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Abstract. We study a certain operator of multiplication by monomials in the weighted
Bergman space both in the unit disk of the complex plane and in the polydisk of the
n-dimensional complex plane. Characterization of the commutant of such operators is
given.
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1. Introduction

Let D denote the open unit disk in the complex plane. We mean by polydisk the

set

D
n = D× . . .× D

of the n-dimentional complex space. For α > −1, we define the weighted Bergman

space A2
α(D) as the space of analytic functions f in D for which

∫

D

|f(z)|2 dAα(z) < ∞,

where

dAα(z) = π
−1(α+ 1)(1− |z|2)α dxdy

is the normalized area measure in the complex plane. It is well-known that A2
α(D)

equipped with the inner product

〈f, g〉 = (α+ 1)

∫

D

f(z)g(z)(1− |z|2)α dA(z)
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is a Hilbert space of analytic functions. It follows from the boundedness of point

evaluation functional together with the Riesz’ representation theorem that A2
α(D)

is a reproducing kernel Hilbert space of analytic functions, and that every function

f ∈ A2
α(D) can be written as

f(w) = 〈f, kw〉 = (α+ 1)

∫

D

f(z)kw(z)(1− |z|2)α dA(z), w ∈ D,

where

kw(z) =
1

(1− zw)α+2

is the reproducing kernel for the Hilbert space A2
α(D).

Now let Hol(Dn) denote the space of holomorphic functions on the polydisk D
n.

The weighted Bergman space on the polydisk Dn is defined by

A2
α(D

n) = Hol(Dn) ∩ L2(Dn, dVα),

where dVα = dAα(z1) . . . dAα(zn). In other words, a function f(z1, . . . , zn)∈Hol(Dn)

belongs to A2
α(D

n) if

‖f‖2A2
α
(Dn) =

∫

Dn

|f(z1, . . . , zn)|2 dAα(z1) . . . dAα(zn) < ∞,

where

dAα(zk) =
α+ 1

π

(1− |zk|2)α dxk dyk.

It is well-known that {zn/γn}∞n=0 is an orthonormal basis for A
2
α, where

γn = ‖zn‖α =

√

n! Γ(α+ 2)

Γ(α+ n+ 2)
.

Then for f(z) =
∞
∑

n=0
anz

n we have ‖f‖2α =
∞
∑

n=0
γ2
n|an|2. Now, let β = (β1, . . . , βn)

be a multi-index (each βi is a nonnegative integer); in this case we write β > 0.

For z = (z1, . . . , zn) ∈ D
n we define zβ = zβ1

1 . . . zβn

n and eβ = zβ/γβ1
. . . γβn

. With

this notation, {eβ}β>0 is an orthonormal basis for A
2
α(D

n). The reproducing kernel

associated to the points (z1, . . . , zn) and w = (w1, . . . , wn) of the polydisk is given

by (see [13])

Kz(w) =

n
∏

j=1

1

(1− zjwj)α+2
= kz1(w1) . . . kzn(wn).
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Given a bounded linear operator T on a Hilbert space H, we mean by the com-
mutant of T the set of all bounded linear operators on H which commute with T .

If we denote the algebra of all bounded linear operators on H by B(H), then the

commutant of T which is denoted by (T )′ is by definition

(T )′ = {S ∈ B(H) : ST = TS}.

The operator of multiplication by zk, where k is a positive integer, is the operator

Mzk : H → H defined by f 7→ Mzk(f) = zkf . In [12], Kehe Zhu, among other things,

proved that a bounded linear operator T on the Bergman space A2(D) (this is the

space A2
α(D) for α = 0) commutes with Mz2 if and only if there exist two bounded

analytic functions F and G such that

Tf = Ffe +Gfo/z,

where f = fe + fo is the even-odd decomposition of f ; that is,

fe(z) =
f(z) + f(−z)

2
, fo(z) =

f(z)− f(−z)

2
.

In a later paper, the current author proved that the same result is true for the

weighted Bergman spaces A2
α(D) too, see [3]. The question as to what happens if

we instead consider the operator of multiplication by zk for a positive integer k > 3

seems to be more interesting. Here we intend to consider this problem for both one-

dimensional complex plane and n-dimensional complex plane. More precisely, and

for the sake of simplicity, we shall characterize the commutant of the operator Mz3

on A2
α(D), as well as the commutant of the operator of multiplication by z31 on the

polydisk A2
α(D

n) (just for simplicity, we take n = 2). This latter is the operator

f(z1, z2) 7→ Mz3

1

f(z1, z2) = z31f(z1, z2).

It is proved that T commutes with Mz3

1

if and only if there exist three bounded

analytic functions h1, h2, h3 on the polydisk A
2
α(D

2) satisfying a certain equality in

terms of even-odd-odd decomposition of f .

To tackle this problem, we first need to have an alternative decomposition theory

of functions into k summands. This will be done in the next section. Second, we

need to know that ker(M∗

λ3−z3) is spanned by three functions. This will be explained

in Section 3.

The importance of this sort of problems is due to the fact that a knowledge of

the commutant of a specific operator will result into a knowledge of the reducing

subspaces of the given operator (a closed subspace M is said to be reducing for

729



the operator T if it is invariant both for T and its adjoint T ∗). This information in

turn has applications in the decomposition theory of operators (for more information

see [8]).

For detailed information on the theory of Bergman spaces we refer the reader to

the books [9] and [10]. For a different approach of investigation, we refer the reader

to [1], [2], [4], [5], [6], [7], [11] and the references therein.

2. A general even-odd decomposition

As indicated in the previous section, the first step to the main result of this paper

is to find a more general decomposition of functions into n summands, where the

first summand is even and the rest are odd functions (here we use the terms even

and odd in a more general sense). Recall that {γkzk}∞k=0 is an orthonormal basis

for A2
α(D), where

γk =
(Γ(α+ k + 2)

k! Γ(α+ 2)

)1/2

.

Let n > 2 be fixed and define for 0 6 j 6 n− 1,

Mj = span{zj+kn}∞k=0.

It follows that these subspaces are orthogonal to each other, moreover,

A2
α(D) = M0 +M1 + . . .+Mn−1,

or each f ∈ A2
α(D) can be represented as

(2.1) f = f0 + f1 + . . .+ fn−1, fj ∈ Mj .

In the case when n = 2, we get A2
α(D) = M0+M1, whereM0 is the subspace of even

functions and M1 is the subspace of odd functions.

Now let ω = exp(2πi/n), then for f ∈ Mj we have f(ωz) = ωjf(z). Put it

another way, we let n > 1 be an integer and consider the additive cyclic group

Z/nZ ≈ Zn. Define ϕ in the following way: ϕ sends an element k ∈ Zn to the

operatorRk given by Rkf(z) = f(ωkz), where ω = exp(2πi/n). The operator Rk acts

on the weighted Bergman space A2
α(D). Note that each Rk is unitary (a surjective

isometry). We may just look at R1 for the moment; this is just a rotation operator,

indeed, R1f(z) = (f◦r)(z), where r(z) = ωz with |ω| = 1. We observe that Rk = Rk
1 ,

so if we understand R1, we understand Rk as well. As such, we might be interested

in the spectrum of R1 and the corresponding eigenspaces. Now, since R1 has the
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property Rn
1 = id, the only eigenvalues are the nth roots of unity. To see this let λ

satisfy R1f(z) = λf(z). It follows that f(ωz) = λf(z). Applying R1 to both sides

of this equality we get f(ω2z) = λf(ωz) = λ2f(z). In this way, we obtain

f(z) = f(ωnz) = λnf(z)

from which it follows that λn = 1, or λ = ωj, j = 1, . . . , n. Now let λ = ωj for some

1 6 j 6 n be an eigenvalue of R1. The corresponding eigenspace

Mj = {f ∈ A2
α(D) : R1f(z) = ωjf(z)}

consists of functions in the weighted Bergman space satisfying f(ωz) = ωjf(z).

These eigenspaces are necessarily orthogonal, by unitarity, and span the whole space

(a result of general spectral theory). In the case that n = 2, we get ω = −1,

R1f(z) = f(−z) and R2 = id. Therefore, M1, M2 will become the space of odd and

even functions, respectively. Indeed,

fe(z) =
R2f(z) +R1f(z)

2

and

fo(z) =
R2f(z)−R1f(z)

2
.

In brief, the Bergman space can be written as the sum of its eigenspaces. In this

way, we have proved the following theorem.

Theorem 2.1. Let f be a function in the weighted Bergman space A2
α(D). Then

there are n functions f1, . . . , fn in A2
α(D) such that

f = f1 + f2 + . . .+ fn,

where fj satisfies f(ωz) = ωjf(z) and ω is an nth root of unity.

3. Multiplication operators by monomials

In this section we shall provide a characterization for the commutant of the oper-

ator of multiplication by zk. We shall see that T commutes with Mzk if and only if

there exist k bounded analytic functions ϕj , 1 6 j 6 k, such that T can be written as

Tf = ϕ1f1 + ϕ2f2/z + . . .+ ϕkfk/z
k−1, f ∈ A2

α(D),
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where f = f1 + . . . + fk is the even-odd decomposition of f given by Theorem 2.1.

We begin with the following proposition. For the sake of simplicity, we often assume

that k = 3.

Proposition 3.1. Let ϕ1, ϕ2 and ϕ3 be bounded analytic functions in the unit

disk and let f = f1+ f2+ f3 be the decomposition of f ∈ A2
α(D) into three functions

as indicated above. Then T : A2
α(D) → A2

α(D) defined by

Tf = ϕ1f1 + ϕ2f2/z + ϕ3f3/z
2, f ∈ A2

α(D)

is a bounded linear operator.

P r o o f. Since ϕj ’s are bounded functions and ‖f1‖ 6 ‖f‖, it suffices to verify
that there is a positive constant C such that

max
{∥

∥

∥

f2
z

∥

∥

∥
,
∥

∥

∥

f3
z2

∥

∥

∥

}

6 C‖f‖.

Assume that f ∈ A2
α(D). Now we have

‖f‖2A2
α
(D) =

∞
∑

n=0

n! Γ(α+ 2)

Γ(n+ α+ 2)
|an|2

and similarly,

‖zf‖2A2
α
(D) =

∞
∑

n=0

(n+ 1)! Γ(α+ 2)

Γ(α + n+ 3)
|an|2.

Since α+ 2 > 1, we have 1 + n/(α+ 2) 6 n+ 1 or α+ 2+ n 6 (α+ 2)(n+ 1), from

which it follows that
Γ(α+ n+ 3)

Γ(α+ n+ 2)
6 (α+ 2)(n+ 1).

This is equivalent to

1

(α+ 2)Γ(α+ n+ 2)
6

n+ 1

Γ(α+ n+ 3)
.

Multiplying both sides by n! Γ(α+ 2)|an|2 we obtain

n! Γ(α+ 2)

(α+ 2)Γ(α+ n+ 2)
|an|2 6

(n+ 1)! Γ(α+ 2)

Γ(α+ n+ 3)
|an|2,

from which it follows that

‖f‖2A2
α
(D) 6 (α+ 2)‖zf‖2A2

α
(D).
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Assume now that f(0) = 0 and put g(z) = f(z)/z. It follows from the above argument

that

‖g‖A2
α
(D) 6

√
α+ 2‖zg‖A2

α
(D),

and in particular (since f2(0) = 0),

∥

∥

∥

f2
z

∥

∥

∥

A2
α
(D)

6
√
α+ 2‖f2‖A2

α
(D).

Again, if f(0) = f ′(0) = 0, we consider g(z) = f(z)/z2 to obtain

‖g‖A2
α
(D) 6

√
α+ 2‖zg‖A2

α
(D) 6 (α+ 2)‖z2g‖A2

α
(D).

This latter inequality implies that

∥

∥

∥

f3
z2

∥

∥

∥

A2
α
(D)

6 (α+ 2)‖f3‖A2
α
(D).

Now, it is clear that

max
{∥

∥

∥

f2
z

∥

∥

∥
,
∥

∥

∥

f3
z2

∥

∥

∥

}

6 (α+ 2)‖f‖,
from which the boundedness of T follows. �

Lemma 3.1. Let f be a function in A2
α(D) and let w1, . . . , wn be a finite sequence

of points in the open unit disk. Then the following are equivalent:

(a) f vanishes at the points w1, . . . , wn, counting multiplicities,

(b) f = qg, where g is in A2
α(D) and q is the polynomial of degree n whose zeros

are w1, . . . , wn and the highest order coefficient is 1.

P r o o f. Since (b) implies (a) trivially, it remains to obtain (b) from (a). It is

enough to do this for polynomials of degree one, by iteration and the well-known

factorization of polynomials. So, if f is in the Bergman space and f(w0) = 0 for

some w0 in the open unit disk, we claim that g(z) = f(z)/(z−w0) is in the Bergman

space. Clearly, g is holomorphic around w0, and moreover, |z − w0| > 1
2 (1 − |w0|)

for z in the annulus 1
2 (1+ |w0|) < |z| < 1. Then g is in A2

α(D) since it is holomorphic

in the unit disk and has the integrability property in the annulus (inside the disk

D(0, 1
2 (1 + |w0|)) the function is also integrable trivially). �

An important observation in the proof of the main result is to see that for λ 6= 0,

the subspace kerM∗

λ3−z3 of the weighted Bergman space is spanned by three Bergman

kernel functions associated to the roots of z3 − λ3 = 0. For k = 2, this was observed

by Kehe Zhu (see [12]) who used a direct method to find them; see also [3].

Proposition 3.2. Let w1, . . . , wn be simple zeros of a polynomial q andMq be the

operator of multiplication by q on A2
α(D). Then kerM∗

q is spanned by the Bergman

kernel functions {kw1
, . . . , kwn

}.
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P r o o f. Assume f ∈ kerM∗
q . Then for any h ∈ A2

α(D) we have 〈M∗
q f, h〉 = 0,

which is equivalent to saying that 〈f, qh〉 = 0. This means that

f ∈ kerM∗
q ⇐⇒ f ∈ (qA2

α)
⊥.

According to part (b) of Lemma 3.1,

N := qA2
α = {g ∈ A2

α : g(w1) = . . . = g(wn) = 0}.

This means that each function in N annihilates kw1
, . . . , kwn

, or

N⊥ = span{kw1
, . . . , kwn

}.

�

Theorem 3.1. Let T be a bounded operator on A2
α(D). Then T commutes

with Mzk if and only if there exist k bounded analytic functions ϕj , 1 6 j 6 k,

such that T can be written as

Tf = ϕ1f1 + ϕ2f2/z + . . .+ ϕkfk/z
k−1, f ∈ A2

α(D),

where f = f1 + . . .+ fk is the even-odd decomposition of f given by Theorem 2.1.

P r o o f. First assume that T is given by the above equality. According to

Proposition 3.1, T is bounded. On the other hand,

TMzkf = T (Mzk)(f1+ . . .+fk) = zkϕ1f1+zkϕ2f2/z+ . . .+zkϕkfk/z
k−1 = MzkTf,

that is, T commutes with Mzk . For the converse, assume that TMzk = MzkT , so

that TMλk−zk = Mλk−zkT . This implies that T ∗ commutes with M∗

λk−zk , from

which it follows that kerM∗

λk−zk is invariant under T
∗.

From now on, for simplicity, let k = 3 and let λ be a nonzero complex number.

Assume that ωk, k = 0, 1, 2, are three roots of the equation z3 = 1. It follows from

Proposition 3.2 that

kerM∗

λ3−z3 = span{kλ(z), kλω1
(z), kλω2

(z)}.

This means that for each f ∈ kerM∗

λ3−z3 there are functions a(λ), b(λ) and c(λ)

such that

f(z) = a(λ)kλ(z) + b(λ)kλω1
(z) + c(λ)kλω2

(z).
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Now, let λ 6= 0. We may write

T ∗kλ = a(λ)kλ + b(λ)kλω1
+ c(λ)kλω2

,

from which it follows that for each f ∈ A2
α(D) we have

Tf(z) = 〈Tf, kz〉 = 〈f, T ∗kz〉 = a(z)f(z) + b(z)f(ω1z) + c(z)f(ω2z).

Note that if f ∈ M1, then

f(ω1z) = f(ω2z) = f(z).

It is easy to check that if f ∈ M2, then

f(ω1z) =
∞
∑

n=0

(e2πi/3)3n+1z3n+1 = e2πi/3f(z)

and

f(ω2z) =

∞
∑

n=0

(e4πi/3)3n+1z3n+1 = e4πi/3f(z).

Moreover, for f ∈ M3 we have

f(ω1z) =

∞
∑

n=0

(e2πi/3)3n+2z3n+2 = e4πi/3f(z)

and

f(ω2z) =
∞
∑

n=0

(e4πi/3)3n+2z3n+2 = e2πi/3f(z).

Now, we assume that f = f1 + f2 + f3, where fj ∈ Mj, and write

Tf = T (f1) + T (f2) + T (f3) = [a(z) + b(z) + c(z)]f1(z)

+ [a(z) + ω1b(z) + ω2c(z)]f2(z) + [a(z) + ω2b(z) + ω1c(z)]f3(z).

We now define for z 6= 0,

F (z) = a(z) + b(z) + c(z),

G(z) = z[a(z) + ω1b(z) + ω2c(z)]

and finally

H(z) = z2[a(z) + ω2b(z) + ω1c(z)].
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This implies that

Tf = F (z)f1(z) +G(z)f2(z)/z +H(z)f3(z)/z
2.

Note that F = T (1), G = T (z) and H = T (z2), so that these functions are analytic

in D \ {0}. If we set F (0) = T (1)(0), G(0) = T (z)(0) and H(0) = T (z2)(0), they

become analytic on the whole unit disk. The last thing to be proved is the fact

that F , G, H are bounded. This will be proved in the following way. Consider the

following closed subspaces in the weighted Bergman space:

E = {f ∈ A2
α(D) : f(ω1z) = f(z)},

O1 = {f ∈ A2
α(D) : f(ω1z) = ω1f(z)},

O2 = {f ∈ A2
α(D) : f(ω1z) = ω2f(z)}.

Indeed, F , G and H are multipliers from subspaces E1, O1 and O2, respectively, into

the weighted Bergman space A2
α. For z ∈ D and h ∈ E we have

|F (z)ϕz(h)| = |F (z)h(z)| = |ϕz(Fh)| 6 ‖ϕz‖‖MF‖‖h‖,

where ϕz and MF are point evaluation functional and multiplication operator by F ,

respectively. Note that these are bounded operators. This implies that

|F (z)|‖ϕz‖ 6 ‖ϕz‖‖MF‖,

from which it follows that

sup
z∈D

|F (z)| 6 ‖MF‖.

Similarly, one proves that G and H belong to H∞(D). �

4. Multiplication operator on polydisk

For the sake of simplicity, we shall assume that n = 2, that is, we study the

polydisk A2
α(D

2). More precisely, we want to address the commutant of the operator

Mz3

1

: A2
α(D

2) → A2
α(D

2)

defined by

f(z1, z2) 7→ z31f(z1, z2).
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Keeping z2 fixed and invoking the arguments of the previous section for the one

variable function g(z1) = f(z1, z2), we will write

(4.1) f(z1, z2) = f0(z1, z2) + f1(z1, z2) + f2(z1, z2),

where f0 is even (with respect to z1) and f1, f2 are odd functions (with respect

to z1). Using the terminology of the previous section (with a little change in no-

tation), f0 ∈ E, f1 ∈ O1 and f2 ∈ O2. It is shown that a bounded operator T

on A2
α(D

2) commutes with Mz3

1

if and only if there are three bounded analytic func-

tions ϕ0, ϕ1, ϕ2 such that

Tf(z1, z2) = ϕ0(z1, z2)f0(z1, z2) + ϕ1(z1, z2)f1(z1, z2)/z1 + ϕ2(z1, z2)f2(z1, z2)/z
2
1 .

We begin with the following proposition.

Proposition 4.1. Let ϕ0, ϕ1 and ϕ2 be bounded analytic functions in the poly-

disk D2. Then the linear operator T : A2
α(D

2) → A2
α(D

2) defined by

Tf = ϕ0f0 + ϕ1f1/z1 + ϕ2f2/z
2
1 (f = f0 + f1 + f2)

is bounded.

P r o o f. Since ϕj ’s are bounded functions and ‖f0‖ 6 ‖f‖, it suffices to verify
that there is a positive constant C such that

max
{
∥

∥

∥

f1
z1

∥

∥

∥
,
∥

∥

∥

f2
z21

∥

∥

∥

}

6 C‖f‖.

Assume that f ∈ A2
α(D

2). For

f(z1, z2) =
∑

(n,m)∈N∗×N∗

an,mzn1 z
m
2 ,

where N∗ is the set of nonnegative integers, we have

‖f‖2A2
α
(D2) =

∞
∑

m,n=0

n! Γ(α+ 2)

Γ(n+ α+ 2)

m! Γ(α+ 2)

Γ(m+ α+ 2)
|am,n|2.

Similarly, we compute

‖z1f‖2A2
α
(D2) =

∞
∑

m,n=0

n! Γ(α+ 2)

Γ(n+ α+ 2)

(m+ 1)! Γ(α+ 2)

Γ(m+ α+ 3)
|am,n|2.
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Since α + 2 > 1, we have 1 +m/(α + 2) 6 m + 1 or α + 2 +m 6 (α + 2)(m + 1),

from which it follows that

Γ(α+m+ 3)

Γ(α+m+ 2)
6 (α+ 2)(m+ 1).

This is equivalent to

1

(α+ 2)Γ(α+m+ 2)
6

m+ 1

Γ(α+m+ 3)
.

Multiplying both sides by m! Γ(α+ 2)|am,n|2 we obtain

m! Γ(α+ 2)

(α+ 2)Γ(α+m+ 2)
|am,n|2 6

(m+ 1)! Γ(α+ 2)

Γ(α+m+ 3)
|am,n|2.

This implies that

‖f‖2A2
α
(D2) 6 (α + 2)‖z1f‖2A2

α
(D2).

Assume now that f(0, z2) = 0 and put

g(z1, z2) =
f(z1, z2)

z1
.

It follows from the above argument that

‖g‖A2
α
(D2) 6

√
α+ 2‖z1g‖A2

α
(D2),

and in particular,
∥

∥

∥

f1
z1

∥

∥

∥

A2
α
(D2)

6
√
α+ 2‖f1‖A2

α
(D2).

In the same way, by considering g(z1, z2) = f(z1, z2)/z
2
1 we obtain

‖g‖A2
α
(D) 6

√
α+ 2‖z1g‖A2

α
(D) 6 (α+ 2)‖z21g‖A2

α
(D).

This implies that
∥

∥

∥

f2
z21

∥

∥

∥

A2
α
(D)

6 (α+ 2)‖f2‖A2
α
(D),

and finally

max
{
∥

∥

∥

f1
z1

∥

∥

∥
,
∥

∥

∥

f2
z21

∥

∥

∥

}

6 (α+ 2)‖f‖,

from which the boundedness of T follows. �

Now, we state the mail result of this section.
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Theorem 4.1. Let T be a bounded operator on A2
α(D

2). Then T commutes

with Mz3

1

if and only if there exist three bounded analytic functions ϕj , 0 6 j 6 2,

such that

Tf = ϕ0f0 + ϕ1f1/z1 + ϕ2f2/z
2
1 ,

where f = f0 + f1 + f2 is the even-odd decomposition of f .

P r o o f. If f can be written in the form represented above, then T belongs to the

commutant of Mz3

1

; this follows from Proposition 3.1. To prove the other direction,

assume that f(z1, z2) is given. Keeping z2 fixed, we use the arguments made in

Section 2 to write

f(z1, z2) = f0(z1, z2) + f1(z1, z2) + f2(z1, z2),

where f1(z1, z2)/z1 and f2(z1, z2)/z
2
1 are analytic functions in D

2. Let λ be a nonzero

complex number. Assume that ωk for k = 0, 1, 2, are roots of z3 = 1. As in one

variable case, it follows from Proposition 3.2 that

kerM∗

λ3−z3

1

= span{kλ(z1), kλω1
(z1), kλω2

(z1)}.

It follows that every function f(z1, z2) in kerM∗

λ3−z3

1

can be written as

f(z1, z2) = a(λ, z2)kλ(z1) + b(λ, z2)kλω1
(z1) + c(λ, z2)kλω2

(z1).

Now, let λ 6= 0. We may write

T ∗kλ(·) = a(λ, z2)kλ(·) + b(λ, z2)kλω1
(·) + c(λ, z2)kλω2

(·),

from which it follows that for fixed z2 and z1 6= 0 and f(z1, z2) ∈ A2
α(D

2) we have

Tf(z1, z2) = 〈Tf(·, z2), kz1〉 = 〈f(·, z2), T ∗kz1〉
= 〈f(·, z2), a(z1, z2)kz1 + b(z1, z2)kω1z1 + c(z1, z2)kω2z1〉
= a(z1, z2)f(z1, z2) + b(z1, z2)f(ω1z1, z2) + c(z1, z2)f(ω2z1, z2).

This implies that

Tf(z1, z2) =











[a(z1, z2) + b(z1, z2) + c(z1, z2)]f(z1, z2) if f ∈ E,

[a(z1, z2) + ω1b(z1, z2) + ω2c(z1, z2)]f(z1, z2) if f ∈ O1,

[a(z1, z2) + ω2b(z1, z2) + ω1c(z1, z2)]f(z1, z2) if f ∈ O2.

Therefore, by setting (for z1 6= 0)

ϕ0(z1, z2) = a(z1, z2) + b(z1, z2) + c(z1, z2)
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and

ϕ1(z1, z2) = z1[a(z1, z2) + ω1b(z1, z2) + ω2c(z1, z2)]

and finally,

ϕ2(z1, z2) = z21 [a(z1, z2) + ω2b(z1, z2) + ω1c(z1, z2)],

we have

Tf(z1, z2) = T (f0(z1, z2) + f1(z1, z2) + f2(z1, z2))

= ϕ0(z1, z2)f0(z1, z2) + ϕ1(z1, z2)f1(z1, z2)/z1 + ϕ2(z1, z2)f2(z1, z2)/z
2
1 .

Note that ϕ0(z1, z2) = T (1) and ϕ1(z1, z2) = T (g), where g(z1, z2) = z1, ϕ2(z1, z2) =

T (h), where h(z1, z2) = z21 . Therefore ϕ0, ϕ1 and ϕ2 are analytic in D
2 \

{(0, z2) : z2 ∈ D}. Now, we define ϕ0(0, z2) = T (1)(0, z2) and ϕ1(0, z2) = T (g)(0, z2)

and finally ϕ2(0, z2) = T (h)(0, z2). Then ϕ0, ϕ1 and ϕ2 will be analytic on the whole

domain D
2.

The last step is to prove that ϕ0, ϕ1 and ϕ2 are bounded. To see this, we consider

the closed subspaces

E = {f ∈ A2
α(D

2) : f(ω1z1, z2) = f(z1, z2)},
O1 = {f ∈ A2

α(D
2) : f(ω1z1, z2) = ω1f(z1, z2)},

O2 = {f ∈ A2
α(D

2) : f(ω1z1, z2) = ω2f(z1, z2)}.

Note that ϕ0, ϕ1 and ϕ2 are multipliers from E, O1 and O2 into the Bergman

space A2
α(D

2), respectively. Let (z1, z2) ∈ D
2 and f ∈ E, then we have

|ϕ0(z1, z2)e(z1,z2)(f)| = |ϕ0(z1, z2)f(z1, z2)| = |e(z1,z2)(ϕ0f)| 6 ‖e(z1,z2)‖‖Mϕ0
‖‖f‖,

where e(z1,z2) is the evaluation functional at (z1, z2) and Mϕ0
is the multiplication

operator by ϕ0. Since both evaluation functional and multiplication operator are

bounded, by taking supremum over all functions f with ‖f‖ 6 1 we conclude that

|ϕ0(z1, z2)|‖e(z1,z2)‖ 6 ‖e(z1,z2)‖‖Mϕ0
‖,

from which it follows that

sup
(z1,z2)∈D2

|ϕ0(z1, z2)| 6 ‖Mϕ0
‖.

Similarly, one proves that ϕ1, ϕ2 are bounded functions on D
2. �
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