

Proof. Proceeding as in the proof of Theorem 2.1, we obtain that z(n) < 0 for
n > ng. So, we can find an nzg > ng and C > 0 such that z(n) < —C for n > ns.
Consequently, (Es) becomes

Az(n) + F(g)q(n) <0, n #mj,
(E4) o
Az(m; — 1)+ F(g)r(mj ~1)<0, jeN

for n > nz. Summing (E4) from nz to n — 1, we get

C n—1
) —z(ng) = Y Astm—1)+F(Z) Y als) <0,
n3<m;—1<n—1 s=ns
that is,
C n—1
Jal - —
ENZ o+ X 1) <) - 2(0)
s=ngz ng<m;—1<n—1
< —z(n) < oo asn — oo,
a contradiction to (A4). Hence, the theorem is proved. O

Theorem 2.3. Let —1 < —a < p(n) < 0, a > 0. Assume that (A1), (Ag)
and (A4) hold. Furthermore, assume that

(As) F is sublinear and

+c dx
/ —— <00, 0<c<oo,
0

F(z)
e w(my) dx
Z ) @) < 00, jlilglow(m]) < 00

j=17wim
hold. Then every solution of (E1) oscillates.
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Proof. Proceeding as in Theorem 2.1, we obtain that z(n) is nonincreasing for

n = na. So, there exists ng > na such that z(n) > 0 or < 0 for n > ns. Assume that
z(n) > 0 for n > nz. Then z(n) < y(n) for n > Consequently, (2 2) and (2.3)
reduce to
) Az(n) < —g(n)F(:(n - ), n# mj,

i Ax(my; —1) < —r(m; = )F(z(m; — o 1)), jEN

for n > ng > ng + o and due to nonincreasing z(n),

F(z(n)) < Q( )7 7£ Js
Az(m; — 1) ]

Since lim z(n) < oo and lim z(m; — 1) < oo, then proceeding as in Theorem 2.1,
n—00 j—o0

we obtain a contradiction to (A4). Indeed,

1 n-1 Az(n) n—=1  z(s+1) du 2(n) qu
2 1S 2 ) < X [ T N

S=ngy S=ny (S)

and
> > Az(m] — 1) /
r(m T ST FET
270 =) <=2 T ) < T2 L )
where z(s+1) < z < z(s) and z(m;) < w < z(m; —1). Hence, z(n) < 0 for n > ns.
From (2.1) it follows that

due to the nonimpulsive points m; —1,m; —7 —1,... and so on. Indeed, the above
observation reveals that y(n) is bounded for n > ns. The rest of the proof follows
from Theorem 2.2. Hence, the proof of the theorem is completed. O

Theorem 2.4. Let —1 < —a < p(n) < 0, a > 0. Assume that (A1), (Ag)
and (A4) hold. If

(Ag) there exists pu > 0 such that |F(u)| > plul, v € R

and
mjfl [e'e)
(A7) Timsup( 33 gn) + X r(mi 1)) > 1/, 0 > 1
j—o0 n=m;—o =1

hold, then (E;) is oscillatory.
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Proof. Let y(n) be a regular nonoscillatory solution of (E1) such that y(n) > 0,
y(n—71)>0,y(n—0) >0 for n > ny =ng+ 0. Proceeding as in Theorem 2.3, we
get a contradiction to (A4) when z(n) < 0 for n > ns.

Assume that z(n) > 0 for n > n3. Therefore, (Es) holds for n > ny = ng + 0.
Summing (E5) from m; — o to m; — 1, m; > n3 + o, we obtain

mj—1
2(my) = z(mj — o) — > Az(mi =1+ Y a(s)F(z(s —0)) <0,
mj—o<m;—1<m;—1 s=mj;—o
that is,
mj—1
—z(m;—o)+ Z r(m;—1)F(z(m;—o—1))+ Z q(s)F(z(s—0)) < 0.
mj—o<m;—1<m;—1 s=mj;—o

Using the fact that z is nonincreasing, the last inequality yields

mj—1
—2(my—0) +puzimy—0) S a(s)+pztmy—o) Y. rmi—1)<0
sS=mj;—o mj—agm,',—lgmj—l

due to (Ag). Consequently, for j € N

m;—1
J 1
limsup< Z q(s) + Z r(m; — 1)) <=
J—ro0 s=mj;—o mj—o<m;—1<m;—1 K
which contradicts (A7). Thus, the proof of the theorem is completed. O

Theorem 2.5. Let p(n) < —1 and 7 — o > 0. Assume that (A1), (Ag), (Ay)
and (Ag) hold. For 7 — o > 1, if

mj—1

(Ag) limsup( > —q(s)/p(s—l—r—a)—l—io: —r(m; —1)/p(mi—|—7'—0—1)> >
j—o0 s=mj+o—T =1
1/n,

then (E;) is oscillatory.

Proof. Proceeding as in Theorem 2.1 we have a contradiction to (A4) when
z(n) > 0 for n > ny. Assume that z(n) < 0 for n > ny. Consequently, there exists
ng > no such that
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that is,

zmj+1—0—1)
st 71— 1)

zin+71—0)
p(n+71—0)

yln—o) > and y(m; —o—1)>

for n > ng. Hence, (E1) reduces to

Ax(m) + ) ST <o, n # mj,
(Eo) zlmj+71—0—1)

p(m; +17—0—1)

Az(m; — 1) + pr(m; — 1) <0, jeN

due to (Ag). Summing (Eg) from m; +0 — 7 to m; — 1, m; > ng + 7 — 0, we have

z(mj) —z(mj+o0—71) — Z Az(m; — 1)
mj+o—T<m;—1<m;—1
mj—1
Zs+17—0
tp Yy o528

p(s+7—0)

s=mj+o—T
that is,

zlmi+717—0—-1)
p(m;i+717—0—1)

2(mj) + 1 ) r(m; — 1)
mji+o—1<m;—1<m;—1

mj—1

T Z ﬂ@Mgo

p(s+71—0)

s=mj+o—T

Since z is nonincreasing and m; +o—7 < m;—1, m;+0—7 < s, then the preceding
inequality becomes

mj—1

| r(m; — 1) _als)
Z(mJ)(H—ﬂ Z p(mi—l—r—a—l)—’_u Z p(s+T—U)> <0

mj+o—1<m;—1<m;—1 s=mj+o—T

that is,

mj—1

)

—q(s) + Z —r(m; —1)

1
2 p(s+7—0) plmi+7—0—1) " p

s=mj+o—T mj+o—1<m;—1<m;—1

a contradiction to (As). Hence, the theorem is proved. O
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Theorem 2.6. Let 0 < p(n) < f < oo for 7 < 0. Assume that (A1) and (Asg)
hold. Furthermore, assume that

(Ag) F is sublinear and

+c dl‘
—— <oo, 0<c<oog,
o Fz)
00 wm;) wim;=1) g
Z(/ x —|—F(5)/ x)<oo, lim w(m;) < oo,
=1 \Ww(m;—1) F(x) w(m;—r—1) F(x) o0

(A1) there exists A > 0 such that F(u) + F(v) > AF(u+v), u,v € R} and

(A11) i Q(n)+ i R(m;—1) = oo, where Q(n) = min{q(n), ¢(n—7)}, R(m,;—1) =
?n_i;l{r(mj i:11), rimj—t—1},n>7,my>7+1,j€N.

Then every solution of (E1) oscillates.

Proof. On the contrary, we proceed as in Theorem 2.1 to obtain that z(n) is
nonincreasing for n > ng. So there exists ng > ng such that z(n) > 0 for n > ng. It
is easy to verify that

Az(n)+qgn)F(z(n—o0)) + F(B)Az(n — 1)

+ F(B)g(n —7)F(2(n— 0 — 7)) <0, n #mj,
Az(mj — 1) +r(m; = 1)F(z(m; —o — 1)) + F(B)Az(m; — 7 —1)
+ F(B)r(mj —17—1)F(2(mj —o —7—1)) <0, jeN.

Applying (A10) and (As) in the preceding two inequalities, we obtain

Az(n)+ F(B)Az(n —7) + AQ(n)F(z2(n —0)) <0,
Az(m; — 1)+ F(B)Az(m; — 7 — 1)+ AR(m; — 1)F(2(m; —o — 1)) < 0.

Using the fact that z is nonincreasing and 7 < o, we can find an ny > 0 such that
the above inequalities can be written as

Az(n) Az(n—1T)

I RIED) FB) 5=y T QM <0, n#m,,
Bz(m; —1) Az(my —7—1) . |
om0 T O Fiatmy =1y T MM D <0, jeN

for n > ny. We may note that m; —1 and m; —7 —1, j € N are nonimpulsive points
exceeding ng. If

~+

z(n+1)
zln—714+1)
)

)

8]

INCININ N
IS
NN NN
BB
S
|
=

z(m;
z(mj —1

e
S
I
2
|
—_
o
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then from (E7) it is easy to verify that

/z(n+1) dt ( ) z(n+1—71) dz ( )
—+F6/ —— 4+ 2Q(n) <0, n#*m,,
z(n) F(t) z(n—T1) F({E) !

Z(m.'l) d’LL Z(mjf"') d’U
+F6)/ FAR(m; —1) <0, jeN,
/z(mj—n F(u) ( 2(my—r—1) (V) (m;

that is,
n z(s+1) dt 2(s+1—7) dz n
—+F(6)/ —)+>\ Q(s) <0, n#mjy,
32724 </Z(g) F(t) z(s—1) F(i[:) s;4
e z(mj)  qq 2mi=1) gy oo
—+F(6)/ —)—i—)\ R(m; —1) <0, jeN.
]Zl(/z(mj—n F(u) 2(my—r—1) F(V) ; !
Consequently,
o0 2t gy A=) gy
A Q(s) < — lim (/ —+F(5)/ ),
327;4 NN 2(na) F(t) 2(na—T) F({E)
> — 2mi) dy z(mi=7)  qp
AD R(mj—1)< — </ —+F(6)/ _)
jz::l ’ jz::l z(m;—1) F(’U,) z(m;—1—1) F(U)
implies that
> Q)+ Y Rmy — 1) < o0,
S§=n4 j=1
a contradiction to (A11). This completes the proof of the theorem. O

Theorem 2.7. Let 0 < p(n) < S <1 and 27 < 0. If (A1), (A2), (Ag) and

(A12) 1imsup( mji Q(n) +

Jj—o0 n=mj—T m;—1T<m;—1<m;—1

R(mi = 1)) > (1+8)/u

hold, then every solution of (E1) oscillates, where QQ(n) and R(m; — 1) are defined
in Theorem 2.6.

Proof. Proceeding as in Theorem 2.6, we obtain that z(n) > 0 and z(n) is
nonincreasing for n > ns. Using (Ag) in (E1), we get

(o) { Az(n) + pg(n)y(n — o) <0, n #mj,

Az(m; — 1)+ pr(m; — Ly(m; —o—1) <0, jeN
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due to (2.1). Upon using (Eg), we obtain
Az(n) + pg(n)y(n — o) + B(Az(n = 7) + pg(n = 1)y(n —o = 7)) <O,
Az(m; — 1) + pr(m; — y(m; —o — 1)
+ B(Az(mj — 17— 1)+ pr(mj; — 7 —1Dy(m; —o —7—1)) <0,
that is,

1y 250+ BB =) £ Q) <0, 0+ m;,
? Az(m; — 1) + pAz(m; — 7 — 1)+ uR(m; — 1)z(m; —oc—1) <0, jeN

for n > n4 > n3. Summing (Eg) from m; — 7 to m; — 1, it follows that

mj—1
z(mj) — z(mj — 1) + Bz(m; — 1) — Bz(m; —27) + p Z Q(s)z(s — o)
+pu Z R(m; — 1)z(m; —o — 1) < 0.
mj—1T<m;—1<m;—1
Therefore,
mj—1
(2.4) —z(mj — 1) — Bz(m; —27) + p Z Q(s)z(s — o)
+u Z R(m; — 1)z(m; —o — 1) < 0.

mj—7<m;—1<m;—1

Using the fact that z is nonincreasing and m; —1 < m; —1 < m;, s<m; —1 < my
in (2.4), we get

—z(mj — 1) — fz(m; — 27)

mjfl
+ pz(my — o)( > Q)+ > R(m; — 1)) <0.
s=mj;—T myj—7<m;—1<m;—1
Hence,
mj—1
z(mj_27)<—1—/3+u > Q@) +u > R(mi—l)) <0
s=mj;—T mj—7<m;—1<m;—1
implies that
mj—1
1+
S oew+ Y Rmi-n< 2L
s=mj;—T myj—7<m;—1<m;—1 H
which contradicts (A12). This completes the proof of the theorem. O
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Theorem 2.8. Let —1 < p1 < p(n) < p2 < 0. Assume that
o0 o0
(A13) > gn)+ > r(mj —1)<oo, N>0
n=N j=1

hold. Then (E;) has a bounded nonoscillatory solution.

Proof. Let X =120 be the Banach space of real valued bounded functions y(n)
for n > ng with sup norm defined by |y|| = sup{|y(n)|: n = ne}.

Let K ={y € X: y(n) 20 for n > ng}. For y1,y2 € X we define y; < yo if and
only if yo —y1 € K. Thus, X is a partially ordered Banach space. Set

S={yeX: Cy <y(n) <Cqy n=no},
where C and Cs are two positive constants such that
Ci<a< (1 +p1)02.

Let zo(n) = Cy for n > ng. Then xo(n) € S and zo(n) = infS. In addition, if
@ C S* C S, then

S*={yeX: i <yn)<ly, C1 <y, la <C2, n=nep}.

Let z1(n) = 15 = sup{la: C1 <l < C2}. Then z1(n) € S and x1(n) = sup S*.
From (H;) it is possible to choose n; > ng such that

(2.5) nil q(n) + m<,§:_1<n r(m; — 1) < —(1 +£1()Ci§ — a, n=ni.
Define amap T: S — S by
Ty(ni + o), ny <n<ny+ o,
Ty(m) = { &= pmy(n =)+ 3 a)F(y(s — 0)

+ > r(mj —1)F(y(m; —o —1)), n>=ni+o.

ni<m;—1<n

For y € X and using (2.5), we have

Ty(n) < o — p(n)y(n — 7) + F(Co) (Z W+ r(m - 1))
(14p1)C —

<a—pi1Cy + F(Cy) F(Ch)

=a—p1Cy +Cy +p1Cy —a = Cy,
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and
Ty(n) > a > Cs

implies that Ty € S. Let y1,y2 € S be such that y; < yo2. It is easy to verify that
Ty, < Tys. Hence, by Knaster-Tarski fixed point theorem, T has a unique y € S
such that Ty = y. Therefore,

y(n + o), n <n<n+o,
y(n) = { @~ POY =)+ 3 a(s)F(y(s — o))
+ iojlr(mj —1)F(y(mj; —o — 1)), n=ni+ o,

and it is easy to see that y(n) is a nonoscillatory solution of (E;1). This completes
the proof of the theorem. O

Example 2.1. Consider the impulsive difference equation of the form

A(yn) ~ Sy~ 2)
+ (2 = 1) (e +1)e®n=D/3y1/3(p — 2) = 0, n#mj, n>2,
é(y(mj 1) - éy(mj - 3))

+ (@ = 1)(e+1)e®mi=9Byl3(m; —3)=0, jeN,

(E10)

where 7 = 2 =0 = 2, p(n) = —1/e, q(n) = (¢ —1)(e + 1)e"= /3 r(m; —1) =
(e —1)(e+1)e@mi=9/3 F(u) = u/3, m; = 3; for j € N. Since

> aln) = (@ — e+ el = (@~ 1)(e+1) ) e = o,
n=1 n=1 n=1

then (A4) holds true. Indeed, all conditions of Theorem 2.3 hold true. Hence, (E1g)
is oscillatory.

Clearly, y(n) = (—1)"e" is an oscillatory solution of the first equation of (Ejp).
It is easy to see that (—1)™ie™J is an oscillatory solution of the second equation
of (EIO)«
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