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Abstract. We study the first eigenvalue of the Jacobi operator on closed hypersurfaces
with constant mean curvature in non-flat Riemannian space forms. Under an appropriate
constraint on the totally umbilical tensor of the hypersurfaces and following Meléndez’s
ideas in J. Meléndez (2014) we obtain a new sharp upper bound of the first eigenvalue of
the Jacobi operator.
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1. INTRODUCTION

Let us denote by Q" *(c) the standard model of an (n+1)-dimensional Riemannian
space form with constant sectional curvature ¢, ¢ € {1, —1}. This is the Euclidean
sphere S"T! when ¢ = 1 and the hyperbolic space H**! when ¢ = —1.

The problem of characterizing hypersurfaces immersed in the Riemannian space
form Q"*!(c) with constant mean curvature constitutes a classical topic in the
theory of isometric immersions, which was widely approached by many authors.
In this direction, the investigation concerning the behavior of the spectrum of
the Schrédinger operators (of the form —A + ¢ with A being the Laplacian op-
erator on a Riemannian manifold M™ and ¢ a continuous function on M™) con-
stitutes an interesting and fruitful research topic in geometric analysis, see [7]
and [17].

This work was supported by the National Natural Science Foundation of China
(11761061).

DOI: 10.21136/CMJ.2020.0579-18 881


http://dx.doi.org/10.21136/CMJ.2020.0579-18

In the case that M™ is a closed hypersurface immersed in the Riemannian space
form Q"*1(c) with constant mean curvature, an important Schrédinger operator is
the so-called Jacobi operator or stability operator which is defined by

J=-A—-5—ngc,

where S denotes the squared norm of the second fundamental form of M™. We note
that J is just the Jacobi operator established by Alias in [2] in order to study the
problem of minimizing the area functional for volume-preserving variations.

From the mathematical point of view, this is mostly due to the fact that such
hypersurfaces exhibit nice gap theorems. For example, Simons in [22] studied the
first eigenvalue \{ of a minimal closed hypersurface M™ immersed in S"*! and proved
that either \{ = —n and M™ is a totally geodesic sphere, or \{ < —2n otherwise.
Furthermore, Wu in [23] characterized the equality A\{ = —2n by showing that it
holds only for the minimal Clifford torus of the form S¥(+/k/n) x S*~*(\/(n — k)/n)
with k € {1,...,n — 1}. On the other hand, Perdomo in [21] provided a new proof
of this spectral characterization by the value of \{.

Later on, Alias, Barros and Brasil Jr. in [3] extended these results to the case of
constant mean curvature hypersurfaces in S"*!, characterizing some Clifford torus
of the form S'(r) x S'(v1 —r2) with r € (0,4) U (3,1) and S"~1(r) x S}{(v/1 —12)
with 7 € (0, (n — 1)/n) via the value of their first stability eigenvalue \{. Shortly
thereafter, Chen and Cheng in [9] obtained the upper bound for A\{ of nontotally
umbilical compact hypersurfaces with constant mean curvature, which depends only
on the mean curvature H and the dimension n. We also refer the readers to the
recent article [6], in which the authors Aquino, de Lima, dos Santos and Veldsquez
obtained upper bounds for \{ of a closed hypersurfaces with constant mean curvature
immersed either in the Euclidean space R™t! or in the hyperbolic space H" ! that
are either \{ = —n(H? + ¢) and M™ is totally umbilical, or \{ < —2n(H? + c) +
nC(n,1)|H| max |g|.

Very recently, the authors of [16] offered a comprehensive and nice presentation of
a new upper bound for the first eigenvalue A\{ on a closed constant mean curvature
hypersurface in a Riemannian space form. We observe that the upper bound of
the first eigenvalue A\{ does not depend only on the mean curvature H and the
dimension n, but also depends on the immersion.

In this paper, under constraints on the total umbilicity tensor of M™ and following
the approach introduced in [19], our objective is to extend de Lima’s results in [16]

to the case of nonzero constant mean curvature hypersurfaces in a Riemannian space

form Q"+ (c).
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Theorem 1.1. Let M™ (n > 5) be a closed hypersurface in S"*! with nonzero
constant mean curvature H. Let \{ stand for the first eigenvalue of the Jacobi
operator J. Let its total umbilicity operator y satisfy

(1.1) ltr(*)] < C(n, K)o,
where C'(n, k) = (n — 2k)/y/nk(n — k) for a given integer k. When M™ is totally

umbilical, then \{ = —n(H? + 1). When M™ is not totally umbilical.
(a) If n?H? < 16k(n — k)/((n — 2k)*> —4) and k < 1(n — 2), then

A < —n(H2+1) - m(\/yf(n — k) + n2H? — (n — 2k)|H|)".

Moreover, the equality holds if and only if M™ is a product of spheres S"~*(r) x
SE(V1 —72) with r? <1 —k/n.
(b) Ifn®H? > 16k(n —k)/((n — 2k)? — 4) and k < 3(n — 2), then

(n —2)%(n — 2k)?H?

A < =20 = DE +1) + ——gr—

Moreover, the equality holds if and only if M™ is a product of spheres S" ¥ (r) x

SE(v1 —72) with r? < 1 —k/n.

Theorem 1.2. Let M™ (n > 5) be a closed hypersurface in a hyperbolic space
H"*+1(—1) with nonzero constant mean curvature H. Let \{ stand for the first
eigenvalue of the Jacobi operator J. Let its total umbilicity operator o satisfy

[tr(*)] < C(n, B)lgl,
where C(n, k) = (n — 2k)/\/nk(n — k) for a given integer k. When M" is totally

umbilical, then \{ = —n(H? — 1). When M™ is not totally umbilical, then:
(a) Ifdk(n — k) <n*H? < 16k(n —k)/(4 — (n — 2k)?) and k > $(n — 2), then

A< —n(HE—1) - —= 5 (V/n2H? — 4k(n — k) — (n — 2k)|H|)".

4k(n —
(b) Ifn®H? > 16k(n —k)/(4 — (n — 2k)?) and k > $(n — 2), then

(n —2)%(n — 2k)*>H?
8k(n — k)

N < —2(n—-1)(H?-1)+
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Remark 1.1. Theorem 1.1 above is a gap theorem that extends well-known
results on minimal hypersurfaces in the Euclidean sphere to the case of nonzero
constant mean curvature, see [14], [18], [22]. In particular, for £ = 1, it follows from
the classical Okumura type condition (see [20]) that (1.1) holds automatically, so
Theorem 1.1 contains Chen and Cheng’s theorem in [9] as its special case.

2. PRELIMINARIES

Let M™ be an n-dimensional connected hypersurface immersed in the Rieman-
nian space form Q""!(c), ¢ € {1,—1}. We choose a local orthonormal frame field
{€e1,...,€n,ent1} and its dual coframe {w1,...,wn,wnt1} such that {e1,...,e,} is
a local orthonormal frame on M"™. Hence, the second fundamental form II and the
mean curvature H of M" are defined by

1
II = Zhijwz' Quw;®eny1, H= - th‘,

ij i
respectively. As is well-known, the Gauss equation of M" is given by
Rijir = c(0it0j1 — 0u105k) + (hinhji — hahjk).

Denoting by S = thj the squared norm of the second fundamental form and
4,J

by R the normalized scalar curvature of M " we have, from the Gauss equation, the
well-known relation

n(n—1)R=n(n—1)c+n?H? - S.
The Codazzi equation and Ricci identity on M™ are given by
hije = hikj,

hijrt = hijik = 3 BnjBnikt + Y Bani Rt

respectively. For any C2-function f on M", we define its gradient and Hessian by
df = fiwin Y figws = dfi+ Y fiws.
i J J

Then the Laplace-Beltrami operator A acting on f is given by Af =Y f;;. Taking

3
a local orthonormal frame {e;,...,e,} on M" such that h;; = A;0;; and using
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the Gauss equation, Codazzi equation and Ricci identity, the Simons type formula,
see [10], [11] or [22]

1 .
(2.1) §AS = Z hfjk + Z Ni(nH)y; +neS — en?H? — §% + nHz A3

4,3,k .3 i
follows. Set ¢;; = h;j — Hd;j;, then the symmetric tensor ¢ = > p;;w;w; is called
ij

the total umbilicity (or traceless) tensor of M™ and satisfies the Codazzi equation.
Let |¢|? = Egofj be the squared length of ¢, then it is easy to check that

4,9

(2.2) lo|* =S —nH?.
In order to prove our main theorems, we need the following two lemmas.

Lemma 2.1 ([19], [20]). Let p; be real numbers such that Y u; =0 and Y u? = 52,
where 3 > 0. Then ! !

5 n—2k 4 < s n—2k 3>
zi:ﬂz \/nk(n—k)ﬂ Z:MZ \/nk(n—k)ﬂ
holds if and only if k of the u;’s are nonnegative (or nonpositive) and equal and the

rest n — k of the u;’s are nonpositive (or nonnegative) and equal.

Lemma 2.2 ([15]). Let M"™ be a Riemannian manifold isometrically imbedded
into a Riemannian manifold N"*?. Consider a traceless symmetric tensor

Y= YHwiOw; @eq
a,i,J

satisfying the Codazzi equation. Then the inequality

4n
VPP < =2 VPl

i,

holds, where |[p|? = Y (¥%)? and |Vy[|? = > ( f}k)Q

ij
a,i,5,k

3. PROOFS OF THEOREMS 1.1 AND 1.2

Proof. From now we assume H # 0. Since H is constant, we can assume H > 0.
It follows from Simons’ formula (2.1) together with (1.1) and (2.2) that

nH(n - Qk)lwl).

1
3.1 ZAlpl? > |Vl — 2( 2 _nlc+ H? +
(3.1) 5 Alel™ = Vel — el [l ( ) h )
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When M™ is totally umbilical, then |p|> = 0 and J = —A — n(c + H?), so A\{ =
A2 = n(c+ H?) = —n(c+ H?), whose corresponding eigenfunctions are constant
functions.

In the following, we assume that M™ is not totally umbilical. For this case, follow-
ing the ideas of [9] or [19], consider the positive smooth test function f. € C*°(M)
given by

fe=(e+]el)*>0

for any arbitrary a > 0 and € > 0. By a straightforward computation, we obtain
a—2 a—1

(32)  Afe=ala=1)(e+el?)" TIVIePP +a(e+]el)" T Alpl*.

Thus, it follows from (3.1) and (3.2) that

)20(72 )20472

(3.3) feAfe = ala=1) (e +|ol*)™ 7 [VIe|* + 20 (2 + ]
x (e + o) Vel* = 2a(e + [@*)** (e + o)l
x <|gp|2 (et 12+ 2 20l 2]“)'“"').
nk(n — k)
Applying Lemma 2.2 to ¢, we have |V|p|?|? < (4n/(n + 2))|V¢|?|¢|?. Therefore,

(34) a(a—1)(e+ ) VIl + 2a(e + [0*)** 7% (e + [o*) |Vl

dna(l — o _ _
> 00— (e 1 o2 oIl + 2a(e + 0P (e + o) Vil
o dn(l —
— e+l (2= EE= v,

Plugging (3.4) into (3.3), we have

(3-5) foAfe = = 20(e + [0*)? 72 (e + |0l ol

H(n -2k
% <|<P|2 —n(c+H2)—|— n (’I’L )l@') +a(5+ |<p|2)2a—2
nk(n — k)
In(l — o) 9 9
X (2 —— )Isol Vel

Now, we recall that A\{ has the min-max characterization, see [8], [13]

N = min{ifMn fJJdM

e L oF s recarm. £ 20f.
Mﬂ,
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where dM stands for the volume element with respect to the induced metric of M™.

Hence, from (3.5), we infer

(36) A [ fZdM < foJ(fo)dM
Mn Mn

= — f-Af.dM — (S +ne)f2dM
Mn Mn

2 2 _
mn €+ ¥ nk(n — k)

2 2
—2an(H2+C)/ Jelel > dM —n(H? + ¢) f2dm
mn €+ o Mn

- 2y-2(g_ AL Q)N oG 20
/Ma(6+|s0|) <2 o JIelIVelt 2 an

Assuming that 2a — 1 < 0 and using the inequality —a? + 2ab < b2, we have

5 2an(n—2k)H|p| _ o?(n—2k)*(nH)>?
3.7 (o= Dol + nk(n — k) s (1= 2a)nk(n — k)’

In view of (3.7), (3.6) then becomes
20,12 2(n — 2k)?
) )\J 2dM< fe|§0| o (TL H2— dM
(38) A f S ot [PE\ T = 2a)mk(n =) M) ¢

2 2
—2na(H2+C)/ Jelel > dM —n(H? + ¢) f2dm
mn €+ o Mn

. 2 2
3 a(2 _4n(1 a)) / lel* Vel 240
n+2 mn (€4 1p]?)?

Putting
1 (n —2k)?H? ) 16k(n — k)c
Zl1—- fn2H?2 « 2 /7
(3.9) 2( \/n2H2—|—4k(n—k‘)c B < (n—2k)2 -4’
. a=
n—2 . 16k(n — k)c
fn?H? > —————.
on n (n— 2k)? — 4

Then 2a— 1 < 0 and 2 —4n(1 — «)/(n+2) > 0. We get from (3.8) that
2,2 20 _ 912
fe |30| o (TL Qk) (TLH)2 —eldm
mn €+ 0P\ (1 = 2a)nk(n — k)

_ 2 f2lel? . 2 2
2na(H* + ¢) 5 dM —n(H + ¢c) fZdM.
Mmn €+ ol M

(3.10) A/ f2dM <
Mn
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As M™ is not total umbilicity, it follows that

(3.11) lim f2dMm = lo[**dM > 0.
e—0 Mn Mn

Hence, letting € — 0 in (3.10) and using (3.11), we have

a?(n — 2k)?
(1 —=2a)nk(n —k)

(3.12) M < (nH)? — 2na(H? + ¢) — n(H? + ).
Substituting the value of « defined by (3.9) into (3.12), we arrive at:
(a) When c=1and k < 1(n—2).

> If n2H? < 16k(n — k)/((n — 2k)? — 4), then

2

(3.13) X{g—n(H2+1)—4 n (V4k(n — k) +n2H2 — (n — 2k)|H|)".

k(n—k)
> If n?H? > 16k(n — k)/((n — 2k)? — 4), then

(n —2)%(n — 2k)?H?

(3.14) A < =20 = DE + 1) + =g

(b) When ¢ = —1and k > $(n — 2).
> If 4k(n — k) <n?H? < 16k(n — k)/(4 — (n — 2k)?), then

A< —n(H2—1) - —— 5 (V/n2H? — 4k(n — k) — (n — 2k)|H]|)°.

4k(n —
> If n2H? > 16k(n — k)/(4 — (n — 2k)?), then

(n —2)%(n — 2k)?H?
8k(n — k)

N <=2 —-1)(H?*-1)+

Now, let us suppose that the equality in (3.13) holds. Then, all the inequalities

along this proof must be equalities. Hence, we know that the second fundamental

form is parallel and S is constant. Using Lemma 2.1 once more we obtain that M™

has exactly two constant principal curvatures with multiplicities (n—k) and k. Then,

by the classical results on isoparametric hypersurfaces of Riemannian space forms
(see [1], [4], [5] or [12]), we know that when ¢ = 1, M™ is a product of spheres

SF(r) x S"k(v/1 — r2) with r2 < 1 — k/n.

If the equality in (3.14) holds, then all inequalities along this proof must be equal-

ities. In particular, the equality occurs in (3.7) which implies

aln — 2k)nH
(1 —2a)\/nk(n—k)

(3.15) o] =

888



Inserting oo = (n — 2)/2n into (3.15) we get

o2 = (n —2)%(n — 2k)?(nH)?
16nk(n — k) '

Furthermore, from J = —A — (|¢|? + n(H? + ¢)) it follows that

(n —2)%(n — 2k)?H?

AT = (gl n(H? 4+ 0)) = =2(n = (H? + ) + =

Thus, since M™ is closed, we obtain

(n —2)%(n — 2k)?>H?
8k(n — %)

0=A"= (¢l +nH*+¢) —2(n— 1)(H* +¢c) +

and, hence,
16k(n — k)c
2H2 —_ .
" (n—2k)2 —4
From [9], we know that when ¢ = 1, M™ is a product of spheres S*~*(7) x S¥ (/1 — 2)
with 72 < 1 — k/n. This finishes the proofs of Theorems 1.1 and 1.2. O
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