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Abstract. An eigenvalue of a real symmetric matrix is called main if there is an associated
eigenvector not orthogonal to the all-1 vector j. Main eigenvalues are frequently considered
in the framework of simple undirected graphs. In this study we generalize some results and
then apply them to signed graphs.
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1. Introduction

Given a graph G = (V (G), E(G)), let σ : E(G) → {−1,+1}. Then Ġ = (G, σ)

is a signed graph derived from its underlying graph G. The edge set of a signed

graph is composed of subsets containing positive and negative edges, respectively.

We interpret an (unsigned) graph as a signed graph with all the edges being positive.

The degree di of a vertex i of Ġ is the number of edges incident with i. We also

write d+i (or d
−
i ) for the number of positive (or negative) edges incident with i. We

say that Ġ is regular if the degree is a constant on the vertex set. The difference

d+i − d−i is called the net-degree of i. We say that Ġ is net-regular if the net-degree

is a constant on the vertex set. The negation of Ġ, denoted by −Ġ, is obtained by

reversing the sign of every edge of Ġ. The subgraph induced by negative edges is

denoted by Ġ−.

The adjacency matrix AĠ of Ġ is obtained from the (0, 1)-adjacency matrix of

the underlying graph G by reversing the sign of all 1’s which correspond to negative
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edges. The eigenvalues of Ġ are identified to be the eigenvalues of AĠ, they form the

spectrum of Ġ. The Laplacian matrix of Ġ is defined by LĠ = D −AĠ, where D is

the diagonal matrix of vertex degrees. The Laplacian eigenvalues of Ġ are identified

to be the eigenvalues of LĠ. Needless to add, in the case of graphs, LĠ reduces to

the standard Laplacian matrix. We also recall that the signless Laplacian matrix of

a graph G is defined by QG = D +AG.

The signed graphs Ġ and Ḣ are said to be switching equivalent if there exists

a diagonal matrix E of ±1’s such that AḢ = E−1AĠE. This is an equivalence

relation that preserves the eigenvalues of AĠ and LĠ.

A walk in a signed graph is a sequence of alternate vertices and edges such that

consecutive vertices are incident with the corresponding edge. Such a walk is posi-

tive if the number of its negative edges (counted with their multiplicity if there are

repeated edges) is not odd. Otherwise, it is negative. The difference between positive

and negative walks of length k starting at i is denoted by wk(i).

Introduce the vertex-edge orientation η : V (Ġ) × E(Ġ) → {1, 0,−1} formed by
obeying the following rules:

(1) η(i, jk) = 0 if i /∈ {j, k},
(2) η(i, ij) = 1 or η(i, ij) = −1,

(3) η(i, ij)η(j, ij) = −σ(ij).

The vertex-edge incidence matrix Bη is the matrix whose rows and columns are

indexed by V (Ġ) and E(Ġ), respectively, such that its (i, e)-entry is equal to η(i, e).

An oriented signed graph Ġη is the ordered pair (Ġ, η). Then we have

B⊤
η Bη = 2I +AL(Ġη)

,

where L(Ġη) is taken to be the signed line graph of Ġη. Observe that different

vertex-edge orientations result in switching equivalent signed line graphs making up

the switching class L(Ġ) also called a signed line graph of the (unoriented) signed

graph Ġ: for some different concepts of signed line graphs, see [13].

We denote the (standard) line graph of a graph G by Line(G). Since G can be

interpreted as a signed graph, there exists the switching class L(G). We remark that,

in general, Line(G) does not need to belong to L(G).

For a matrixM , we use sum(M) to denote the sum of its entries. The characteristic

polynomial of M is denoted by ΦM . For the adjacency matrix AĠ of Ġ we refer

to ΦAĠ
as ΦĠ.

Our results are announced in the Abstract. In Section 2 we consider the main

eigenvalues of real symmetric matrices. It appears that we can say more in the

case of Gram matrices, and so they are dealt with separately in Section 3. The main

eigenvalues of the matrices associated with signed graphs are considered in Section 4.
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2. General results

For easier reading, one may bear in mind that the matrix under consideration is

one of the standard matrices associated with a (signed) graph. Results of this section

will be used in Section 4.

Given an n×n real symmetric matrixM with (distinct) eigenvalues λ1, λ2, . . . , λd,

let Pi represent the orthogonal projection of R
n onto the eigenspace E(λi) with

respect to the canonical basis {e1, e2, . . . , en}. Then the spectral decomposition ofM
is given by

M =

d∑

i=1

λiPi.

If {x1,x2, . . . ,xt} is an orthonormal basis of E(λi), then Pi =
t∑

i=1

xix
⊤
i , and there-

fore the matrices P1, P2, . . . , Pd are symmetric, idempotent and mutually orthogonal

(in the sense that PiPj = 0 for i 6= j). Accordingly, for any polynomial p over R we

have

(2.1) p(M) =

d∑

i=1

p(λi)Pi.

We also have

(2.2) sum(Mk) = j⊤Mkj =

d∑

i=1

λk
i ‖Pij‖2.

The numbers βi = ‖Pij‖/
√
n are called the main angles of M . Precisely, they are

the cosines of the angles between the eigenspaces E(λi) and the main direction j. An

eigenvalue of M is called main if the corresponding main angle is nonzero. Equiva-

lently, it is main if there is an associated eigenvector not orthogonal to j. We denote

the main eigenvalues of M by µ1, µ2, . . . , µs and set

m(x) =
s∑

i=1

(x− µi).

Let {∆1,∆2, . . . ,∆k} be a partition of {1, 2, . . . , n} which determines a blocking
M = (Mi,j) such that each blockMi,j has a constant row sum, say fi,j . Observe that

such a blocking exists for any M , as we can always take k = n. The corresponding

partition is called an equitable partition and the k× k matrix (fi,j) is denoted by F .

We transfer some results, along with slight modifications of their proofs, concerning

the main eigenvalues of (the adjacency matrix) of a graph, which can be found in [10],

the reader can also consult in [3].
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Theorem 2.1. Let M be an n× n real symmetric matrix with precisely s main

eigenvalues and for 1 6 i 6 s let the main eigenvalues and the corresponding main

angles be denoted by µi and βi, respectively. The following statements hold.

(i) βi =
√

sum(Pi)/n for 1 6 i 6 s.

(ii) s 6= 0,
s∑

i=1

β2
i = 1 and

(2.3) sum(Mk) = n

s∑

i=1

µk
i β

2
i .

(iii) For a polynomial p over R, p(M)j = 0 if and only if the polynomial m divides p.

In particular, m(M)j = 0.

(iv) The largest k such that the vectors j, M j, . . . ,Mkj are linearly independent is

equal to s− 1.

(v) The polynomial m divides ΦF .

(vi) The spectrum of F is contained in the spectrum of M (taking into account the

repetition of eigenvalues).

(vii) s = 1 if and only if j is an eigenvector of M . The unique main eigenvalue is

associated with j.

(viii) s = 2 if and only if j is not an eigenvector ofM and (M2−aM +bI)j = 0 holds

for some a, b ∈ R. The main eigenvalues µ1, µ2 are determined by µ1 + µ2 = a,

µ1µ2 = b.

P r o o f. (i) We have

βi =
1√
n
‖Pij‖ =

√

1

n
(Pij)⊤(Pij) =

√

1

n
j⊤PiPij =

√

1

n
j⊤Pij =

√

1

n
sum(Pi),

where the fourth equality follows since Pi is idempotent.

(ii) s 6= 0 follows by definition of main eigenvalue. As
s∑

i=1

Pij = j, we have
s∑

i=1

β2
i = 1, while the equality (2.3) is deduced from (2.2).

(iii) By (2.1), we get p(M)j =
s∑

i=1

p(µi)Pij. Since the vectors P1j, P2j, . . . , Psj are

linearly independent, we have p(M)j = 0 if and only if p(µi) = 0 for 1 6 i 6 s. The

particular case follows directly.

(iv) If
s−1∑

i=1

ciM
ij = 0, then by case (iii), m(x) divides

s−1∑

i=1

cix
i, which is possible

only if (c1, c2, . . . , cs−1)
⊤ = 0. Thus, k > s − 1. If k > s − 1, then the vectors j,

M j, . . . ,M sj are linearly independent, contradicting m(M)j = 0.
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(v) If {∆1,∆2, . . . ,∆k} is a partition of {1, 2, . . . , n} which determines F , then for
1 6 i 6 n we define di ∈ R

n by

di(j) =

{

1 if j ∈ ∆i,

0 if j /∈ ∆i.

Observe that if Fx = y for some x = (x1, x2, . . . , xk)
⊤, y = (y1, y2, . . . , yk)

⊤, then

M
k∑

i=1

xidi =
k∑

i=1

yidi.

Now ΦF (F ) = 0, and ΦF (F )j = 0 implies ΦF (M)
k∑

i=1

di = 0. As
k∑

i=1

di = j, it

follows that ΦF (M)j = 0, and then by case (iii) we have that m divides ΦF .

(vi) This result is known from the work of Haynsworth, see [6] or Petersdorf and

Sachs, see [9], the corresponding result can also be found in [2], Theorem 0.12.

(vii) By case (iv), s = 1 if and only if (M − aI)j = 0 for some a ∈ R, and the

result follows.

(viii) By cases (iv) and (vii), s = 2 if and only if (M2 − aM + bI)j = 0 for some

a, b ∈ R, and j is not an eigenvector of M . Observing that for s = 2, m(x) =

x2 − ax+ b, we conclude the proof. �

According to Theorem 2.1 (vi), matrix F is called the divisor (or the front divisor)

of M . Note that if M is an integer matrix, then the coefficients a, b which appear

in case (viii) are also integers.

The theory of main eigenvalues of the adjacency matrix of a simple graph is highly

developed, which in particular means that many other results can be transferred as

in the previous theorem. We restricted ourselves to those that will be used in the

sequel.

3. Gram matrices

Results of this section will be used in Subsection 4.4.

A Gram matrix M of a set of vectors s1, s2, . . . , sm ∈ R
m is the m × m inner

product matrix whose (i, j)-entry is 〈si, sj〉. Setting S = (s1|s2| . . . |sm), we get

M = S⊤S. It is known that both S⊤S and SS⊤ are symmetric positive semidefinite

and that they share the same nonzero eigenvalues (taken with their repetition).

If 0 is an eigenvalue of S⊤S, then a nonzero vector x ∈ R
m is associated with 0

if and only if Sx = 0. Indeed, Sx = 0 obviously gives S⊤Sx = 0; on the contrary,

S⊤Sx = 0 implies x⊤S⊤Sx = 0, that is ‖Sx‖ = 0, i.e., Sx = 0. Consequently, if

Sx 6= 0 for all nonzero x ∈ R
m, then S⊤S is non-singular.
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If x is an eigenvector associated with a nonzero eigenvalue λ of S⊤S, then

S⊤Sx = λx gives SS⊤Sx = λSx, i.e., Sx is associated with the same eigenvalue

in SS⊤.

Assume further that for 1 6 i 6 m, sum(si) ∈ {0, c}, where c ∈ R \ {0}.

Theorem 3.1. Let S = (s1|s2| . . . |sm) be an n×m real matrix such that

sum(si) =

{

c if i 6 l,

0 if i > l,

for a fixed l (0 6 l 6 m). If ‖Pij‖/
√
m is the main angle corresponding to the nonzero

eigenvalue λi of S
⊤S, then the main angle corresponding to the same eigenvalue

of SS⊤ is c

√

sum(P
(l)
i )/n, where P

(l)
i is the l × l top-left block of Pi.

P r o o f. If {x1,x2, . . . ,xt} is an orthonormal basis of E(λi) (in S⊤S), then Pi =t∑

i=1

xix
⊤
i . The orthogonal projection (say P

′
i ) onto R

n of the eigenspace of λi in SS
⊤

is given by

P ′
i =

t∑

i=1

Sxi(Sxi)
⊤ =

t∑

i=1

Sxix
⊤
i S

⊤ = S

( t∑

i=1

xix
⊤
i

)

S⊤ = SPiS
⊤.

Due to Theorem 2.1 (i), for the corresponding main angle (say β′
i), we have

(3.1) β′
i =

√

1

n
sum(P ′

i ) =

√

1

n
sum(SPiS⊤) =

√

1

n
j⊤SPiS⊤j

By the assumption on S, we have

j⊤S = (S⊤j)⊤ = (c, c, . . . , c
︸ ︷︷ ︸

l

, 0, 0, . . . , 0),

which together with (3.1) gives the result. �

In the previous theorem we considered the matrix S in which the first l columns

coincide with vectors whose sum is equal to c. This assumption does not essentially

affect the result, as a rearrangement of columns produces the permutation matrix

which simultaneously permutes rows and columns of S⊤S and coordinates of asso-

ciated eigenvectors. As a result, P
(l)
i is the l × l, but not necessarily the top-left,

submatrix of Pi.

Corollary 3.2. Under the assumptions of Theorem 3.1:

(i) If l = 0, then 0 is the unique main eigenvalue of SS⊤.

(ii) If l = m, then a nonzero eigenvalue of S⊤S is main if and only if it is a main

eigenvalue of SS⊤.
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P r o o f. Assume that λ is a nonzero eigenvalue of S⊤S. Then it is an eigenvalue

of SS⊤ as well.

(i) By Theorem 3.1, the main angle of λ in SS⊤ is zero, and thus λ is non-main.

Since λ is arbitrary, all nonzero eigenvalues are non-main. On the other hand, by

Theorem 2.1 (ii), there must be at least one main eigenvalue, and the result follows.

(ii) By Theorem 3.1, the main angle of λ in SS⊤ is zero if and only if the main

angle of λ in S⊤S is zero. �

4. Main eigenvalues of signed graphs

We consider some applications of the foregoing results.

4.1. Counting walks. Given a signed graph with n vertices, let Nk =
n∑

i=1

wk(i),

i.e., Nk denotes the difference of the numbers of positive and negative walks of

length k.

Lemma 4.1. Let Ġ be a signed graph with n vertices and main eigenvalues

µ1, µ2, . . . , µs. The following statements hold.

(i) Nk = n
s∑

i=1

µk
i β

2
i .

(ii) An eigenvalue λ of Ġ is main if and only if −λ is a main eigenvalue of −Ġ.

Moreover, they share the same main angle.

(iii) If λ is a non-main eigenvalue of Ġ, then there exists a switching equivalent

signed graph in which λ is main.

P r o o f. (i) Since Nk = sum(Ak
Ġ
), the result follows by (2.3).

(ii) This follows since λ (of Ġ) and −λ of (−Ġ) share the same eigenspace.

(iii) If AĠx = λx for x = (x1, x2, . . . , xn)
⊤, and E = (eij) is the diagonal matrix

determined by

eii =

{

−1 if xi < 0,

1 if xi > 0,

then Ex is an eigenvector associated with λ in E−1AĠE since

(E−1AĠE)Ex = EAĠx = λEx.

Moreover, the coordinates of Ex are non-negative, and we are done. �

In the particular case of graphs, Lemma 4.1 (i) reduces to the well-known result

expressing the number of walks of length k in terms of main eigenvalues and main

angles, see [10].
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Ordering graphs with respect to a fixed structural or spectral parameter is a fre-

quently studied topic; a number of results can be found in [11]. Since signed graphs

which belong to a fixed switching class share the same spectrum, it seems natural to

consider their ordering by some other parameter, which is, in some sense, close to

the spectrum. Inspired by the previous lemma, we propose the ordering with respect

to Nk (k being fixed). We say more if a signed graph has 2 eigenvalues.

Lemma 4.2. If a signed graph Ġ has precisely 2 eigenvalues, λ and µ with λ 6= −µ,

then the ordering by Nk (k > 1) of signed graphs in the switching class of Ġ coincides

with the ordering by the number of positive edges.

P r o o f. Assume that λ is positive then µ must be negative. Without loss of

generality, we may also assume that λ > −µ, as otherwise, by Lemma 4.1 (ii) we can

consider −Ġ instead.

Here, Nk = n(λkβ2
λ + µkβ2

µ), where the β-notation is clear from the context. As

β2
µ = 1− β2

λ (by a part of Theorem 2.1 (ii)), we have

Nk = n(β2
λ(λ

k − µk) + µk).

If Ġ1 and Ġ2 are switching equivalent to Ġ, then as λ > −µ, we have Nk(Ġ1) 6

Nk(Ġ2) if and only if βλ(Ġ1) 6 βλ(Ġ2). Consequently, Nk(Ġ1) 6 Nk(Ġ2) if and only

if N1(Ġ1) 6 N1(Ġ2) (the ordering does not depend on k). The result follows as N1

is the difference of the numbers of positive and negative edges in a signed graph. �

For λ = −µ and k even, we get Nk = nµk for every signed graph in a switching

class.

Example 1. The ordering by Nk in the switching class of Kn is determined by

the following rule: If AĠ1
= E−1

1 AKn
E1 and AĠ2

= E−1
2 AKn

E2, then Nk(Ġ1) 6

Nk(Ġ2) if and only if |sum(E1)| 6 |sum(E2)|. Indeed, the number of positive edges
of Gi for i ∈ {1, 2} is

(
n
2

)
− li(n− li), where li is the number of −1’s in Ei. On the

other hand, li =
1
2 (n − sum(Ei)), giving li(n − li) =

1
4 (n

2 − sum(Ei)
2), and so the

number of positive edges increases with |sum(Ei)|.

4.2. Signed graphs with at most 2 main eigenvalues.

Lemma 4.3. A signed graph Ġ has exactly one main eigenvalue if and only if Ġ

is net-regular (with net-degree as the main eigenvalue). Similarly, Ġ has exactly

one main Laplacian eigenvalue if and only if Ġ− is regular (with 2d−i as the main

eigenvalue).
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P r o o f. By Theorem 2.1, any matrix associated with a signed graph has exactly

one main eigenvalue if and only if j is its eigenvector.

For the adjacency matrix this occurs if and only if Ġ is net-regular, which is an

easy exercise, see [12], [13]. For the Laplacian, we have (D − AĠ)j = λj, giving

d+i + d−i − (d+i − d−i ) = λ for every vertex i, i.e., 2d−i = λ, which leads to the result.

�

By Theorem 2.1 (v)–(vi), if a real symmetric matrix, say M , admits an equitable

partition which produces a k × k divisor, then M has at most k main eigenvalues.

Here is a particular result.

Corollary 4.4. If Ġ is not net-regular and its adjacency matrix has a 2×2 divisor,

then Ġ has exactly 2 main eigenvalues; they are the eigenvalues of the corresponding

divisor.

P r o o f. This follows by Theorem 2.1 (v)–(vi) and Lemma 4.3. �

For graphs, the adjacency matrix has a 2 × 2 divisor if and only if there exists

a vertex partition into 2 sets such that all the vertices of the same set has equal

number of neigbours in it and also equal number of neighbours in the other set. If

the graph is non-regular, then it has exactly 2 main eigenvalues. We note that all the

graphs with 2 main eigenvalues obtained in [1] (and described in terms of so-called

(κ, τ)-regular sets) admit aforementioned partition.

The reader may also observe that all the trees with 2 main eigenvalues (obtained

in [8]) admit either the same vertex partition or a similar partition into 3 sets. More

results on graphs with 2 main eigenvalues can be found in [7], [10].

4.3. Signed graphs in which all eigenvalues are main. We continue with

some results on signed graphs described in the subtitle. By x|U we denote the
restriction of the eigenvector x on the vertex subset U .

Theorem 4.5. Let Ġ be a net-regular signed graph and let V denote its vertex

set. If there exists U ⊆ V such that

⊲ for every non-main eigenvalue there is an associated eigenvector x satisfying

sum(x|U ) 6= 0 and

⊲ for every main eigenvalue there is an associated eigenvector x non-orthogonal to j

satisfying sum(x|U ) 6= sum(x|V \U ),

then Ġ switches to a signed graph in which all eigenvalues are main.

P r o o f. Let Ḣ be obtained by switching with respect to U , that is, AḢ =

E−1AĠE, where eii = 1 precisely when i ∈ U . Also, let λ be an eigenvalue of Ġ
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and x an associated eigenvector which satisfies the assumptions of the theorem.

Then Ex is an eigenvector associated with λ in Ḣ . Observe that Ex|U = x|U and
Ex|V \U = −x|V \U .

If λ is non-main in Ġ, then x ⊥ j, i.e., sum(x) = 0. Since sum(x) = sum(x|U ) +
sum(x|V \U ), we have sum(x|U ) = − sum(x|V \U ). It follows that sum(Ex) =

2 sum(x|U ) 6= 0, hence Ex 6⊥ j, i.e., λ is main in Ḣ .

If λ is main in Ġ, in a very similar way we get sum(Ex) = sum(x|U ) −
sum(x|V \U ) 6= 0, hence λ is main in Ḣ . �

Some consequences:

Corollary 4.6. Let Ġ be a net-regular signed graph and let V denote its vertex

set. If there exists U ⊆ V such that 2|U | 6= |V | and for every eigenvalue distinct
from the net-degree there exists an associated eigenvector x satisfying sum(x|U ) 6= 0,

then Ġ switches to a signed graph in which all eigenvalues are main.

P r o o f. The desired switching equivalent signed graph Ḣ is obtained as in the

proof of Theorem 4.5, that is, by switching with respect to U . Indeed, apart from

the net-degree, all the eigenvalues of Ġ are non-main but the same eigenvalues of Ḣ

are main, by the same theorem. The net-degree of Ġ appears in the spectrum of Ḣ

also as a main eigenvalue, since an associated eigenvector consists of ±1’s, where

exactly |U | of its coordinates are 1’s. �

Corollary 4.7. Let Ġ be a net-regular signed graph with at least 3 vertices con-

taining a vertex-deleted subgraph which do not share any eigenvalue with Ġ. Then Ġ

switches to a signed graph in which all eigenvalues are main.

P r o o f. Let Ḣ be obtained by switching with respect to a single vertex, say i,

whose deletion results in a subgraph (say Ġ− i) described in the statement.

By Corollary 4.6, the net-degree of Ġ is a main eigenvalue of Ḣ . Let λ be

one of the remaining eigenvalues. Observe that for an associated eigenvector x

in Ġ, the coordinate which corresponds to i is nonzero. (Otherwise, we would have

AĠ−ix|V \{i} = λx|V \{i}, contradicting the assumption on eigenvalues of Ġ − i.)

The remainder of the proof follows by Theorem 4.5, as {i} satisfies the assumption
(of that theorem) regarding non-main eigenvalues. �

4.4. Signed line graphs and line graphs. If Bη is the vertex-edge incidence

matrix of an oriented signed graph Ġη, then according to the definition, the switching

class L(Ġ) is determined by B⊤
η Bη−2I. Note that the matrix BηB

⊤
η does not depend

on η and LĠ = BηB
⊤
η .
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Observe that for any signed graph with vertex set V = {1, 2, . . . , n} there exists
exactly one vertex-edge orientation η satisfying η(i, ij) = 1 for i < j. Denote this

orientation by η+. Every column of Bη+ has the form ei ± ej (1 6 i < j 6 n).

Moreover, an eigenvalue λ ofB⊤
η+Bη+ shares the eigenspace with λ−2 ofB⊤

η+Bη+−2I.

Therefore, a relation between the main angles of B⊤
η+Bη+ − 2I and the main angles

of Bη+B⊤
η+ is given by Theorem 3.1.

Corollary 4.8. Let Ġ be a signed graph all of whose edges are positive and −Ġ

be its negation. Then

(i) 0 is the unique main eigenvalue of LĠ,

(ii) a nonzero eigenvalue λ of L(−Ġη+) is main if and only if λ is a main eigenvalue

of L−Ġ.

P r o o f. (i) Since the sum of entries of every column of any vertex-edge incidence

matrix associated with Ġ is zero, the claim follows by Corollary 3.2 (i).

(ii) Similarly, since in this case, every column of Bη+ has the form ei + ej , the

result follows by Corollary 3.2 (ii). �

The previous discussion can easily be adapted to the particular case of graphs.

Indeed, if R is the standard vertex-edge incidence matrix of a graph G, then the

signless Laplacian matrix of G is given by QG = RR⊤, and the adjacency matrix of

its line graph is given by ALine(G) = R⊤R− 2I.

Corollary 4.9. For a graph G:

(i) 0 is the unique main eigenvalue of LG.

(ii) A nonzero eigenvalue λ of QG is main if and only if λ− 2 is a main eigenvalue

of Line(G).

(iii) If G is connected bipartite, then 0 is a non-main eigenvalue of QG if and only

if the colour classes of G are equal in size.

(iv) −2 is never a main eigenvalue of Line(G).

P r o o f. (i) Observing that j is associated with 0, we get the result by Theo-

rem 2.1 (vii).

(ii) This follows by Corollary 3.2 (ii), as an eigenvalue λ− 2 of Line(G) shares an

eigenspace with λ of R⊤R.

(iii) First, if G is connected, then 0 belongs to its spectrum if and only if G is bi-

partite, see [11], Theorem 1.18. If x = (x1, x2, . . . , xn)
⊤ is an associated eigenvector,

then QGx = 0 implies R⊤x = 0 (see the discussion at the beginning of this section),

which holds if and only if xi = −xj for every edge ij. As G is connected, we have

that xi is a constant on each colour class and |xi| is a constant on the entire vertex
set. Consequently, 0 is non-main if and only if the colour classes are equal in size.
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(iv) If −2 is an eigenvalue of Line(G) and x = (x1, x2, . . . , xm)⊤ is an associated

eigenvector, then R⊤Rx = 0, i.e., Rx = 0. Therefore 0 = sum(Rx) = 2 sum(x), and

the result follows. �

The result of Corollary 4.9 (iv) is obtained by Doob, see [5].

In [4], all the trees and all the unicyclic graphs whose signless Laplacian matrix

has exactly 2 main eigenvalues are determined. By virtue of Corollary 4.9 (ii)–(iv),

the line graph of any of them has at most 2 main eigenvalues and their number

depends on whether the corresponding root is a bipartite graph whose colour classes

are equal in size or not.
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[3] D.Cvetković, P. Rowlinson, S. Simić: An Introduction to the Theory of Graph Spectra.
London Mathematical Society Student Texts 75, Cambridge University Press, Cam-
bridge, 2010. zbl MR doi

[4] H.Deng, H.Huang: On the main signless Laplacian eigenvalues of a graph. Electron. J.
Linear Algebra 26 (2013), 381–393. zbl MR doi

[5] M.Doob: A geometric interpretation of the least eigenvalue of a line graph. Combina-
torial Mathematics and its Applications (R.C. Bose, T.A.Dowling, eds.). University of
North Carolina, Chapel Hill, 1970, pp. 126–135. zbl MR

[6] E.V.Haynsworth: Applications of a theorem on partitioned matrices. J. Res. Natl. Bur.
Stand., Sec. B 63 (1959), 73–78. zbl MR doi

[7] Y.Hou, Z.Tang, W.C. Shiu: Some results on graphs with exactly two main eigenvalues.
Appl. Math. Lett. 25 (2012), 1274–1278. zbl MR doi

[8] Y.Hou, H. Zhou: Trees with exactly two main eigenvalues. J. Nat. Sci. Hunan Norm.
Univ. 28 (2005), 1–3. (In Chinese.) zbl MR

[9] M.Petersdorf, H. Sachs: Über Spektrum, Automorphismengruppe und Teiler eines
Graphen. Wiss. Z. Tech. Hochsch. Ilmenau 15 (1969), 123–128. (In German.) zbl MR

[10] P.Rowlinson: The main eigenvalues of a graph: A survey. Appl. Anal. Discrete Math.
1 (2007), 445–471. zbl MR doi
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