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Abstract. A ring R is called right P-injective if every homomorphism from a principal
right ideal of R to RR can be extended to a homomorphism from RR to RR. Let R

be a ring and G a group. Based on a result of Nicholson and Yousif, we prove that the
group ring RG is right P-injective if and only if (a) R is right P-injective; (b) G is locally
finite; and (c) for any finite subgroup H of G and any principal right ideal I of RH, if
f ∈ HomR(IR, RR), then there exists g ∈ HomR(RHR, RR) such that g|I = f . Similarly,
we also obtain equivalent characterizations of n-injective group rings and F-injective group
rings.
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1. Introduction

Throughout this paper rings are associative with identity and modules are uni-

tary modules. Let R be a ring, we use HomR(MR, NR) to denote the set of all

R-homomorphisms between two right R-modules MR and NR. If G is a group,

we use RG to denote the group ring of G over R. For α =
∑
g∈G

agg ∈ RG, define

Supp(α) = {g ∈ G : ag 6= 0} to be the support of α. If h ∈ G, the projection

πh : RG → R given by πh

( ∑
g∈G

agg
)

= ah is right and left R-linear. We write

π = π1G . And π(α) is also called the trace of α. Note that, if α ∈ RG, then

πh(α) = π(αh−1) = π(h−1α), and hence

α =
∑

g∈G

πg(α)g =
∑

g∈G

π(αg−1)g =
∑

g∈G

π(g−1α)g.
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Let H be a subgroup of G. The map πH : RG → RH given by πH

( ∑
g∈G

agg
)

=
∑
h∈H

ahh is called the projection of RG onto RH. As RH is a subring of RG, RG is

naturally a two-sided RH-module.

Recall that a ring R is called right self-injective if every homomorphism from

a right ideal of R to RR can be extended to an endomorphism of RR. And R is

called right P-injective if every homomorphism from a principal right ideal of R

to RR can be extended to an endomorphism of RR. Right P-injective rings were first

introduced by Ikeda, see [3] in 1951. In 1963, Connell in [1] proved that for a finite

group G, RG is right self-injective if and only if R is right self-injective. In 1971,

Renault in [7] showed that G must be finite if RG is right self-injective. Thus RG

is right self-injective if and only if R is right self-injective and G is finite. In 1975,

Farkas in [2] showed that, if F is a field, FG is right P-injective if and only if G is

locally finite. In 1995, Nicholson and Yousif in [5], Theorem 4.1 proved the following

result on P-injective group rings:

Let R be a ring and G a group.

(i) If RG is right P-injective, then R is right P-injective and G is locally finite.

(ii) If R is right self-injective and G is locally finite, then RG is right P-injective.

In this short paper, based on the above result of Nicholson and Yousif, an equiv-

alent characterization of right P-injective group rings is given in Theorem 2.7. By

a similar discussion, we also obtain an equivalent characterization of right n-injective

group rings (see Theorem 2.9) and right F-injective group rings (see Corollary 2.10),

respectively. Let n be a positive integer. Recall that a ringR is called right n-injective

(right F-injective) if every homomorphism from an n-generated (finitely generated)

right ideal of R to RR can be extended to an endomorphism of RR.

2. Results

Lemma 2.1 ([5], Theorem 4.1 (1)). Let R be a ring and G a group. If RG is right

P-injective, then R is right P-injective and G is locally finite.

Let H be a subgroup of a group G. A complete set of representatives of left (right)

cosets of H in G is called a left (right) transversal of H in G.

Proposition 2.2. Let R be a ring, H a subgroup of a group G and {gi}i∈A

a right transversal of H in G. Assume that I is a right ideal of the group ring RH

and {αj ∈ RH}j∈B is a set of generators for the right RH-module I. Set J =
∑
i∈A

Igi.

Then J is a right ideal of RG and {αj ∈ RH}j∈B is also a set of generators for the

right RG-module J .
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P r o o f. As I =
∑
j∈B

αj(RH), we have

J =
∑

i∈A

(∑

j∈B

αj(RH)

)
gi =

∑

i∈A

∑

j∈B

(αj(RH)gi)

=
∑

j∈B

αj

(∑

i∈A

(RH)gi

)
=

∑

j∈B

αj(RG).

So J is a right ideal of RG generated by {αj ∈ RH}j∈B. �

Lemma 2.3. Let H be a subgroup of a group G and n a positive integer. If RG

is right n-injective, then RH is also right n-injective.

P r o o f. Let {gi}i∈A be a right transversal of H in G. It suffices to show that for

any n-generated right ideal I of RH, the following diagram of RH-homomorphisms

can be completed:

0 // I
i //

f

��

RH

RH

Set J =
∑
i

Igi. By Proposition 2.2, J is an n-generated right ideal of RG. Define

f̃ : J → RG by

f̃
(∑

αigi

)
=

∑
f(αi)gi, αi ∈ I.

If u ∈ G, then giu = hijgj for some hij ∈ H , and j ∈ A. So

f̃
((∑

αigi

)
u
)
= f̃

(∑
αihijgj

)
=

∑
f(αihij)gj =

∑
f(αi)hijgj

=
∑

f(αi)giu = f̃
(∑

αigi

)
u.

Thus f̃ is a well-defined right RG-linear map. Since RG is right n-injective, there

exists a right RG-homomorphism ϕ̃ from RG to RG such that ϕ̃|J = f̃ . Now set

ϕ = πH ϕ̃|RH. Then ϕ is a right RH-linear map and

ϕ|I = πH ϕ̃|I = πH f̃ |I = πHf = f.

So RH is also right n-injective. �

Taking H = {1G} in the above lemma and using Lemma 2.1, we have the following

corollary.

Corollary 2.4. Let R be a ring and G a group. If the group ring RG is right

n-injective (F-injective), then R is right n-injective (F-injective) and G is locally

finite.
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Lemma 2.5 ([1], Proposition 7). Let R be a ring and G a group. Assume thatM

is a right RG-module. Then there is a group monomorphism

t : HomRG(MRG,RGRG) → HomR(MR, RR)

such that t(ϕ) = πϕ for all ϕ ∈ HomRG(RGM,RGRG). In addition, if G is a finite

group, then t is an isomorphism.

Let RG be the group ring of a groupG over a ringR and letM be a rightR-module.

According to [4], elements of the group module MG are defined as follows:

∑

g∈G

mgg, where mg ∈M and mg = 0 for almost every g.

The sum in MG is defined componentwise:

∑

g∈G

mgg +
∑

g∈G

ngg =
∑

g∈G

(mg + ng)g.

And the scalar product of
∑
g∈G

mgg by
∑
g∈G

agg ∈ RG is defined by

(∑

g∈G

mgg

)(∑

g∈G

agg

)
=

∑

g∈G

kgg, where kg =
∑

hh′=g

mhah′ .

With the above two operations, MG becomes a right RG-module. It is also clear

that MG is a right R-module with the canonical scalar product

(∑

g∈G

mgg

)
r =

∑

g∈G

(mgr)g, r ∈ R.

The following result was given in [4] without proof. To be self-contained, we write

down the proof.

Lemma 2.6 ([4], Lemma 5.1). Let MR be a module and let H be a subgroup of

a group G. Then

(MG)RG
∼= (MH⊗RH RG)RG.

P r o o f. Let K be a right transversal of H in G. Then RG =
⊕
k∈K

(RH)k is a free

left RH-module with basis K. It is easy to see that every element of MH ⊗RH RG

has the form
∑
k∈K

αk ⊗ k, αk ∈ MH. Now define a map

Φ: MH⊗RH RG → (MG)RG
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such that

Φ

(∑

k∈K

αk ⊗ k

)
=

∑

k∈K

αkk, αk ∈ MH.

It is clear that Φ is a right RG-homomorphism. Since MG is a direct sum of (MH)k,

k ∈ K, Φ is an isomorphism. �

Now we prove the main result of this paper.

Theorem 2.7. Let R be a ring and G a group. The following are equivalent:

(i) RG is right P-injective;

(ii) (a) R is right P-injective;

(b) G is a locally finite group;

(c) for each finite subgroup H of G and any principal right ideal I of RH, if

f ∈ HomR(IR, RR), there exists g ∈ HomR(RHR, RR), such that g|I = f .

P r o o f. (i)⇒(ii). By Lemma 2.1, (a) and (b) are satisfied. For any finite

subgroup H of G, by Lemma 2.3, RH is right P-injective. For (c), let H be a finite

subgroup ofG and I a principal right ideal of RH with f ∈ HomR(IR, RR). SinceH is

finite, by Lemma 2.5, there exists ϕ ∈ HomRH(IRH,RHRH) such that f = t(ϕ) = πϕ.

As RH is right P-injective, there exists ψ ∈ HomRH(RHRH, RHRH) such that ψ|I = ϕ.

Take g = πψ. Then g is a right R-linear map from RHR to RR and g|I = f .

(ii)⇒(i). First, we show that for any finite subgroup H of G, RH is right

P-injective. Assume I = αRH is a principal right ideal of RH and ϕ is a right

RH-homomorphism from IRH to RHRH. We want to find an endomorphism ψ

of RHRH such that ψ|I = ϕ. Let f = πϕ. Then f ∈ HomR(IR, RR). By the

assumption, there exists g ∈ HomR(RHR, RR) such that g|I = f . Since H is finite,

by Lemma 2.5 there exists ψ ∈ HomRG(RHRH,RHRH) such that πψ = g. Thus,

πψ|I = gI = f = πϕ. For each x ∈ I, we have

ϕ(x) =
∑

h∈H

π(ϕ(x)h−1)h =
∑

h∈H

(πϕ(xh−1))h =
∑

h∈H

(πψ(xh−1))h

=
∑

h∈H

π(ψ(x)h−1)h = ψ(x).

Thus, ψ|I = ϕ.

Next we show that RG is right P-injective; this needs to show that, for any prin-

cipal right ideal K = αRG of RG, every right RG-homomorphism ϕ : K → RG can

be extended to an endomorphism of RGRG. Since G is locally finite, there exists

a finite subgroup H of G such that ϕ(α) ∈ RH and K ′ = α(RH) ⊆ RH ⊆ RG.

Let ι : K → RG and ι′ : K ′ → RH be the natural inclusions. If {gi}i∈A is a right

transversal of H , then RG = ⊕i∈A(RH)gi is a free left RH-module. So RG is a free
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left RH-module. Hence we obtain the following commutative diagram with exact

rows:

0 // K ′ ⊗RH RG //

Φ1

��

ι′⊗1 // RH⊗RH RG

Φ2

��
0 // K

ι // RG,

where Φ2 is defined accordingly in Lemma 2.6. Since Φ2 is a right RG-isomorphism

by Lemma 2.6, it is clear that Φ1 is also a right RG-isomorphism. As σ = πHϕ|K′ :

K ′ → RH is a right RH-homomorphism and RH is right P-injective, there exists

a right RH-homomorphism σ : RH → RH such that σ = σι′. Thus, we have the

following diagrams:

RH

0 // K ′

σ

OO

�

�

ι′
/ RH

σ

bb❉
❉

❉

❉

and

K

Φ
−1

1

��

ϕ // RG

K ′ ⊗RH RG
σ⊗1

// RH⊗RH RG.

Φ2

OO

Thus, ϕ = Φ2(σ ⊗ 1)Φ−1

1
= Φ2(σ ⊗ 1)(ι′ ⊗ 1)Φ−1

1
= Φ2(σ ⊗ 1)Φ−1

2
ι. So the right

RG-homomorphism Φ2(σ ⊗ 1)Φ−1

2
: RG → RG extends ϕ. �

Remark 2.8. By [6], Example 5.70, if R is right P-injective and G is locally

finite (even finite), RG need not be right P-injective.

By Corollary 2.4, using discussions similar to those in Theorem 2.7, we have

Theorem 2.9. Let R be a ring, G a group and n > 1 an integer. The following

are equivalent:

(i) RG is right n-injective;

(ii) (a) R is right n-injective;

(b) G is a locally finite group;

(c) for each finite subgroup H of G and any n-generated right ideal I of RH,

if f ∈ HomR(IR, RR), then there exists g ∈ HomR(RHR, RR) such that

g|I = f .

Corollary 2.10. Let R be a ring and G a group. The following are equivalent:

(i) RG is right F-injective;
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(ii) (a) R is right F-injective;

(b) G is a locally finite group;

(c) for each finite subgroup H of G and any finitely right ideal I of RH, if

f ∈ HomR(IR, RR), then there exists g ∈ HomR(RHR, RR) such that

g|I = f .
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