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Abstract. We study spaces of Holder type functions harmonic in the unit ball and half
space with some smoothness conditions up to the boundary. The first type is the Holder
type space of harmonic functions with prescribed modulus of continuity w = w(h) and the

second is the variable exponent harmonic Holder space with the continuity modulus |h|’\(').
We give a characterization of functions in these spaces in terms of the behavior of their
derivatives near the boundary.

Keywords: Holder space; harmonic function; variable exponent space; modulus of conti-
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1. INTRODUCTION

Studies of classical Lipschitz (Holder) spaces of holomorphic functions are well
known. We refer, for instance, to the books, see [20], [21] (see also [8], [9]). In the
present paper we study the spaces of Holder type functions harmonic in the unit
ball and in the half space with prescribed modulus of continuity and with variable
Hélder exponent. This research is a continuation of the results of the paper, see [16],
devoted to the study of Holder type spaces of holomorphic functions in the unit disc
and half plain.

The spaces of functions of such a type are generally referred to as nonstandard
growth spaces. The real analysis theory of nonstandard function spaces of measurable
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and smooth functions has been developed intensively during the last two decades. We
refer to the books, see [6], [7], [18], [19]. Studies of nonstandard spaces of holomor-
phic (harmonic) functions are in fact at the very beginning. We refer to the study of
variable exponent spaces of holomorphic functions, Orlicz-holomorphic spaces, and
Morrey-holomorphic spaces, including some their mixed norm versions, see [4], [5],
[10], [11], [12], [13], [14], [15], [17]. A major interest in such spaces is due to the fact
that in this way we include into consideration the spaces of functions with a general
and nonstandard behavior near the boundary. The behavior of a function in a vari-
able exponent Holder space when approaching the boundary depends on the bound-
ary point and is different, in general, when approaching different boundary points.

In the case of constant A and holomorphic functions considered on the ball in C™
such results are known as well as many other facts on Lipschitz (Holder) spaces,
see [20] (see also [21] for n = 2). We follow some ideas of the proofs there.

The paper is organized as follows. In Section 2 we collect definitions and auxiliary
statements. Sections 3 and 4 are devoted to the main results of the paper. In
Section 3 we provide characterization of the spaces of harmonic functions in the
ball B™ with prescribed modulus of continuity. This characterization is given in
terms of growth of gradient of a function near the boundary S™~! of the ball B". In
Section 4 we similarly treat the variable exponent space of harmonic Hélder functions
in the ball B™. In Section 5 we extend the results of Sections 3 and 4 to the case of
Holder type spaces of harmonic functions in the half space R'}.

2. PRELIMINARIES

A function w: [0,2] — R is called the modulus of continuity if
(1) w is continuous in a neighborhood of the origin and w(0) =0,
(2) w is almost increasing on [0, 2],

(3) w(h)/h is almost decreasing on [0, 2].

Note that from the assumption that w(h)/h is almost decreasing on [0, 2], the
semi-additivity property: w(t + s) < C(w(t) + w(s)), t,s € [0,2], and the so-called
doubling property: w(2t) < Cpyw(t), t € [0,2], follow. Here we assume w(h) = w(2)
for h > 2 by definition.

In what follows we use the following Zygmund type conditions:

t
(2.1) /ﬁdsé&u(t), 0<t<2,
0 S
2
(2.2) /ws—;)dsgC#, 0<t<2,
t

where C' does not depend on ¢.
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Let B" := {z € R™: |z| < 1} be the unit ball in R™, where |-| is the Euclidean
norm, S”~! be the unit sphere in R”, and R? := {z = (z1,...,z,) € R": z, > 0}.
Put S = (0,...,0,—1). For the particular case n = 2 we also use the more convenient
notation: D and T, respectively.

Let A\: B™ — [0,1] be a continuous function. We say that A satisfies the log-
condition (log-Hélder condition) on B™ if

C 1
2.3 Alx) — A < ——F—— e B” -yl < =
(23) M@) =MW < e BV vl < g
where C' does not depend on z,y € B™.
Note that the log-condition imposed on the function A implies that it is bounded
and uniformly continuous on B™. Hence, it extends to a continuous function on
B" := {z € R™: |z| < 1}. We use the same notation \ for the so extended function.

The log-condition also implies the property:
CiRM*) < RMY) < 0y RM®)

for all 2,y € B™ such that |« — y| < R, where C, Cs do not depend on z, y.
Let A: R — [0,1] be a continuous function and let
[z —yl

)= ———"—  xycRT.
@y =g =8 “YERE

We say that X satisfies the global log-condition on R} if

C
(2.4) M) = Ay)] < m7

where C' does not depend on x, y.

We use a Funk-Hecke type formula (see [1], [3]). Let z = &1e1 + ... + &nen
in B™ where e1,...,e, is a base in R™, then & = cos¢y; &2 = cos¢gasing;...;
En_o = COSp_osingy sings ...sing,_3; &1 = sinfsingy sings .. .sing,_o; &, =
cos 0 sin ¢ sin ¢s . . . sin ¢,,_o; where ¢; is the angle between x and e;, 0 < ¢; < 7,
j=1,....n—2and 0 < 6 < 27

If f(z) is a continuous real-valued function defined in B™ which may be written in

?

N =

z,y € RY, az,y) <

the form
f(glv"'agn) :g(algl ++an£n; £%++£721)a
where the constants «; are independent of &1,...,&,, then
(2.5) [ t@ae) = [ sla-wlaf)aot
op(n-1)/2 = o
= W/ g(lal cos @1,1)sin™ 2 ¢y dgy,
- 0
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where a = (aq,...,a,) € R™, “” denotes the scalar product in R™, and o is the
surface measure on S" 1,
We use the conformal transformation that maps the unit ball B"™ onto the half
space R’'. The continuous map
itz 40,00,
|z
r— ", wherez” = ¢ if & = oo,
0 ifx =0,

is called the inversion of R™ U {co} relative to the unit sphere. Here 0 denotes the
origin in R™. This inversion is conformal on R™ \ {0}. It maps spheres containing 0
onto hyperplanes and the interiors of such spheres onto open half-spaces.
Let N =(0,...,0,1) and S = (0,...,0,—1). Consider ®: R™ — R™ given by
O(x)=2(x—-95)"+ 5.
Some properties of ® are (see [2], Proposition 7.18):
(1) ®(P(x)) = for all x € R™ U {00},
(2) @ is conformal one-to-one map of R™ \ {S} onto R™ \ {S},
(3) ® maps B" onto R} and R’} onto B" whereas ®(S) = oo, ®(N) = 0.
The modified Kelvin transform X that maps harmonic functions on B™ to harmonic
functions on R’} and vice versa is a linear transform defined as:

Kf(a) =202 — SP7" f(@()).

See [2], Proposition 7.19 for details.

3. GENERALIZED HOLDER SPACES OF HARMONIC FUNCTIONS IN THE
UNIT BALL B™ WITH PRESCRIBED MODULUS OF CONTINUITY

Let w: [0,2] — R4 be a modulus of continuity. Here we consider the spaces
A“(B™) and B¥(B™) of complex-valued harmonic functions in B".
By A“(B™) we denote the space of functions harmonic in B" such that

[f (@) = f(y)] < Cw(lz —yl), zyeB",

where C' does not depend on z,y. The semi-norm and norm of a function f € A¥(B")
are given by

[f(z) = f(y)l

Ilfll4, 44 @) = sup o) and || fllaw(sn) = | fllg,a0@n) + [ fllze@n),

z,yeBn (U(|.13 -

respectively.
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Since w is a modulus of continuity, it follows that any f € A“(B") is continuous
in Bn. This implies that

[f(u) = f(0)] < Cwllu—nl), u,veS"

where C' does not depend on u, v.
By B¥(B") we denote the space of functions harmonic in B™ such that

w(l — |z)

< ) [Bn7
Vi@l < o= v
where C' does not depend on x and

_(9f of

The semi-norm and norm of a function f € B¥(B™) are given by

1 — |z
Ilfll,Be @) = sup |Vf($)|ma Il fll B @ny = 1 fll,Bo@n) + | fllLoo(Br)-

Our first result provides the relation between spaces A¥(B") and B“(B™). The
symbol — is used for the continuous inclusion between spaces. Recall that the
Poisson kernel for the unit ball B” is given by

I'(n/2)1—|z|?

P(z,t) = pRyr

reB" teS"

see, e.g., formula 1.15 of Chapter 1 in [2].

Theorem 3.1. The following statements are true.
(1) Let w satisfy the condition (2.2), then A*(B") — B“(B") and || f|4, &) <
C|| fll4, 48", where C' does not depend on f.
(2) Let w satisfy the condition (2.1), then B*(B") — A“(B") and || f|| 4, a«@Bn) <
C||fll4,B« @), where C does not depend on f.

Proof. Let us prove the first statement. Let f € A“(B") and w satisfy (2.2).
By the Poisson integral representation we obtain

6D @)= [ Penfown =557 [ 0, ace

n—1 |J? — t|n
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Now, if ¢ = (z1,...,z,) and t = (¢1,...,t,), it is easy to see that

OP(z,t)  T(n/2) =2zt —x|* +n(l — |z}t — 2" 2(t; — ;) .
= , 1=1,...,n.
oz; 2nn/2 [t — x|2n

For t € S" ! and x € B", we get 1 — |z| < |t — 2| and |t; — ;] < |t — 2|, hence

OP(z,t) I'(n/2)2(1+n)
. < ) =4
(82) ‘ x; ‘ 2nn/2 |z —tn r=1

., n.
Since [, P(x,t)do(t) = 1, we have

OP(x,t) B o
/Sn_l e do() =0, i=1...n

Hence, from (3.1) we obtain

(3.3)

ww‘émammkmwﬂwmmxi—uwm

83% 8$i
where 2/ = z/|z| € S"~!. Thus, by (3.2)

TRt

sn—1 |t — J)ln

(3-4) Vi) <C o(t)

w(|t —2'))
<C w(Bn ————=do(t),
Wl [ S dot)
where C, C7 do not depend on f.
Split S"~! = Dy, U Ejy|, where Ej; = {t € S"7': |t — 2| > 1 — |z[} and
Dy :=={teS"': |t—a'| <1—|z[}. Since w is almost increasing on [0, 2] we obtain

/ w(|t — J’JD dO’(t) < Cw(l _ |J)|)/ dO’(t) — Clw(l — |J)|) < Clw(l — |$|)

sn1 [t —x|? 1—|x|? 1—|z|

Further, since |t — 2'|/|t — x| <2 (t € S"" !,z € B") and due to the Funk-Hecke type
formula (2.5) we have

ot =)\ o [ @l
/ 6=l d(“<2(ém iz 470

_ ontlgn—1)/2 / w(v/2 —2cos 1)
- D((n=1)/2) J,,, (V2=2cos )"

Ed

sin" "% ¢1 ¢,

680



where ¢|,| = 2arcsin((1 — |z[)/2) and [p|,), 7] C [0,7]. If 0 = /2 —2cos ¢y, we see
that o € (1 — |z|,2] and pdo = sin ¢; d¢p;. Note also that o*/4 = ¢*> — sin® ¢;, hence
sin? o1 < ¢%. Then by (2.2)

w(lt — ') grrtig(n=)/2 / w(0) w(1 — |a])
— do(t) L ————— ——do < C———~.
[E o YOSTm o L, e ST

||

Finally, by (3.4) and the above estimates we arrive at

w(l — |z)

1— ||

(3.5) IVf ()] < C| f[l 4,44 @m)

)

where C' does not depend on f. This proves the first statement.
Let us prove the second statement. Let f € B“(B") and w satisfy (2.1). Without
loss of generality we assume that |z| < |y| (z,y € B"). Put

T=—le—yha', 7=>0-lc—yly, Wher”/:ﬁ, y'zl_yl'
z y

It is clear that Z,7 € B™. Let h(s) =z — s(z — y), 0 < s < 1, be the line segment
between x and y. We have

6) 170~ 1l < e [ 29D as <oyl 195060+ (- 9las

w(l — Jos + (1= s)y)
= Jos+ (1= s)y|

< 20z — gl flle.poem) /

Now we split the rest of the proof into three cases.
The first case: |y| + | — y| < 1. Since w(t)/t is almost decreasing, using inequal-
ity (3.6) and Zygmund type condition (2.1) we obtain

) - 1)
< Cle =yl oo |

(e =yl =y /(z —yl = 9))
lz = yl(L = |y))/(lz —y| = s)
! —yl(1 - |2~y
<l [ XM= D 0 e [ au

u

< Colfllg, Bo@mw(lz — yl),

where C, C1, and C5 do not depend on f.
For the second case, where 1 — |y| < |z — y| < 1 — |x|, we have that

|f (@) = f)l < f (@) = F@)I +1f@) = FW)l.
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Since |z — 7| < |x — y|, the first term on the right-hand side above can be estimated
as in the first case, while the second term in view of (3.6) is estimated as

Pw(l— Jys+ (1 - s)7))
1—lys+ (1 —s)yl

F@) — FW)] < 207 — vl Fl g poon) /

Lw(l = (Jyls + (1 = s)(1 = [z — y])))
<Cly- (e ‘
=sllSlssom | T )
[yl w(l—u ‘x_y‘w_m
< C||f||¢,ﬁ7]3w([gn)/1 | | %du = CHfH#Bw(Bﬂ)/l ¥ (x ) dz
—|z—y -

| w(x)

|lz—y
< Ol fllg, BBy / dz < Cil|fll4,Bo@mw(lz —yl),
0
where we again used that w(¢)/t is almost decreasing and applied Zygmund type
condition (2.1). Here C, C; do not depend on f.
Finally, consider the last (third) case 1 — |z| < |z — y|. In this case we have
T -y <[z —y| and

[f(@) = F)l < (@) = F@)| + [f@) = @I+ () = f@)]-

The first and third terms on the right-hand side above can be estimated straightfor-
wardly like in the second case, while the second term is estimated like in the first
case. Thus the proof is completed. ([

Corollary 3.1. If w satisfies the conditions (2.1) and (2.2), then the spaces
B¥(B™) and A¥(B™) coincide up to the equivalence of norms.

Theorem 3.2. Let w satisfy the conditions (2.1) and (2.2). Let f be harmonic
in B™. Then f € A¥(B") if and only if
(1) f is continuous in B,
(2) |f(1) = f(o)] < Cw(|r —a|), 7,0 € S*"1, where C is independent of T, o.

Proof. Obviously, f € AY(B™) implies the conditions (1) and (2). To prove
the inverse implication we use the formula (3.4) and the arguments given after this
formula to show that the conditions (1), (2) imply that f € B¥(B"), and then apply
Corollary 3.1. O

We conclude this section with the particular case n = 2. It is convenient to iden-
tify R? with C and use complex variables z, w as elements of D.
By A%(D) we denote the space of functions harmonic in D such that

[f(2) = f(w)] < Cw(]l —2w]), zweD,
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where C' does not depend on z, w. Since w is a modulus of continuity, it follows
that any f € A%¥(D) is continuous in D. The semi-norm and norm of a function
f € AY(D) are given by

1f(2) = f(w)]
||f||#,A;u([D) = sug@ ma ”f”Af([D) = ||f||#,Agg([D) + ||f||L°°([D)~

Theorem 3.3. Let w satisfy the conditions (2.1) and (2.2). Let f be harmonic
in D. Then A% (D) and A% (D) coincide up to the equivalence of norms.

Proof. Indeed, let f € A¥(D). Since

zZ—w

. ~
1—zw

and w is almost increasing we get that w(|z — w|) < Cw(|1 — 2W|), hence f € AY(D).
On the other hand, since f is continuous in D and f € A%(D), one can see that
lf(7) — f(o)| < Cw(|]1 —o07|) = Cw(|T — d|), 7,0 € T, hence, the desired statement
follows by Theorem 3.2. O

4. VARIABLE EXPONENT GENERALIZED HOLDER SPACES AN (B)
OF HARMONIC FUNCTIONS IN THE UNIT BALL B"

Let A: B™ — [0,1] be a continuous function satisfying the log-condition (2.3)
in B"”. By A*")(B") we denote the space of functions f harmonic in B” such that

[f(x) = f(y)| < Cle =y Va,y € B,
or, which is the same,
[f(x) = f(y)| < Cla —y|*® Va,y € B",

where C' does not depend on x,y € B". The semi-norm and norm of a function
f € AXO)(B") are given by

Jpn) = SU
111,450 @m) Lye%n |z — y|A@

v M llaro @y = 1 lw,ax0 @) + 1 fll Lo @n)-
By B ")(B") we denote the space of functions f harmonic in B" such that

IVf(@)] <O~ e)M1, z e B,
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where C' does not depend on . The semi-norm and norm of a function f € B ) (B")
are given by

11l 530 ey = sup VS (@)I(1L = al)' =X,

I £l Brxer@ny = 1L, B3> @y + [ f | oo (Bn)-

Theorem 4.1. Let A satisfy the log-condition (2.3). The following statements
hold.

(1) If sup \(z) < 1, then AN)(B") — B )(B") and
;CEB’IL

Il Bx00@ny < Cllfllg, a0 @y

where C does not depend on f.
(2) If inf A(x) >0, then B)(B") — AM)(B"™) and
z€Bn

1l 230 @) < Cllfll g, BxO @Y

where C does not depend on f.

Proof. The proof is similar to the proof of Theorem 3.1 with some changes. We
provide the sketch of the proof. We have

|t o x/|)\(z’)
|t — x|

C ¢ = 2| d B
g . n I _ n t ’ E n’
Il 400 >/§n,1 |t — | 70

@y V@Il lpaown [ do(t)

and splitting S~ ! = E\; U D)y, we obtain

— /M=) — A=)
/ |t T | dU(t) < C(]- |£L'|) < C(]. . |£L_|))\(z)717
D

L t=alm 1—|zf?
[t — ' |M®) n do(t) 92ntlp(n-1)/2 (2 do
— i do(t) <2 @ S T((n — 2—A(z)
B, It—| B [t —2] (n—=1)/2) Ji_jq 0
(1 — Ja)A=—1

< _ )\(x)fl.
<L e

Here we have used that sup A(x) < 1. The first statement is proved.
zeB™
To prove the second statement, similarly to (3.6) we arrive at

(42)  |f@) - ) <2e -y / IV f(sz+ (1— s)y)|ds

1
<20z =yl Fllg, 2o @) /0 (1 —fos + (1= s)y )N~ ds.
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Here again we have to deal with three cases. In the first case |y| + |z — y| < 1, by
using (4.2) we obtain

1
If(z) = f(W)] < 2] = ylll fll 4,20 @m) /0 (|Jz = yl(1 — $)*®) "1 ds
|(E _y|)\(x) 2 T
= 2HfH#’BM')(Bn)Tx) < /\—OHfH#,BM->(Bn)|$ -y,

where Ao = ian A(z) > 0. Now, in the second case, 1 — |y| < |z —y| < 1 — |z|, we
zeBm™

have
|f(@) = f) < [f(x) = F@I+ 1f@) — fW)l.

Since |z — §| < |z — y|, the first term on the right-hand side above is covered by the
first case, while the second term is estimated by the use of (4.2),

1
[yl \ X
<20l fll 0 (o) / (1 — ) @1 gy

1—-|z—y|

z -y

lz—yl )
<2 f Lo / A1t < gm0
0

Finally, the last (third) case, where 1 — |z| < |z — y|, follows by the same arguments
as those in Theorem 3.1. (]

Corollary 4.1. Let \ satisfy the log-condition (2.3) and

(4.3) 0< inf Az) < sup A(z) <1,
zeBr zeBr

then the spaces B*()(B™) and A*()(B") coincide up to the equivalence of norms.

Theorem 4.2. Let ) satisfy the log-condition (2.3) and the condition (4.3). Let f
be harmonic in B". Then f € A*")(B") if and only if
(1) f is continuous in B",
(2) |f(r) = f(o)| < Clr — oM7), 7,0 € S*~!, where C is independent of T, o.

Proof. It is clear that if f € A*)(B") , then the conditions (1) and (2) are
satisfied. Now, the condition (2) yields the inequality (4.1), hence f € B*")(B).
By Corollary 4.1 we obtain that f € AN (B"). O
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Finally, consider the particular case n = 2. It is convenient to identify R? with C
and use complex variables z, w as elements of D.
By Ai(')(D) we denote the space of functions f harmonic in D such that

1£(2) = f(w)| < C|1 — z@w*® Yz weD,
or, which is the same,
() = Fw)| < O — 20 ¥zweD,

where C' does not depend on z, w. Obviously, any f € A¥(D) is continuous in D.
The semi-norm and norm of a function f € Ai‘(')(D) are given by

|f(z) = fw)]
11l 4 420y = ;EEDW7 Il axer oy = Il 420 0y + 1l Lo (@)-

Theorem 4.3. Let \ satisfy the log-condition (2.3) and

0 < inf AM(z) <supA(z) < 1.
zeD zeD

Let f be harmonic in D. Then A*")(D) and Ai(')(ID) coincide up to the equivalence

of norms.

Proof. The proof is similar to the proof of Theorem 3.3. U

5. HOLDER TYPE SPACES OF HARMONIC FUNCTIONS ON THE HALF SPACE [Ri

5.1. Generalized Hoélder spaces of harmonic functions on the half spa-
ce R} with prescribed modulus of continuity. Let w: [0,2] — R be a modulus
of continuity. Put

H(x) = |z - S|"7? =2""%|®(z) - S, =z €RY,

where ® is the conformal transformation defined in Section 2 and S = (0,...,0,—1).
Here we consider the spaces A“(R") and B“(R") of complex-valued harmonic
functions in R” with the weight H.
By A“(R") we denote the space of functions harmonic in R’} such that

|H () f(z) — H(y) f(y)| < Cwlal(z,y))
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for all x,y € R’} , where C' does not depend on x, y. The semi-norm and norm of
a function f € A“(R’) are given by

fllieaw@ny = sup
H H#a (R%}) ,yeR™ w(()é(l',y))

and
£l aw@r) = [1f 4,40 rn) + [ fllLoogr),

respectively. Since w is a modulus of continuity, it follows that any f € A“(R") is
continuous in M This implies that

[H (u)f(u) = H(v) f(v)] < Cw(a(u,v))

for all u,v € R"™1 x {0}, where C does not depend on u, v.
By B“(R"}) we denote the space of functions harmonic in R’} such that

|V(H(x)f(x))| < %w<|a:f7n3|2)’ r € RY,

where C' does not depend on z and z,, is the nth component of x. The semi-norm
and norm of a function f € B(R" ) are given by

T
.y = s (9010 )

£l 5oy = 1 fll, B rn) + 11 fllLoorry)-

Theorem 5.1. The following statements are true.
(1) Let w satisfy the condition (2.2), then A®(R%) — B“(RY}) and || f|| 4 pe®n) <
CHfH#’Aw([Ri), where C' does not depend on f.
(2) Let w satisfy the condition (2.1), then B*(R'}) — A“(RY) and || f |4, 4« ®y) <
C||f||#’Bw(R’i)7 where C' does not depend on f.

Proof. The proof is based on Theorem 3.1. A function f belongs to A“(R") if
and only if Kf belongs to A¥(B™) with the equivalence of the corresponding semi-
norms. To verify the above said we take into account the properties (1) and (3) of
the function @, the following equation, which can be checked directly,

(5.1) (@ =)y = S = (y = 8)|z = S| = |z — Sy — S|z — y|
valid for any x,y € B" or x,y € R’} , and the doubling property of w.
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A similar relation can be proved for the functions in spaces B“(R"') and B (B").
Indeed, suppose that f = Kg and g € B(B"). Let z € R,y = ®(x) € B", and V,®
stand for the matrix whose ith row is V,®;. Each component of V,®(z) is estimated
by C/|x — S|? with some absolute C' > 0. We obtain

IVa(H (2) f(2))] = 20722V, 9(@(2))] < 2722V, 9(y)ly=a() Vo b (2)]
|

Wl —jo@) 1 w(l— [e@)?) 1
< <
SO o) w_SE ST [e@P = 5P
1 4z, 1 Tn
— () <Oy —w —2 ).
14xnw(|x—S|2) = Canw(|x—S|2)

Here we used the facts that w is almost increasing on [0,2] and 1 + |®(z)| < 2 for
any v € R”}.
Suppose that f = Kg and g € BY(R"). We have for x € B", y = ®(x) € R :
Vaf (@) = [VaKg(2)] = 20722V |z — 127 g(2(x))]
= 2022V, H(D(2))g(®(2))] = |Vy H (1)9(9)ly=a() V2 P(2)]
C 1 (2(xn+1)/|x—5|2—1)

<
= |a:—S|22(xn+1)/|a:—S|2—1w |D(x) — S|?
(L [e2)/4) _ . w(l — |a]
f— <
e

O

Corollary 5.1. If w satisfies the conditions (2.1) and (2.2), then the spaces
B“(R%) and A“(R") coincide up to the equivalence of norms.

5.2. Variable exponent generalized Hélder spaces A)‘(')([Rﬁ) of harmonic
functions on the half space R’. Let A\: R}? — [0,1] satisfy the global log-
condition (2.4).

By A/\(')(Ri) we denote the space of functions f harmonic in R’} such that

|H(2)f(x) = H(y)f(y)] < Calz,y)™ Va,y e RY,
or, which is the same,
|H(2)f(2) = H(y) f(y)] < Cala,y)*¥ Va,y e RY,

where C does not depend on x, y. The semi-norm and norm of a function f €
AMO(R™) are given by

H(x)f(x) = H(y)f
|fWAmmw:%ﬁ%l(ma2wwj)@ﬂ
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and
[fllaror @y = 1F g, axer@y) + 1 oo @)
By B)‘(')([R’j_) we denote the space of functions f harmonic in B™ such that
C T
V(H < _(7”
| ( (x)f(x))| |z — 52

A(zx) R
Y 6 i Y
o (posp) R

where C does not depend on x. The semi-norm and norm of a function f € B ") (R™)
are given by

B |z — S|2\ @)
3o = sup [VH@ @l (F=)

and

||f||BM-)(u;e1) = ||f||#,BA(->([R1) + HfHLx(Riy

Theorem 5.2. Let A satisfy the log-condition (2.4). The following statements
hold.
(1) If sup \(z) < 1, then AN)(R?) — B*)(R7) and

z€RY

”.f”#,B)\(‘)([Rj_) < C||f||#,AA<»)(R1),

where C' does not depend on f.
(2) If inf AMz) > 0, then B (R%) — AM)(R?) and
z€RY

£, 400 @7y < Cllf g, prer @)

where C does not depend on f.

Proof. The proof is similar to the proof of Theorem 5.1 and is based on Theo-
rem 4.1. We note that A satisfies the log-condition (2.4) on R’} if and only if Ao ®
satisfies the log-condition (2.3) on B". O

Corollary 5.2. Let \ satisfy the log-condition (2.4) and

0 < inf Ax) < sup A(z) < 1.
T€RTY zE€RY

Then the spaces BM)(R"%) and A*")(R™) coincide up to the equivalence of norms.
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