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Abstract. Let T be a weak torsion class of left R-modules and n a positive integer. A left
R-module M is called (T , n)-injective if ExtnR(C,M) = 0 for each (T , n+ 1)-presented left

R-module C; a right R-moduleM is called (T , n)-flat if TorRn (M,C) = 0 for each (T , n+1)-
presented left R-module C; a left R-moduleM is called (T , n)-projective if ExtnR(M,N) = 0
for each (T , n)-injective left R-module N ; the ring R is called strongly (T , n)-coherent if
whenever 0→ K → P → C → 0 is exact, where C is (T , n+ 1)-presented and P is finitely
generated projective, then K is (T , n)-projective; the ring R is called (T , n)-semihereditary
if whenever 0 → K → P → C → 0 is exact, where C is (T , n + 1)-presented and P is
finitely generated projective, then pd(K) 6 n− 1. Using the concepts of (T , n)-injectivity
and (T , n)-flatness of modules, we present some characterizations of strongly (T , n)-coherent
rings, (T , n)-semihereditary rings and (T , n)-regular rings.
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1. Introduction

Throughout this paper, R is an associative ring with identity and all modules

considered are unitary, n is a positive integer. The symbol R-Mod denotes the

class of all left R-modules. For any R-module M , M+ = Hom(M,Q/Z) will be the

character module of M . Given a class L of R-modules, we will denote by L⊥ =

{M : Ext1R(L,M) = 0, L ∈ L} the right orthogonal class of L, and by ⊥L = {M :

Ext1R(M,L) = 0, L ∈ L} the left orthogonal class of L.
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Recall that a left R-module M is FP-injective (see [7], [11]) or absolutely pure

(see [10]) if Ext1R(A,M) = 0 for every finitely presented left R-module A; a right

R-module M is flat if TorR1 (M,A) = 0 for every finitely presented left R-module A;

a ring R is left coherent (see [1]) if every finitely generated left ideal of R is

finitely presented, or equivalently, if every finitely generated submodule of a projec-

tive left R-module is finitely presented, if every finitely presented left R-module is

2-presented; a ring R is left semihereditary if every finitely generated left ideal of R is

projective, or equivalently, if every finitely generated submodule of a projective left

R-module is projective. FP-injective modules, flat modules, coherent rings, semi-

hereditary rings and their generalizations have been studied extensively by many

authors. For example, in 1994, Costa introduced the concept of left n-coherent

rings in [4]. Following [4], a ring R is called left n-coherent if every n-presented left

R-module is (n+1)-presented, where a left R-module A is called n-presented if there

exists an exact sequence of left R-modules Fn → Fn−1 → . . . → F1 → F0 → M → 0

in which every Fi is finitely generated free.

In 1996, Chen and Ding introduced the concepts of n-FP-injective modules and

n-flat modules in [3]. Following [3], a left R-module M is called n-FP-injective

if ExtnR(A,M) = 0 for every n-presented left R-module A, a right R-module M

is called n-flat if TorRn (M,A) = 0 for every n-presented left R-module A. Using

the two concepts, they characterized n-coherent rings. In 2015, we introduced the

concepts of weakly n-FP-injective modules and weakly n-flat modules in [15]. Fol-

lowing [15], a left R-module M is called weakly n-FP-injective if ExtnR(A,M) = 0

for every (n + 1)-presented left R-module A, a right R-module M is called weakly

n-flat if TorRn (M,A) = 0 for every (n+1)-presented left R-module A. Using the two

concepts, we characterized n-coherent rings in [15], Theorem 2.19. We shall denote

by (FP)nI (orW(FP)nI) the class of all n-FP-injective (or weakly n-FP-injective)

left R-modules, and denote by Fn (or WFn) the class of all n-flat (or weakly n-flat)

right R-modules.

We recall: A subclass T of left R-modules is called a weak torsion class (see [16])

if it is closed under homomorphic images and extensions. Let T be a weak tor-

sion class of left R-modules and n a positive integer. Then a left R-module M is

called T -finitely generated if there exists a finitely generated submodule N such that

M/N ∈ T ; a left R-module A is called (T , n)-presented if there exists an exact se-

quence of left R-modules 0 → Kn−1 → Fn−1 → . . . → F1 → F0 → M → 0 such that

F0, . . . , Fn−1 are finitely generated free and Kn−1 is T -finitely generated. In [16],

we extended the concepts of n-FP-injective modules and weakly n-FP-injective

modules to (T , n)-injective modules. According to [16] a left R-module M is called

(T , n)-injective if ExtnR(C,M) = 0 for each (T , n + 1)-presented left R-module C

and we extended the concepts of n-flat modules and weakly n-flat modules to
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(T , n)-flat modules. According to [16], a right R-module M is called (T , n)-flat if

TorRn (M,C) = 0 for each (T , n+1)-presented left R-module C; and we extended the

concepts of n-coherent rings to (T , n)-coherent rings. According to [16], a ring R is

called (T , n)-coherent if every (T , n+ 1)-presented module is (n+ 1)-presented. By

using the concepts of (T , n)-injective modules and (T , n)-flat modules, we charac-

terized (T , n)-coherent rings.

In this paper, we shall introduce the concepts of strongly (T , n)-coherent rings,

(T , n)-semihereditary rings and (T , n)-regular rings. Using the concepts of (T , n)-

injectivity and (T , n)-flatness of modules, we shall give a series of characterizations

and properties of strongly (T , n)-coherent rings, (T , n)-semihereditary rings and

(T , n)-regular rings.

2. Strongly (T , n)-coherent rings

Definition 2.1. Let T be a weak torsion class of left R-modules and n a positive

integer. A left R-module M is called (T , n)-projective if ExtnR(M,N) = 0 for each

(T , n)-injective left R-module N .

We shall denote by TnI (or TnP) the class of all (T , n)-injective (or (T , n)-

projective) left R-modules, and by TnF the class of all (T , n)-flat right R-modules.

Definition 2.2. Let T be a weak torsion class of left R-modules and n a positive

integer. Then ring R is called strongly (T , n)-coherent if whenever 0 → K → P →

C → 0 is exact, where C is (T , n+1)-presented and P is finitely generated projective,

then K is (T , n)-projective.

Let F be a class of R-modules and M an R-module. Following [5], we say that

a homomorphism ϕ : M → F , where F ∈ F , is an F-preenvelope of M if for any

morphism f : M → F ′ with F ′ ∈ F there is a g : F → F ′ such that gϕ = f .

An F -preenvelope ϕ : M → F is said to be an F-envelope if every endomorphism

g : F → F such that gϕ = ϕ is an isomorphism. Dually, we have the definitions of

an F-precover and an F-cover. F -envelopes (F -covers) may not exist in general,

but if they exist, they are unique up to isomorphism.

A pair (A,B) of classes of R-modules is called a cotorsion theory (see [5]) if

A⊥ = B and ⊥B = A. A cotorsion theory (A,B) is called perfect (see [6]) if every

R-module has a B-envelope and an A-cover. A cotorsion theory (A,B) is called

complete (see [5], Definition 7.1.6 and [12], Lemma 1.13) if for any R-module M

there are exact sequences 0 → M → B → A → 0 with A ∈ A and B ∈ B, and

0 → B′ → A′ → M → 0 with A′ ∈ A and B′ ∈ B. A cotorsion theory (A,B) is called

hereditary (see [6], Definition 1.1) if whenever 0 → A′ → A → A′′ → 0 is exact with
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A,A′′ ∈ A, then A′ is also in A. By [6], Proposition 1.2, a cotorsion theory (A,B) is

hereditary if and only if whenever 0 → B′ → B → B′′ → 0 is exact with B′, B ∈ B,

then B′′ is also in B.

Theorem 2.3. The following statements are equivalent for the ring R:

(1) R is strongly (T , n)-coherent.

(2) (⊥(TnI), TnI) is a hereditary cotorsion theory.

(3) R is (T , n)-coherent and (TnF , (TnF)⊥) is a hereditary cotorsion theory.

(4) ExtiR(C,M) = 0 for any i > n, any (T , n + 1)-presented module C and any

(T , n)-injective left R-module M .

(5) Extn+1

R (C,M) = 0 for any (T , n + 1)-presented module C and any (T , n)-

injective left R-module M .

(6) R is (T , n)-coherent and TorRi (N,C) = 0 for any i > n, any (T , n+1)-presented

module C and any (T , n)-flat right R-module N .

(7) R is (T , n)-coherent and TorRn+1(N,C) = 0 for any (T , n + 1)-presented mod-

ule C and any (T , n)-flat right R-module N .

(8) If N is a (T , n)-injective left R-module and N1 is a (T , n)-injective submodule

of N , then N/N1 is (T , n)-injective.

(9) For any (T , n)-injective left R-module N , E(N)/N is (T , n)-injective.

P r o o f. (2) ⇒ (3). IfM is a (T , n)-injective left R-module,M1 is an FP-injective

submodule ofM , thenM1 is (T , n)-injective, and soM/M1 is (T , n)-injective by [6],

Proposition 1.2 since (⊥(TnI), TnI) is a hereditary cotorsion theory. Thus, R is

(T , n)-coherent by [16], Theorem 5.6. Moreover, by [16], Theorem 4.11, state-

ment (2), (TnF , (TnF)⊥) is a cotorsion theory. Now let 0 → A′ → A → A′′ → 0

be an exact sequence of right R-modules with A,A′′ ∈ TnF . Then we get an exact

sequence of left R-modules 0 → (A′′)+ → A+ → (A′)+ → 0. Since A+ and (A′′)+

are (T , n)-injective by [16], Theorem 4.8, (A′)+ is also (T , n)-injective by (2), and

hence A′ is (T , n)-flat. Therefore (TnF , (TnF)⊥) is a hereditary cotorsion theory.

(3) ⇒ (2). Let 0 → A′ → A → A′′ → 0 be an exact sequence of left R-modules

with A, A′ (T , n)-injective. Then we get an exact sequence of right R-modules

0 → (A′′)+ → A+ → (A′)+ → 0. Since R is (T , n)-coherent, A+ and (A′)+ are

(T , n)-flat by [16], Theorem 5.3, statement (8), and hence (A′′)+ is also (T , n)-flat

as (TnF , (TnF)⊥) is hereditary. And so, A′′ is (T , n)-injective by [16], Theorem 5.3,

statement (8) again, and (2) follows.

(2) ⇒ (4). Let C be a (T , n + 1)-presented left R-module with a finite

n-presentation Fn
dn−→ Fn−1

dn−1

−→ . . . −→ F2

d2−→ F1

d1−→ F0

d0−→ C −→ 0.

Write Kn−2 = Ker(dn−2). Then Kn−2 ∈⊥ (TnI), and so, for any i > n and any
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(T , n)-injective left R-module M , we have ExtiR(C,M) ∼= Exti−n+1

R (Kn−2,M) = 0

by [6], Proposition 1.2.

(4) ⇒ (5) and (6) ⇒ (7) are obvious.

(5) ⇒ (2). Let 0 → A′ → A → A′′ → 0 be an exact sequence of left R-modules

with A,A′ (T , n)-injective. For any (T , n + 1)-presented left R-module C we have

an exact sequence

0 = ExtnR(C,A) → ExtnR(C,A
′′) → Extn+1

R (C,A′) = 0.

So ExtnR(C,A
′′) = 0, and thus A′′ is (T , n)-injective.

(3), (4) ⇒ (6). By (3), R is (T , n)-coherent. Let N be a (T , n)-flat right R-module.

Then N+ is (T , n)-injective. By (4), ExtiR(C,N
+) = 0 for any i > n and any

(T , n + 1)-presented left R-module C, and so, by the isomorphism TorRi (N,C)+ ∼=

ExtiR(C,N
+) we have that TorRi (N,C) = 0 for any i > n and any (T , n+1)-presented

left R-module C.

(7) ⇒ (3). Assume (7). Then it is clear that R is (T , n)-coherent. Now

let 0 → A′ → A → A′′ → 0 be an exact sequence of right R-modules with

A,A′′ ∈ TnF . Then for any (T , n + 1)-presented left R-module C we get an ex-

act sequence 0 = TorRn+1(A
′′, C) → TorRn (A

′, C) → TorRn (A,C) = 0, which shows

that TorRn (A
′, C) = 0. So, A′ is also (T , n)-flat, and therefore (TnF , (TnF)⊥) is

a hereditary cotorsion theory.

(1) ⇒ (5). Let C be a (T , n + 1)-presented left R-module and M be a (T , n)-

injective left R-module. Then there exists an exact sequence 0 → K → P → C → 0

with P finitely generated projective. By (1), ExtnR(K,M) = 0. And then from the

exact sequence of

0 = ExtnR(K,M) → Extn+1

R (C,M) → Extn+1

R (P,M) = 0

we have Extn+1

R (C,M) = 0.

(5) ⇒ (8). For any (T , n + 1)-presented left R-module C, the exact sequence

0 → N1 → N → N/N1 → 0 induces the exactness of the sequence

0 = ExtnR(C,N) → ExtnR(C,N/N1) → Extn+1

R (C,N1) = 0.

This yields that ExtnR(C,N/N1) = 0, as desired.

(8) ⇒ (9) is obvious.

(9) ⇒ (1). Let C be a (T , n+1)-presented left R-module. If 0 → K → P → C → 0

is an exact sequence of left R-modules, where P is finitely generated projective, then

for any (T , n)-injective module N , E(N)/N is (T , n)-injective by (9). From the
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exactness of the two sequences

0 = ExtnR(P,N) → ExtnR(K,N) → Extn+1

R (C,N) → Extn+1

R (P,N) = 0

0 = ExtnR(C,E(N)) → ExtnR(C,E(N)/N) → Extn+1

R (C,N) → Extn+1

R (C,E(N)) = 0

we have ExtnR(K,N) ∼= Extn+1

R (C,N) ∼= ExtnR(C,E(N)/N) = 0. Thus, K is

(T , n)-projective, as required. �

Corollary 2.4. Let T = R-Mod. Then the following statements are equivalent

for the ring R:

(1) R is strongly (T , n)-coherent.

(2) R is (T , n)-coherent.

(3) R is left n-coherent.

P r o o f. (1) ⇒ (2). It follows from Theorem 2.3, statement (3).

(2) ⇒ (3). It follows from [16], Example 5.2, statement (1).

(3) ⇒ (1). Let 0 → K → P → C → 0 be exact, where C is (T , n + 1)-

presented and P is finitely generated projective. Then by (3), K is n-presented,

so ExtnR(K,N) = 0 for any n-FP-injective left R-modules. This yields that R is

strongly (T , n)-coherent. �

Corollary 2.5. The following statements are equivalent for the ring R:

(1) R is left n-coherent.

(2) (⊥((FP)nI), (FP)nI) is a hereditary cotorsion theory.

(3) ExtiR(C,M)=0 for any i > n, any n-presented module C and any n-FP-injective

left R-module M .

(4) Extn+1

R (C,M) = 0 for any n-presented module C and any n-FP-injective left

R-module M .

(5) If N is an n-FP-injective left R-module and N1 is an n-FP-injective submodule

of N , then N/N1 is n-FP-injective.

(6) For any n-FP-injective left R-module N , E(N)/N is n-FP-injective.

Corollary 2.6. Let T = {0}. Then R is strongly (T , n)-coherent if and only if

every weakly n-FP-injective left R-module is (n+ 1)-FP-injective.

P r o o f. It follows from Theorem 2.3 (5) and [16], Example 4.2, (2). �

Corollary 2.7. The following statements are equivalent for the ring R:

(1) (⊥(W(FP)nI),W(FP)nI) is a hereditary cotorsion theory.

(2) (WFn, (WFn)
⊥) is a hereditary cotorsion theory.
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(3) ExtiR(C,M) = 0 for any i > n, any (n+1)-presented module C and any weakly

n-FP-injective left R-module M .

(4) Extn+1

R (C,M) = 0 for any (n + 1)-presented module C and any weakly

n-FP-injective left R-module M .

(5) TorRi (N,C) = 0 for any i > n, any (n+1)-presented module C and any weakly

n-flat right R-module N .

(6) TorRn+1(N,C) = 0 for any (n + 1)-presented module C and any weakly n-flat

right R-module N .

(7) If N is a weakly n-FP-injective left R-module and N1 is a weakly n-FP-injective

submodule of N , then N/N1 is weakly n-FP-injective.

(8) For any weakly n-FP-injective left R-module N and E(N)/N is weakly

n-FP-injective.

Let F be a class of left R-modules. As usual, we write ⊥nF={M : ExtnR(M,F )=0,

F ∈F}, and F⊥n = {M : ExtnR(F,M) = 0, F ∈ F}.

Definition 2.8. Let n be a positive integer. A pair (L, C) of classes of R-modules

is called an n-cotorsion theory if L⊥n = C and ⊥nC = L. An n-cotorsion theory (L, C)

is called hereditary if whenever 0 → L′ → L → L′′ → 0 is exact with L,L′′ ∈ L,

then L′ is also in L.

It is easy to see that the pair (TnP , TnI) is an n-cotorsion theory.

Theorem 2.9. Let (L, C) be an n-cotorsion theory. Then the following statements

are equivalent:

(1) (L, C) is hereditary.

(2) If 0 → L′ → P → L′′ → 0 is exact with P projective and L′′ ∈ L, then L′ is

also in L.

(3) Extn+i
R (L,C) = 0 for any non-negative integer i and any L ∈ L and C ∈ C.

(4) Extn+1

R (L,C) = 0 for any L ∈ L and C ∈ C .

(5) If 0 → C′ → C → C′′ → 0 is exact with C′, C ∈ C, then C′′ is also in C.

(6) If 0 → C′ → E → C′′ → 0 is exact with C′ ∈ C and E injective, then C′′ is

also in C.

(7) If C ∈ C, then E(C)/C ∈ C.

P r o o f. (1) ⇒ (2), (3) ⇒ (4) and (5) ⇒ (6) ⇒ (7) are obvious.

(2) ⇒ (3). We only need to prove the case, where i > 1. Let L0 = L. Then

by (2) we have exact sequences 0 → Lk → Pk → Lk−1 → 0, k = 1, 2, . . . , i,

where each Lk ∈ L and Pk is projective. So we have that Extn+i
R (L,C) ∼=

Extn+i−1

R (L1, C) ∼= . . . ∼= ExtnR(Li, C) = 0.
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(4) ⇒ (1). Let 0 → L′ → L → L′′ → 0 be exact with L,L′′ ∈ L. Then for

any C ∈ C, by (4) we have an exact sequence 0 = ExtnR(L,C) → ExtnR(L
′, C) →

Extn+1

R (L′′, C) = 0, so ExtnR(L
′, C) = 0, and thus L′ ∈ L.

(4) ⇒ (5). Let L ∈ L. Then by (4) we have an exact sequence 0 = ExtnR(L,C) →

ExtnR(L,C
′′) → Extn+1

R (L,C′) = 0, so ExtnR(L,C
′′) = 0, and hence C′′ ∈ C.

(7) ⇒ (4). Let L ∈ L and C ∈ C. Then by (7), E(C)/C ∈ C, and so

ExtnR(L,E(C)/C) = 0.

Thus, by the exactness of

0 = ExtnR(L,E(C)/C) → Extn+1

R (L,C) → Extn+1

R (L,E(C) = 0,

we get that Extn+1

R (L,C) = 0. �

By Theorems 2.3 and 2.9, we have the following result.

Corollary 2.10. Let R be a strongly (T , n)-coherent if and only if (TnP , TnI) is

a hereditary n-cotorsion theory.

Definition 2.11.

(1) The (T , n)-injective dimension of a module RM is defined by

TnI−dim(RM)=inf{k : Extn+k
R (C,M)=0 for every (T , n+1)-presented module C}.

(2) The (T , n)-injective global dimension of a ring R is defined by

TnI −GLD(R) = sup{TnI − dim(M) : M is a left R-module}.

Theorem 2.12. Let R be a strongly (T , n)-coherent ring, M a left R-module

and k a non-negative integer. Then the following statements are equivalent:

(1) TnI − dim(RM) 6 k.

(2) Extn+k+l
R (C,M) = 0 for any (T , n + 1)-presented module C and any non-

negative integer l.

(3) Extn+k
R (C,M) = 0 for any (T , n+ 1)-presented module C.

(4) If the sequence 0 −→ M
ε

−→ E0

d0−→ . . . −→ Ek−1

dk−1

−→ Ek −→ 0 is exact with

E0, . . . , Ek−1 (T , n)-injective, then Ek is also (T , n)-injective.

(5) There exists an exact sequence of left R-modules 0 → M → E0 → . . . →

Ek−1 → Ek → 0 such that E0, . . . , Ek−1, Ek are (T , n)-injective.

664



P r o o f. (1) ⇒ (2). Use induction on k. If k = 0, then (2) holds by The-

orem 2.3, statement (4). So let k > 0. Assume that Extn+k−1+l
R (C,N) = 0

for any (T , n + 1)-presented module C, any non-negative integer l and any left

R-module N with TnI − dim(N) 6 k − 1. Then there exists a positive integer

r 6 k such that Extn+r
R (C,M) = 0 for any (T , n + 1)-presented module C, which

implies that Extn+r−1

R (C,E(M)/M) = 0 for any (T , n+ 1)-presented module C. So

TnI −dim(E(M)/M) 6 r− 1, and hence TnI −dim(E(M)/M) 6 k− 1. By hypoth-

esis, we have Extn+k−1+l
R (C,E(M)/M) = 0 for any (T , n + 1)-presented module C

and any non-negative integer l, it yields that Extn+k+l
R (C,M) = 0. Therefore state-

ment (2) holds by induction axioms.

(2) ⇒ (3) ⇒ (1) and (4) ⇒ (5) are obvious.

(3) ⇒ (4). Since R is strongly (T , n)-coherent and E0, . . . , Ek−1 is (T , n)-injective,

by Theorem 2.3, statement (4) we have Extn+k
R (C,M) ∼= Extn+k−1

R (C, im(d0)) ∼=

Extn+k−2

R (C, im(d1)) ∼= . . . ∼= ExtnR(C, im(dk−1)) = ExtnR(C,Ek) for any (T , n + 1)-

presented module C. So statement (4) follows from statement (3).

(5) ⇒ (3). It follows from the above isomorphism Extn+k
R (C,M) ∼= ExtnR(C,Ek).

�

Definition 2.13.

(1) The (T , n)-flat dimension of a module MR is defined by

TnF−dim(MR)=inf{k : TorRn+k(M,C)=0 for every (T , n+1)-presented module C}.

(2) The (T , n)-weak global dimension of a ring R is defined by

Tn −WD(R) = sup{TnF − dim(M) : M is a right R-module}.

Theorem 2.14. Let M be a right R-module. Then

TnF − dim(M) = TnI − dim(M+).

P r o o f. By the isomorphism TorRn+k(M,C)+ ∼= Extn+k
R (C,M+). �

Theorem 2.15. Let R be a strongly (T , n)-coherent ring, M a right R-module

and k a non-negative integer. Then the following statements are equivalent:

(1) TnF − dim(MR) 6 k.

(2) TorRn+k+l(M,C) = 0 for any (T , n + 1)-presented module C and any non-

negative integer l.

(3) TorRn+k(M,C) = 0 for any (T , n+ 1)-presented module C.

(4) If the sequence 0 −→ Fk
ε

−→ Fk−1

dk−1

−→ . . .
d2−→ F1

d1−→ F0

d0−→ M −→ 0 is exact

with F0, . . . , Fk−1 (T , n)-flat, then Fk is also (T , n)-flat.
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(5) There exists an exact sequence of right R-modules 0 −→ Fk
ε

−→ Fk−1

dk−1

−→ . . .
d2−→ F1

d1−→ F0

d0−→ M −→ 0 such that F0, . . . , Fk−1, Fk are (T , n)-flat.

P r o o f. (1) ⇒ (2). Let C be a (T , n + 1)-presented module and l be any

non-negative integer. By (1), there exists a non-negative integer r 6 k such that

TorRn+r(M,C) = 0. And so, by the isomorphism TorRn+r(M,C)+ ∼= Extn+r
R (C,M+),

we have Extn+r
R (C,M+) = 0. Since R is strongly (T , n)-coherent, by Theorem 2.12

we have Extn+k+l
R (C,M+) = 0, and then TorRn+k+l(M,C) = 0 by the isomorphism

TorRn+k+l(M,C)+ ∼= Extn+k+l
R (C,M+).

(2) ⇒ (3) ⇒ (1) and (4) ⇒ (5) are obvious.

(3) ⇒ (4). Since R is strongly (T , n)-coherent and F0, . . . , Fk−1 is (T , n)-flat,

by Theorem 2.3, statement (6) we have TorRn+k(M,C) ∼= TorRn+k−1(Ker(d0), C) ∼=

TorRn+k−2(Ker(d1), C) ∼= . . . ∼= TorRn (Ker(dk−1), C) = TorRn (Fk, C). So statement (4)

follows from statement (3).

(5) ⇒ (3). It follows from the above isomorphism TorRn+k(M,C) ∼= TorRn (Fk, C).

�

Lemma 2.16. Let R be a strongly (T , n)-coherent ring. Then every (T , n + 1)-

presented module C is m-presented for any positive integer m.

P r o o f. If m < n, then it is clear that the result holds. Assume that every

(T , n+1)-presented module ism-presented for somem > n . Then for any (T , n+1)-

presented module C and any FP-injective module N we have Extm+1

R (C,N) = 0

by Theorem 2.3, statement (4) because R is strongly (T , n)-coherent. Let 0 →

Km−n−1 → Fm−n−1 → . . . → F1 → F0 → C → 0 be an exact sequence of left

R-modules with F0, . . . , Fm−n−1 finitely generated free left R-modules and Km−n−1

n-presented. Then Extn+1

R (Km−n−1, N) ∼= Extm+1

R (C,N) = 0, so Km−n−1 is (n+1)-

presented by [16], Lemma 5.5, and hence C is (m + 1)-presented. Therefore this

lemma holds by induction axioms. �

Theorem 2.17. Let R be a left strongly (T , n)-coherent ring and M a left

R-module. Then

TnI − dim(M) = TnF − dim(M+).

P r o o f. Let k be a positive integer and C be a (T , n + 1)-presented module.

Since R is left strongly (T , n)-coherent, by Lemma 2.16, C is (n+k+2)-presented. So,

by [3], Lemma 2.7, statement (2), we have TorRn+k+1(M
+, C) ∼= Extn+k+1

R (C,M)+.

Consequently, TnI − dim(M) = TnF − dim(M+) by Theorems 2.12 and 2.15. �

666



Corollary 2.18. Let R be a strongly (T , n)-coherent ring. Then

Tn −WD(R) = TnI −GLD(R).

P r o o f. It follows from Theorems 2.14 and 2.17. �

3. (T , n)-semihereditary rings

Recall that a ring R is called left semihereditary if every finitely generated left ideal

ofR is projective, or equivalently, if every finitely generated submodule of a projective

right R-module is projective. It is easy to see that a ring R is left semihereditary

if and only if the projective dimension of every finitely presented left R-module is

less than or equal to 1. The concept of semihereditary rings has been generalized by

many authors. For example, a commutative ring R is called a (n, d)-ring (see [4])

if every n-presented R-module has the projective dimension at most d; a ring R is

called a left (n, d)-ring (see [13]) if every n-presented left R-module has the projective

dimension at most d; a ring R is called a left n-hereditary ring (see [14]) if it is a left

(n, 1)-ring; a ring R is called a left n-regular ring (see [14]) if it is a left (n, 0)-ring.

Definition 3.1. A ring R is called left weakly n-hereditary if it is a left

(n, n)-ring.

Clearly, left n-hereditary ring is left weakly n-hereditary. A ring R is left semi-

hereditary if and only if R is left 1-hereditary if and only if R is left weakly

1-hereditary.

Example 3.2. Let R be a non-coherent commutative ring of weak dimension

one. Then R[x] is a (2,2)-ring but not a (2,1)-ring by [4], Example 6.5, and so R[x]

is a weakly 2-hereditary ring which is not 2-hereditary.

Next, we generalize the concept of left n-regular rings.

Definition 3.3. A ring R is called left weakly n-regular if it is a left (n, n− 1)-

ring.

Clearly, R is regular if and only if it is left weakly 1-regular. Left n-regular

ring is left weakly n-regular. If n > 2, then left n-hereditary ring is left weakly

n-regular. Since left (2, 2)-rings need not be left (2, 1)-rings by Example 3.2, left

weakly 2-hereditary rings need not be left weakly 2-regular.

Example 3.4. Let A be an arbitrary Prüfer domain (i.e. (1,1)-domain) and

let R be the trivial ring extension of A by its quotient field. Then by [8], Exam-

ple 3.4, R is a commutative (2,1)-ring which is not a (2,0)-ring. So, in general, left

weakly 2-regular rings need not be left 2-regular.
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Definition 3.5. Let T be a weak torsion class of left R-modules and n a positive

integer. Then the ring R is called (T , n)-semihereditary if pd(C) 6 n for each

(T , n+ 1)-presented module C.

Example 3.6. Let T = R −Mod. Then R is (T , n)-semihereditary if and only

if it is left weakly n-hereditary.

Example 3.7. Let T = {0}. Then R is (T , n)-semihereditary if and only if it is

left weakly (n+ 1)-regular.

Theorem 3.8. Let T be a weak torsion class of left R-modules and n a positive

integer. Then the following statements are equivalent for the ring R:

(1) R is a left (T , n)-semihereditary ring.

(2) If 0 → K → P → C → 0 is exact, where C is (T , n+ 1)-presented, P is finitely

generated projective, then pd(K) 6 n− 1.

(3) R is (T , n)-coherent and every submodule of a (T , n)-flat right R-module is

(T , n)-flat.

(4) R is (T , n)-coherent and every right ideal is (T , n)-flat.

(5) R is (T , n)-coherent and every finitely generated right ideal is (T , n)-flat.

(6) Every quotient module of a (T , n)-injective left R-module is (T , n)-injective.

(7) Every quotient module of an injective left R-module is (T , n)-injective.

(8) Every left R-module has a monic (T , n)-injective cover.

(9) Every right R-module has an epic (T , n)-flat envelope.

(10) For every left R-module A, the sum of an arbitrary family of (T , n)-injective

submodules of A is (T , n)-injective.

(11) Every torsionless right R-module is (T , n)-flat.

(12) R is strongly (T , n)-coherent and TnI −GLD(R) 6 1.

(13) R is strongly (T , n)-coherent and Tn −WD(R) 6 1.

P r o o f. (1) ⇔ (2), (3) ⇒ (4) ⇒ (5) and (6) ⇒ (7) are trivial.

(2) ⇒ (3). Assume (2). Then R is clearly (T , n)-coherent by [16], Lemma 5.5.

Let A be a submodule of a (T , n)-flat right R-module B and let C be a (T , n+ 1)-

presented left R-module. Then there exists an exact sequence of left R-modules

0 → K → P → C → 0, where P is finitely generated projective. By (1), pd(K) 6

n − 1 and so fd(K) 6 n − 1. Then the exactness of 0 = TorRn+1(B/A,P ) →

TorRn+1(B/A,C) → TorRn (B/A,K) = 0 implies that TorRn+1(B/A,C) = 0. Thus, from

the exactness of the sequence 0 = TorRn+1(B/A,C) → TorRn (A,C) → TorRn (B,C) = 0

we have TorRn (A,C) = 0, that is, A is (T , n)-flat.

(5) ⇒ (2). Let C be a (T , n+1)-presented left R-module. If 0 → K → P → C → 0

is an exact sequence of left R-modules, where P is finitely generated projective.

Since R is (T , n)-coherent, K is n-presented. For any finitely generated right ideal I
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of R we have an exact sequence 0 → TorRn+1(R/I, C) → TorRn (I, C) = 0 since I

is (T , n)-flat. So TorRn+1(R/I, C) = 0, and hence we obtain an exact sequence

0 = TorRn+1(R/I, C) → TorRn (R/I,K) → 0. Thus, TorRn (R/I,K) = 0. Let K

have a finite n-presentation Fn
dn−→ . . . −→ F2

d2−→ F1

d1−→ F0

ε
−→ K −→ 0. Then

Ker(dn−2) is finitely presented and TorR1 (R/I,Ker(dn−2) = 0, so Ker(dn−2) is pro-

jective. Therefore pd(K) 6 n− 1.

(2) ⇒ (6). Let M be a (T , n)-injective left R-module and N be a submodule

of M . Then for any (T , n + 1)-presented left R-module C, there exists an exact

sequence of left R-modules 0 → K → P → C → 0, where P is finitely generated

projective and pd(K) 6 n− 1 by (2). And so the exact sequence 0 = ExtnR(K,N) →

Extn+1

R (C,N) → Extn+1

R (P,N) = 0 implies that Extn+1

R (C,N) = 0. Thus, the exact

sequence 0 = ExtnR(C,M) → ExtnR(C,M/N) → Extn+1

R (C,N) = 0 implies that

ExtnR(C,M/N) = 0. Consequently, M/N is (T , n)-injective.

(7) ⇒ (2). Let C be a (T , n + 1)-presented left R-module and there is an ex-

act sequence of left R-modules 0 → K → P → C → 0, where P is finitely

generated projective. Then for any left R-module M , by hypothesis, E(M)/M is

(T , n)-injective, and so ExtnR(C,E(M)/M) = 0. Thus, the exactness of the se-

quence 0 = ExtnR(C,E(M)/M) → Extn+1

R (C,M) → Extn+1

R (C,E(M)) = 0 implies

that Extn+1

R (C,M) = 0. Hence, the exactness of the sequence 0 = ExtnR(P,M) →

ExtnR(K,M) → Extn+1

R (C,M) = 0 implies that ExtnR(K,M) = 0, as required.

(3) ⇔ (9). It follows from [2], Theorem 2 and [16], Theorem 5.3, statement (5).

(3), (6) ⇒ (8). Since R is (T , n)-coherent by (3) for any left R-module M there is

a (T , n)-injective cover f : E → M by [16], Corollary 5.8. Note that im(f) is (T , n)-

injective by (6), and f : E → M is a (T , n)-injective precover, so for the inclusion

map i : im(f) → M there is a homomorphism g : im(f) → E such that i = fg.

Hence f = f(gf). Observing that f : E → M is a (T , n)-injective cover and gf is an

endomorphism of E, gf is an automorphisms of E, and thus f : E → M is a monic

(T , n)-injective cover.

(8) ⇒ (6). LetM be a (T , n)-injective left R-module and N be a submodule ofM .

By (8), M/N has a monic (T , n)-injective cover f : E → M/N . Let π : M → M/N

be the natural epimorphism. Then there exists a homomorphism g : M → E such

that π = fg. Thus, f is an isomorphism, and thereforeM/N ∼= E is (T , n)-injective.

(6) ⇒ (10). Let A be a left R-module and {Aγ : γ ∈ Γ} be an arbitrary family of

(T , n)-injective submodules of A. Since the direct sum of (T , n)-injective modules

is (T , n)-injective and
∑

γ∈Γ

Aγ is a homomorphic image of ⊕γ∈ΓAγ , by (6),
∑

γ∈Γ

Aγ is

(T , n)-injective.

(10) ⇒ (7). Let E be an injective left R-module and K 6 E. Take E1 = E2 = E,

N = E1 ⊕ E2, D = {(x,−x) : x ∈ K}. Define f1 : E1 → N/D by x1 7→ (x1, 0) +D,
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f2 : E2 → N/D by x2 7→ (0, x2) +D and write Ei = fi(Ei), i = 1, 2. Then Ei
∼= Ei

is injective, i = 1, 2, and so N/D = E1 + E2 is (T , n)-injective. By the injectivity

of Ei, (N/D)/Ei is isomorphic to a summand of N/D and thus it is (T , n)-injective.

Now, we define f : E → (N/D)/E1; e 7→ f2(e) +E1, then f is an epimorphism with

Ker(f) = K, and hence E/K ∼= (N/D)/E1 is (T , n)-injective.

(3) ⇒ (11). Let M be a torsionless right R-module. Then there exists an ex-

act sequence 0 → M →
∏

RR. Since R is (T , n)-coherent, by [16], Theorem 5.3,

statement (4),
∏

RR is (T , n)-flat. By hypothesis, every submodule of a (T , n)-flat

R-module is (T , n)-flat, so M is (T , n)-flat.

(11) ⇒ (3). Assume (11). Then
∏

RR is (T , n)-flat, and thus R is (T , n)-coherent

by [16], Theorem 5.3, statement (4). Moreover, every right ideal of R is torsionless

and so (T , n)-flat.

(2) ⇒ (12). Let 0 → K → P → C → 0 be exact with C (T , n + 1)-presented

and P finitely generated projective. Then by (2), pd(K) 6 n − 1, and so K is

(T , n)-projective, which shows that R is strongly (T , n)-coherent. Now let M be

any left R-module. Then for any (T , n + 1)-presented module C we have an exact

sequence 0 → K → P → C → 0 of left R-modules, where P is finitely generated

projective. By (2), pd(K) 6 n − 1. Thus, the exact sequence 0 = ExtnR(K,M) →

Extn+1

R (C,M) → Extn+1

R (P,M) = 0 implies that Extn+1

R (C,M) = 0. This yields

that TnI −GLD(R) 6 1 by Definition 2.11.

(12) ⇒ (13). It follows from Theorem 2.12 and the isomorphism

TorRn+1(M,C)+ ∼= Extn+1

R (C,M+).

(13) ⇒ (3). Assume (13). Then R is clearly (T , n)-coherent. Let A be a sub-

module of a (T , n)-flat right R-module B and let C be a (T , n + 1)-presented

left R-module. Since R is strongly (T , n)-coherent and Tn-WD(R)6 1, by Theo-

rem 2.15 we have TorRn+1(B/A,C) = 0. Then, from the exactness of the sequence

0 = TorRn+1(B/A,C) → TorRn (A,C) → TorRn (B,C) = 0 we have TorRn (A,C) = 0,

which shows that A is Tn-flat. �

Corollary 3.9. The following statements are equivalent for the ring R:

(1) R is a left weakly n-hereditary ring.

(2) If 0 → K → P → C → 0 is exact, where C is n-presented, P is finitely

generated projective, then pd(K) 6 n− 1.

(3) R is left n-coherent and every submodule of an n-flat right R-module is n-flat.

(4) R is left n-coherent and every right ideal is n-flat.

(5) R is left n-coherent and every finitely generated right ideal is n-flat.

(6) Every quotient module of an n-FP-injective left R-module is n-FP-injective.
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(7) Every quotient module of an injective left R-module is n-FP-injective.

(8) Every left R-module has a monic n-FP-injective cover.

(9) Every right R-module has an epic n-flat envelope.

(10) For every left R-module A, the sum of an arbitrary family of n-FP-injective

submodules of A is n-FP-injective.

(11) Every torsionless right R-module is n-flat.

(12) R is left n-coherent and (FP)nI −GLD(R) 6 1.

(13) R is left n-coherent and n−WD(R) 6 1.

P r o o f. It follows from Theorem 3.8 and Corollary 2.4. �

Let n = 1, then by Corollary 3.9, we can obtain a series of characterizations of

left semihereditary rings.

Corollary 3.10. The following statements are equivalent for the ring R:

(1) R is a left semihereditary ring.

(2) If 0 → K → P → C → 0 is exact, where C is finitely presented, P is finitely

generated projective, then K is projective.

(3) R is left coherent and every submodule of a flat right R-module is flat.

(4) R is left coherent and every right ideal is flat.

(5) R is left coherent and every finitely generated right ideal is flat.

(6) Every quotient module of an FP-injective left R-module is FP-injective.

(7) Every quotient module of an injective left R-module is FP-injective.

(8) Every left R-module has a monic FP-injective cover.

(9) Every right R-module has an epic flat envelope.

(10) For every left R-module A, the sum of an arbitrary family of FP-injective sub-

modules of A is FP-injective.

(11) Every torsionless right R-module is flat.

(12) R is left coherent and FPI −GLD(R) 6 1.

(13) R is left coherent and WD(R) 6 1.

Corollary 3.11. The following statements are equivalent for the ring R:

(1) R is a left weakly (n+ 1)-regular ring.

(2) If 0 → K → P → C → 0 is exact, where C is (n+1)-presented, P is finitely

generated projective, then pd(K) 6 n− 1.

(3) Every submodule of a weakly n-flat right R-module is weakly n-flat.

(4) Every right ideal is weakly n-flat.

(5) Every finitely generated right ideal is weakly n-flat.

(6) Every quotient module of a weakly n-FP-injective left R-module is weakly

n-FP-injective.
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(7) Every quotient module of an injective left R-module is weakly n-FP-injective.

(8) Every left R-module has a monic weakly n-FP-injective cover.

(9) Every right R-module has an epic weakly n-flat envelope.

(10) For every left R-module A, the sum of an arbitrary family of weakly n-FP-

injective submodules of A is weakly n-FP-injective.

(11) Every torsionless right R-module is weakly n-flat.

(12) Every weakly n-FP-injective left R-module is (n+ 1)-FP-injective and

W(FP)nI −GLD(R) 6 1.

(13) Every weakly n-FP-injective left R-module is (n + 1)-FP-injective and Wn −

WD(R) 6 1.

P r o o f. It follows from Theorem 3.8 and Corollary 2.6. �

4. (T , n)-regular rings

Definition 4.1. Let T be a weak torsion class of left R-modules and n a positive

integer. Then the ring R is called (T , n)-regular if pd(C) 6 n−1 for each (T , n+1)-

presented module C.

Example 4.2. Let T = R −Mod. Then R is (T , n)-regular if and only if it is

left weakly n-regular.

Example 4.3. Let T = {0}. Then R is (T , n)-regular if and only if it is a left

(n+ 1, n− 1)-ring.

Theorem 4.4. Let T be a weak torsion class of left R-modules and n a positive

integer. Then the following conditions are equivalent for R:

(1) R is (T , n)-regular.

(2) Every left R-module is (T , n)-injective.

(3) Every right R-module is (T , n)-flat.

(4) Every cotorsion right R-module is (T , n)-flat.

(5) Every right R-module in (TnF)⊥ is injective.

(6) Every left R-module in ⊥(TnI) is projective.

(7) R is (T , n)-semihereditary and RR is (T , n)-injective.

(8) R is strongly (T , n)-coherent and every left R-module in ⊥(TnI) is (T , n)-

injective.

(9) R is strongly (T , n)-coherent and every right R-module in (TnF)⊥ is (T , n)-flat.
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P r o o f. (1) ⇔ (2); (3) ⇒ (4), (5); (2) ⇒ (6); (1), (2) ⇒ (7); and (2), (7) ⇒ (8)

are clear.

(2) ⇒ (3). It follows from the isomorphism TorRn (M,C)+ ∼= ExtnR(C,M
+).

(4) ⇒ (2). Let M be any left R-module. Since M+ is pure injective by [5],

Proposition 5.3.7, M+ is a cotorsion by [5], Lemma 5.3.23, and so M+ is (T , n)-flat

by (4). Hence, by [16], Theorem 4.8,M++ is (T , n)-injective. Note thatM is a pure

submodule of M++. By [16], Proposition 4.9, statement (1), M is (T , n)-injective.

(5) ⇒ (3). It follows from the fact that (TnF , (TnF)⊥) is a cotorsion theory

(see [16], Theorem 4.11, statement (2)).

(6) ⇒ (2). It follows from the fact that (⊥(TnI), TnI) is a cotorsion theory

(see [16], Theorem 4.11, statement (1)).

(7) ⇒ (2) Let M be any left R-module. Then there exists an exact sequence F →

M → 0 with F free. Since RR is (T , n)-injective, by [16], Proposition 4.6, F is (T , n)-

injective. Since R is (T , n)-semihereditary, by Theorem 3.8, statement (6), M is

(T , n)-injective.

(8) ⇒ (2). Let M be any left R-module. By [16], Theorem 4.11, statement (1),

there exists an exact sequence 0 → K → F → M → 0 with F ∈⊥ (TnI) and

K ∈ TnI. Then F ∈ TnI by (8). Note that R is strongly (T , n)-coherent, by

Theorem 2.3, statement (8), we have that M ∈ TnI.

(3), (8) ⇒ (9). It is obvious.

(9) ⇒ (3). Let E ∈ (TnF)⊥. Then for any right R-module M , by [16], Theo-

rem 4.11, statement (2), (TnF , (TnF)⊥) is a perfect cotorsion theory, so it is a com-

plete cotorsion theory, and hence there exists an exact sequence 0 → M → F →

L → 0, where F ∈ (TnF)⊥ and L ∈ TnF . By (9), F is (T , n)-flat. Since R is

strongly (T , n)-coherent, by Theorem 2.3, statement (3), (TnF , (TnF)⊥) is a hered-

itary cotorsion theory, and thus, M is (T , n)-flat. �

Corollary 4.5. Let n be a positive integer. Then the following conditions are

equivalent for R:

(1) R is left weakly n-regular.

(2) Every left R-module is n-FP-injective.

(3) Every right R-module is n-flat.

(4) Every cotorsion right R-module is n-flat.

(5) Every right R-module in F⊥
n is injective.

(6) Every left R-module in ⊥((FP)nI) is projective.

(7) R is left weakly n-hereditary and RR is n-FP-injective.

(8) R is left n-coherent and every left R-module in ⊥((FP)nI) is n-FP-injective.

(9) R is left n-coherent and every right R-module in (Fn)
⊥ is n-flat.
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Recall that a leftR-moduleN is said to be FP-projective (see [9]) if Ext1R(N,M)=0

for any FP-injective left R-module M .

Corollary 4.6. The following conditions are equivalent for a ring R:

(1) R is regular.

(2) Every left R-module is FP-injective.

(3) Every right R-module is flat.

(4) Every cotorsion right R-module is flat.

(5) Every cotorsion right R-module is injective.

(6) Every FP-projective left R-module is projective.

(7) R is left semihereditary and RR is FP-injective.

(8) R is left coherent and every FP-projective left R-module is FP-injective.
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