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Abstract. Let m > 1 be a fixed positive integer. In this paper, we consider finite groups
each of whose nonlinear character degrees has exactly m prime divisors. We show that such
groups are solvable whenever m > 2. Moreover, we prove that if G is a non-solvable group
with this property, then m = 2 and G is an extension of A7 or S7 by a solvable group.
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1. Introduction

Throughout this paper, G will be a finite group. Let cd(G) be the set of all

irreducible character degrees of G and π(n) be the set of prime numbers dividing n.

Isaacs and Passman studied finite groups G with cd(G) \ {1} consisting of primes

(see [6]). Also, Manz in [8] and [9] characterizes finite groups G with the property

that |π(χ(1))| = 1 for every nonlinear irreducible character χ ofG. He shows that if G

is a non-solvable group whose character degrees are power primes, then G = A× S,

where A is an abelian group and S is either PSL(2, 4) or PSL(2, 8).

Let m > 1 be a fixed positive integer. Suppose that G is a finite group such

that |π(χ(1))| = m for each nonlinear irreducible character χ of G. In this paper,

we show that either (i) G is solvable, for some normal subgroup K of G we have

that G/K is a Frobenius group with Frobenius kernel N/K which is an elementary

abelian q-group for some prime q and a cyclic Frobenius complement, or (ii) G is

non-solvable, m = 2 and G is an extension of A7 or S7 by a solvable group.

Consider that G is the non-split central extension of A7 by Z3. Using GAP, see [4],

“G:=PerfectGroup(7560,1)”, we observe that

cd(G) = {1, 6, 10, 14, 15, 21, 24, 35}.
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Thus, if G is a non-solvable group each of whose nonlinear character degrees has

exactly two prime divisors, then it is not required that G is a split extension.

On the other hand, assume that G is a Frobenius group with an abelian kernel K

and a cyclic complementH of order pα1

1
. . . pαm

m for some prime number pi, 1 6 i 6 m.

We can check easily that cd(G) = {1, pα1

1
. . . pαm

m }. Hence, for each positive integerm,

there exists a solvable group each of whose nonlinear character degrees has exactlym

prime divisors.

2. Main results

In this section we aim to present our main result. We can check that cd(A7) =

{1, 6, 10, 14, 15, 21, 35} and |π(χ(1))| = 2 for every nonlinear irreducible character χ

of A7.

Lemma 2.1. Let S be a nonabelian simple group such that S ≇ A7. Then there

exist two nonlinear irreducible characters χ and ψ of S which extend to Aut(S) such

that either |π(χ(1))| = 1 or |π(χ(1))| 6= |π(ψ(1))|.

P r o o f. According to the classification of finite simple groups, a nonabelian sim-

ple group is either an alternating group An for n > 5, a simple group of Lie type, or

one of the 26 sporadic groups. Thus, we prove the lemma for three cases.

Case 1 : Suppose that S is a nonabelian simple group of Lie type. For these group,

we know that the Steinberg character χ of S extends to Aut(S) and χ(1) is a prime

power, by [10].

Case 2 : Assume that S is an alternating group An for n > 5. If n = 5 or 6, cd(An)

contains a prime number. For n > 8, consider that the irreducible character χ of

the symmetric group Sn corresponds to the partition (n− 4, 14) and the irreducible

character ψ corresponds to the partition (n − 1, 1). The restrictions of ψ and χ

to An are irreducible, since the Young diagram corresponding to the partitions is

not symmetric, by [7]. Observe that

χ(1) =
(n− 1)(n− 2)(n− 3)(n− 4)

23.3
and ψ(1) = n− 1

and we can check that |π(χ(1))| 6= |π(ψ(1))|.

Case 3 : Suppose that S is a sporadic simple group. In Table I, using ATLAS,

see [3], we provide two nonlinear irreducible characters χ and ψ of S which extend

to Aut(S) such that |π(χ(1))| 6= |π(ψ(1))|. �
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J1 χ2(1) = 23.7 χ9(1) = 23.3.5

J2 χ10(1) = 2.5.9 χ6(1) = 22.32

J3 χ6(1) = 23.34 χ13(1) = 5.17.19

J4 χ2(1) = 31.43 χ11(1) = 23.32.23.29.37

M11 χ2(1) = 2.5 χ5(1) = 11

M12 χ11(1) = 2.3.11 χ7(1) = 2.33

M22 χ3(1) = 32.5 χ8(1) = 2.3.5.7

M23 χ2(1) = 2.11 χ5(1) = 2.5.23

M24 χ2(1) = 23 χ3(1) = 32.5

HS χ7(1) = 52.7 χ4(1) = 2.7.11

He χ13(1) = 24.3.5.17 χ6(1) = 23.5.17

Ru χ2(1) = 2.33.7 χ5(1) = 33.29

HN χ4(1) = 23.5.19 χ8(1) = 2.34.5.11

Suz χ3(1) = 22.7.13 χ20(1) = 23.5.7.11.13

McL χ3(1) = 3.7.11 χ2(1) = 2.11

O’N χ2(1) = 26.32.19 χ11(1) = 22.32.7.11.19

Co1 χ2(1) = 22.3.23 χ3(1) = 13.23

Co2 χ2(1) = 23 χ3(1) = 11.23

Co3 χ2(1) = 23 χ3(1) = 11.23

Fi22 χ2(1) = 2.3.13 χ5(1) = 2.5.11.13

Fi23 χ2(1) = 2.7.23 χ3(1) = 22.3.13.23

Fi′24 χ2(1) = 23.29.13 χ6(1) = 52.73.11.17

Ly χ7(1) = 28.7.67 χ50(1) = 3.56.31.37

TH χ2(1) = 23.31 χ3(1) = 7.19.31

B χ2(1) = 3.31.47 χ3(1) = 33.5.23.31

M χ2(1) = 47.59.71 χ11(1) = 22.31.41.59.71

Table 1.

Proposition 2.1 ([2], Lemma 5). Let G be a group and M = S1 × . . . × Sk

a minimal normal subgroup ofG, where every Si is isomorphic to a nonabelian simple

group S. If θ ∈ Irr(S) extends to Aut(S), then θ × . . .× θ ∈ Irr(M) extends to G.

Theorem 2.1. Let m > 1 be a fixed positive integer. Suppose that G is a finite

group each of whose nonlinear character degrees has exactly m prime divisors. Then

one of the following situations occurs:

(i) G is a solvable group.

(ii) m = 2 and G/M ∼= A7 or S7 in which M is the soluble radical of G.

P r o o f. Assume that G is non-solvable and M is the soluble radical of G. Thus,

every minimal normal subgroup N/M of G/M is nonabelian and N/M ∼= S1 ×
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S2 × . . . × St, where Si
∼= S for a nonabelian simple group S. If S ≇ A7, by

Lemma 2.1, there exist two nonlinear irreducible characters χ and ψ of S which ex-

tend to Aut(S) such that either |π(χ(1))| = 1 or |π(χ(1))| 6= |π(ψ(1))|. Furthermore,

by Proposition 2.2, θ1 = χ× . . .× χ ∈ Irr(N/M) and θ2 = ψ × . . .× ψ ∈ Irr(N/M)

extend to G/M and so θ1(1), θ2(1) ∈ cd(G/M). Therefore, either |π(θ1(1))| = 1 or

|π(θ1(1))| 6= |π(θ2(1))|, which is a contradiction.

We now show that S ∼= A7 implies that N/M ∼= A7. Suppose on the contrary

that N/M has more than one simple factor. Choose χ, ψ ∈ Irr(A7) such that χ and ψ

extend to Aut(A7), where χ(1) = 6 and ψ(1) = 14. We know that θ = χ×χ× . . .×χ,

ϕ = χ×ψ× 1× . . .× 1 ∈ Irr(N/M). Then, by Proposition 2.2, θ(1) ∈ cd(G/M) and

by Clifford’s Theorem and Corollary 11.29 in [5], bϕ(1) ∈ cd(G/M) for a divisor b of

|G/M : N/M |. It follows that |π(θ(1))| 6= |π(bϕ(1))|, which is a contradiction. Thus,

each minimal normal subgroup of G/M is isomorphic to A7 and m = 2.

Similarly, G/M has no normal subgroup isomorphic to A7 × A7. Therefore

N/M ∼= A7 is the unique minimal normal subgroup of G/M . Hence, we can deduce

A7 6 G/M 6 Aut(A7) and so G/M ∼= A7 or S7. �

Lemma 2.2 ([1], Lemma 3.1). Let G be a finite nonabelian solvable group with

G′ 6 Op(G) for all primes p. Suppose that K ⊳ G and K is maximal such that G/K

is nonabelian. Then G/K is a Frobenius group with Frobenius kernel N/K, an

elementary abelian q-group for a prime q, and a cyclic Frobenius complement. Let f

denote the order of the Frobenius complement and assume further that K is chosen

so that f is minimal. Then for each linear character λ of N , either λG is irreducible

or λ extends to G. In particular, if χ ∈ Irr(G) lies over a linear character of N ,

then χ must have degree 1 or f .

Theorem 2.2. Suppose that G is a finite solvable group such that |π(χ(1))| =

m > 1 for all nonlinear irreducible characters χ of G. Then G satisfies Lemma 2.4.

P r o o f. If G/Op(G) is a nonabelian group for some p ∈ π(G), then |π(χ(1))| = 1

for a nonlinear irreducible character χ of G, which is a contradiction. Thus, G/Op(G)

is abelian for each p ∈ π(G) and so G satisfies Lemma 2.4. �
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