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Abstract. We study the high-dimensional Hausdorff operators on the Morrey space and on
the Campanato space. We establish their sharp boundedness on these spaces. Particularly,
our results solve an open question posted by E. Liflyand (2013).
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1. Introduction

Let Rn be the n dimensional Euclidean space with n > 2. For a suitable function Φ,

Lerner and Liflyand in [6] studied the Hausdorff operator HΦ,A defined initially on

the Schwartz space in the form of

HΦ,A(f)(x) =

∫

Rn

Φ(y)f(A(y)x) dy,

where A(y) is an n×n matrix which is invertible for almost all y lying in the support

of Φ. A special case is A(y) = diag[1/|y|, 1/|y|, . . . , 1/|y|] for which HΦ,A is reduced

to the well-studied operator

HΦ(f)(x) =

∫

Rn

Φ(y)f(x/|y|) dy.
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The operator HΦ has received extensive attentions in recent years. For instance, the

reader can see [1], [3], [7], [8], [10], [11], [12], [13], [14], [16] for studies of HΦ on

various function spaces such as Lebesgue spaces Lp, the Hardy space H1 and the

BMO space. Two recent survey papers [2] and [9] might also provide a good source

of information.

The situation clearly becomes much more involved if we study HΦ,A with a general

non-singular matrix A. Hence, for a fixed normed function space X, finding reason-

able conditions on Φ related to A to guarantee the boundedness of HΦ,A on X is

an interesting research subject. Based on this motivation, the aim of this article

is to obtain the boundedness of HΦ,A on the Morrey space Lp,λ(Rn) and on the

Campanato space Ep,λ(Rn), extending the known results on spaces Lp(Rn) and on

the BMO(Rn) space, respectively.

For a matrix A = (aij)n×n,

‖A‖ =

( n∑

i,j=1

|aij |2
)1/2

is a norm of A. If A is invertible then

(1.1) ‖A−1‖−n
6 |detA| 6 ‖A‖n.

We recall the following result in [6].

Theorem A ([6]). If A is invertible, then

‖HΦ,A(f)‖BMO(Rn) �
(∫

Rn

|Φ(y)| ‖A(y)‖
n

|detA(y)| dy
)
‖f‖BMO(Rn).

Thus, HΦ,A is bounded on the BMO(Rn) space if Φ satisfies the size condition

∫

Rn

|Φ(y)| ‖A(y)‖
n

|detA(y)| dy < ∞,

where BMO(Rn) denotes the space of functions bounded mean oscillation and it is

also the dual space of the Hardy space H1(Rn).

In [9], Liflyand posed the following question (see [9], 6.2 c, page 135):

Prove (or disprove) the sharpness of the condition in Theorem A for the bound-

edness of HΦ,A on the space BMO(Rn).

We will disprove the sharpness of the size condition in Theorem A by obtaining

a weaker sufficient condition on Φ. To state our main results, we first introduce the

definitions of the Morrey space Lp,λ(Rn) and the Campanato space Ep,λ(Rn).
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Definition 1.1. Let 1 6 p < ∞, −n/p 6 λ < ∞. A function f ∈ Lp
loc(R

n) is

said to belong to the Morrey space Lp,λ(Rn) if

‖f‖Lp,λ(Rn) = sup
r>0,x0∈Rn

1

|Q(x0, r)|λ/n
(

1

|Q(x0, r)|

∫

Q(x0,r)

|f(x)|p dx
)1/p

< ∞,

where Q(x0, r) denotes the cube centered at x0 with the side length r.

It is easy to see that Lp,−n/p(Rn) = Lp(Rn) and Lp,0(Rn) = L∞(Rn). Also, we

may easily check that Lp,λ(Rn) reduces to {0} when λ > 0.

Definition 1.2. Let 1 6 p < ∞, −n/p 6 λ < ∞. A function f ∈ Lp
loc(R

n) is

said to be in the Campanato space Ep,λ(Rn) if

‖f‖Ep,λ(Rn) = sup
r>0,x0∈Rn

1

|Q(x0, r)|λ/n
(

1

|Q(x0, r)|

∫

Q(x0,r)

|f(x)− fQ|p dx
)1/p

< ∞,

where fQ =
∫
Q(x0,r)

f(x) dx/|Q(x0, r)|.

When λ = 0, we have that

‖f‖Ep,0(Rn) ≃ ‖f‖BMO(Rn)

so that Ep,0(Rn) is the well known BMO(Rn) space. When 0 < λ 6 1, Ep,λ(Rn) is

the Lipschitz space Lipλ(R
n) with

‖f‖Lipλ(R
n) = sup

x 6=y

|f(x) − f(y)|
|x− y|λ ≃ ‖f‖Ep,λ(Rn).

For 1 < λ < ∞, Ep,λ(Rn) contains only constant functions. And if −n/p 6 λ < 0,

Ep,λ(Rn)/C is equivalent to the Morrey space Lp,λ(Rn), where C is the space of the
constant functions.

Here and throughout this paper, we use the notation A ≃ B if there exists

a positive constant C independent of all essential values and variables such that

C−1B 6 A 6 CB. The notation A � B denotes that there is a constant C > 0

independent of all essential values and variables such that A 6 CB.

Now we are in a position to state our results.

Theorem 1.1. Let 1 6 p < ∞ and −n/p 6 λ 6 0. Then we have

‖HΦ,Af‖Lp,λ(Rn) � C1‖f‖Lp,λ(Rn),

where

C1 =

∫

Rn

|Φ(y)|‖A(y)‖λ
( ‖A(y)‖n
|detA(y)|

)min{1/p,−λ}

dy.
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Theorem 1.2. Let 1 6 p < ∞ and −n/p 6 λ 6 1.

(i) If −n/p 6 λ < 0, we have

‖HΦ,Af‖Ep,λ(Rn) � C1‖f‖Ep,λ(Rn),

where C1 is the same as in Theorem 1.1.

(ii) If λ = 0, we have

‖HΦ,Af‖BMO(Rn) � C2‖f‖BMO(Rn),

where

C2 =

∫

Rn

|Φ(y)|
(
1 + log

‖A(y)‖n
|detA(y)|

)
dy.

(iii) If 0 < λ 6 1, we have

‖HΦ,Af‖Ep,λ(Rn) � C3‖f‖Ep,λ(Rn),

where

C3 =

∫

Rn

|Φ(y)|‖A(y)‖λ dy.

Since Ep,0 = BMO, Theorem 1.2 clearly is an extension of Theorem A, while the

second part of Theorem 1.2 improves the size condition in Theorem A, so that it

gives a negative answer to the question by Liflyand. Also, unlike the proof for the

operator HΦ, where the Minkowski inequality might be directly applied, for HΦ,A

we must be concerned with the geometric shape of image A(y)Q for a cube when y

runs over the support of Φ. It raises main difficulties in the proof of theorems. On

the other hand, as a consequence of Theorem 1.2, by the dual argument we re-prove

the following result, which is the main theorem in [3].

Corollary 1.1. If

C4 =

∫

Rn

|Φ(y)||detA−1(y)|
(
1 + log

‖A−1(y)‖n
|detA−1(y)|

)
dy < ∞,

then HΦ,A is bounded on the Hardy space H
1(Rn) and

‖HΦ,Af‖H1(Rn) � C4‖f‖H1(Rn).
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We remark that the result in the above corollary was obtained in [3] by using

the atomic decomposition of the Hardy space. Here, we will prove it by a different

method. We do not know if the size condition on Φ in Theorem 1.1 is sharp or not.

It looks not an easy problem for a general matrix function A(y). However, if ‖A(y)‖n
and |detA(y)| are comparable, we obtain the following sharp result.

Theorem 1.3. Let 1 6 p < ∞, −n/p 6 λ < 0 and Φ be a nonnegative function.

Suppose that there is a constant C independent of y such that

‖A(y)‖n 6 C|detA(y)|

for all y ∈ supp(Φ). Then HΦ,A is bounded on Lp,λ(Rn) if and only if

∫

Rn

Φ(y)‖A(y)‖λ dy < ∞.

Furthermore, if the matrix is diagonal, we have the following sharp results

on BMO(Rn).

Theorem 1.4. Assume that Φ is a nonnegative function. Suppose that A(y) =

diag[1/λ1(y), . . . , 1/λn(y)] and λi0(y) > 0 (or λi0 (y) < 0) uniformly on y ∈ supp(Φ)

for some i0 ∈ {1, 2, . . . , n}. Denote

M(y) = max{|λ1(y)|, . . . , |λn(y)|}, m(y) = min{|λ1(y)|, . . . , |λn(y)|}.

If there is a constant C > 1 independent of y such that M(y) 6 Cm(y) uniformly

on supp(Φ), then HΦ,A is bounded on BMO(Rn) if and only if Φ ∈ L1(Rn).

2. Proof of the theorems

We first introduce some necessary lemmas.

Lemma 2.1 ([3]). Any bounded convex domain D ⊂ R
n can be contained in

a rectangle R satisfying |R| 6 n! |D|.

Lemma 2.2. Let 1 < η < ∞ and assume that the cube Q̃ := Q(x̃, η̺) contains

the cube Q := Q(x, ̺) and has the same orientation as Q. Suppose that f ∈ Ep,λ(Rn)

with 1 6 p < ∞ and −n/p 6 λ 6 1.
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(i) If −n/p 6 λ < 0, then

1

|Q|λ/n
(

1

|Q|

∫

Q

|f(x)− fQ̃|
p dx

)1/p

� ‖f‖Ep,λ(Rn).

(ii) If λ = 0, then

1

|Q|λ/n
(

1

|Q|

∫

Q

|f(x)− fQ̃|p dx
)1/p

� ‖f‖BMO(Rn)(1 + log η).

(iii) If 0 < λ 6 1, then

1

|Q|λ/n
(

1

|Q|

∫

Q

|f(x)− fQ̃|p dx
)1/p

� ‖f‖Ep,λ(Rn)η
λ.

P r o o f. Let ηQ be the cube with the same center as Q and having the side

length η̺.

(2.1)
1

|Q|λ/n
(

1

|Q|

∫

Q

|f(x)− fQ̃|p dx
)1/p

� 1

|Q|λ/n
(

1

|Q|

∫

Q

|f(x)− fηQ|p dx
)1/p

+
|fηQ − fQ̃|
|Q|λ/n .

It is not difficult to see that

|fηQ − fQ̃| � |fηQ − f2Q̃|+ |fQ̃ − f2Q̃| �
1

|2Q̃|

∫

2Q̃

|f(x)− f2Q̃| dx

� 1

|Q̃|1/p

(∫

2Q̃

|f(x)− f2Q̃|
p dx

)1/p

� |Q̃|λ/n‖f‖Ep,λ(Rn),

which means that

(2.2)
|fηQ − fQ̃|
|Q|λ/n � ηλ‖f‖Ep,λ(Rn).

On the other hand, for the given η ∈ (1,∞), there is a non-negative integer j0
satisfying 2j0 6 η < 2j0+1. Therefore

(2.3)
1

|Q|λ/n
(

1

|Q|

∫

Q

|f(x)− fηQ|p dx
)1/p

� 1

|Q|1/p+λ/n

{(∫

Q

|f(x)− fQ|p dx
)1/p

+

j0∑

j=0

‖f2jQ − f2j+1Q‖Lp(Q) + ‖f2j0+1Q − fηQ‖Lp(Q)

}

� ‖f‖Ep,λ(Rn) +
1

|Q|λ/n
j0∑

j=0

|f2jQ − f2j+1Q|+
1

|Q|λ/n |f2j0+1Q − fηQ|.
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The Jensen inequality yields that

(2.4)
1

|Q|λ/n |f2jQ − f2j+1Q| �
1

|Q|λ/n
(

1

|2jQ|

∫

2jQ

|f(x)− f2j+1Q|p
)1/p

� 2jλ‖f‖Ep,λ(Rn),

and

(2.5)
1

|Q|λ/n |f2j0+1Q − fηQ| �
1

|Q|λ/n
(

1

|ηQ|

∫

ηQ

|f(x) − f2j+1Q|p
)1/p

� 2(j0+1)λ‖f‖Ep,λ(Rn).

It follows from (2.1)–(2.5) that

(2.6)
1

|Q|λ/n
(

1

|Q|

∫

Q

|f(x)− fQ̃|
p dx

)1/p

� ‖f‖Ep,λ(Rn)

(
1 + ηλ +

j0+1∑

j=0

2jλ
)
.

If −n/p 6 λ < 0, then

(2.7)

j0+1∑

j=0

2jλ 6
1

1− 2nλ
.

If λ = 0, then

(2.8)

j0+1∑

j=0

2jλ = j0 + 1 � 1 + log η.

If 0 < λ 6 1, then

(2.9)

j0+1∑

j=0

2jλ =
2λ(j0+2) − 1

2λ − 1
� ηλ.

Noting that Ep,0(Rn) = BMO(Rn), we complete the proof by (2.6)–(2.9). �

2.1. Proof of Theorem 1.1. By the definition and the Minkowski inequality,

(2.10)

‖HΦ,Af‖Lp,λ(Rn) = sup
r>0,x0∈Rn

1

|Q(x0, r)|λ/n+1/p

∥∥∥∥
∫

Rn

|Φ(y)|f(A(y)·) dy
∥∥∥∥
Lp(Q(x0,r))

6 sup
r>0,x0∈Rn

1

|Q(x0, r)|λ/n+1/p

∫

Rn

|Φ(y)|‖f(A(y)·)‖Lp(Q(x0,r)) dy.
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A change of variables gives that

(2.11) ‖f(A(y)·)‖Lp(Q(x0,r)) = |detA−1(y)|1/p
(∫

A(y)Q(x0,r)

|f(x)|p dx
)1/p

.

Next we will estimate (2.11) in two directions.

First, since

(2.12) diam(A(y)Q(x0, r)) = sup
x,z∈Q(x0,r)

|A(y)(x − z)| 6
√
n‖A(y)‖r := r̃,

there is some x̃0 ∈ R
n such that

A(y)Q(x0, ̺) ⊂ Q(x̃0, r̃),

which tells us that

(2.13)

(∫

A(y)Q(x0,r)

|f(x)|p dx
)1/p

6

(∫

Q(x̃0,r̃)

|f(x)|p dx
)1/p

6 |Q(x̃0, r̃)|λ/n+1/p‖f‖Lp,λ(Rn) ≃ (‖A(y)‖r)λ+n/p‖f‖Lp,λ(Rn).

Thus, we infer from (2.10), (2.11) and (2.13) that

(2.14) ‖HΦ,Af‖Lp,λ(Rn) � ‖f‖Lp,λ(Rn)

∫

Rn

|Φ(y)|
( ‖A(y)‖n
|detA(y)|

)1/p

‖A(y)‖λ dy.

Secondly, for any given A(y)Q(x0, r), obviously, it is a convex domain. By

Lemma 2.1, it is contained in a rectangle Ω satisfying |Ω| 6 n! |detA(y)||Q(x0, r)|.
Without loss of generality, we may assume that the side lengths of the rectangle Ω

are l1 6 l2 6 . . . 6 ln and denote l = l1 and ln = L = r̃, where r̃ is as in (2.12).

According to the definition of l and L, we have that

Ln−1l > |Ω| > |A(y)Q(x0, r)| ≃ |detA(y)|rn,

which yields that

(2.15)
L

l
=

Ln

Ln−1l
6

r̃n

|A(y)Q(x0, r)|
� ‖A(y)‖n

|detA(y)| .

Setting

γi =

{
li/l if li/l = [li/l],

[li/l] + 1 if li/l > [li/l],
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where i = 2, 3, . . . , n and [·] denotes the integer function. Now we divide the rect-
angle Ω into Γ = γ2γ3 . . . γn cubes with the same side length. Precisely, there is

a collection of mutually disjoint cubes Q1, Q2, . . . , QΓ in the interior, which have the

same side length l and satisfy Ω ⊂
Γ⋃

i=1

Qi. Therefore

(2.16)

(∫

A(y)Q(x0,r)

|f(x)|p dx
)1/p

�
( Γ∑

i=1

∫

Qi

|f(x)|p dx
)1/p

≃
( Γ∑

i=1

ln+λp

|Qi|1+λp/n

∫

Qi

|f(x)|p dx
)1/p

� ‖f‖Lp,λ(Rn)(Γl
n)1/plλ.

It follows from the definition of Γ that

(2.17) Γln ≃ |Ω| ≃ |detA(y)|rn,

and from (2.15) that

(2.18) lλ �
( |detA(y)|L

‖A(y)‖n
)λ

≃
( |detA(y)|r
‖A(y)‖n−1

)λ

.

Then, we infer from (2.10), (2.11), (2.16), (2.17) and (2.18) that

(2.19) ‖HΦ,Af‖Lp,λ(Rn) � ‖f‖Lp,λ(Rn)

∫

Rn

|Φ(y)|
( ‖A(y)‖n
|detA(y)|

)−λ

‖A(y)‖λ dy.

By combining (2.14) and (2.19), we finish the proof of the theorem. �

2.2. Proof of Theorem 1.2. Part (i) immediately follows from Theorem 1.1 and

the observation below Definition 1.2. It remains to prove (ii) and (iii). Because of

the Minkowski inequality,

(2.20) ‖HΦ,Af‖Ep,λ(Rn) 6

∫

Rn

|Φ(y)| ‖f(A(y)·)‖Ep,λ((Rn)) dy

=

∫

Rn

|Φ(y)| sup
r>0,x0∈Rn

1

|Q(x0, r)|1/p+λ/n

×
(∫

Q(x0,r)

|f(A(y)x) − f(A(y)·)Q|p
)1/p

dy,
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where f(A(y)·)Q =
∫
Q(x0,r)

f(A(y)z) dz/|Q(x0, r)|. A change of variables yields that

(2.21)

(∫

Q(x0,r)

|f(A(y)x)− f(A(y)·)Q|p dx
)1/p

6

(∫

Q(x0,r)

(
1

|Q(x0, r)|

∫

Q(x0,r)

|f(A(y)x) − f(A(y)z)| dz
)p

dx

)1/p

=
|detA−1(y)|1+1/p

|Q(x0, r)|

(∫

A(y)Q(x0,r)

(∫

A(y)Q(x0,r)

|f(v)− f(u)| du
)p

dv

)1/p

.

Next we will estimate the term on the right-hand side of (2.21).

First, the Minkowski inequality shows that

(∫

A(y)Q(x0,r)

(∫

A(y)Q(x0,r)

|f(v)− f(u)| du
)p

dv

)1/p

� |A(y)Q(x0, r)|
(∫

A(y)Q(x0,r)

|f(u)− fA(y)Q(x0,r)|p du
)1/p

= |A(y)Q(x0, r)|

×
(∫

A(y)Q(x0,r)

|f(u)− fQ(x̃0,r̃) + fQ(x̃0,r̃) − fA(y)Q(x0,r)|p du
)1/p

� |A(y)Q(x0, r)|
(∫

A(y)Q(x0,r)

|f(u)− fQ(x̃0,r̃)|p du
)1/p

(2.22)

� |A(y)Q(x0, r)|
(∫

Q(x̃0,r̃)

|f(u)− fQ(x̃0,r̃)|p du
)1/p

� ‖f‖Ep,λ(Rn)|A(y)Q(x0, r)||Q(x̃0, r̃)|λ/n+1/p

≃ ‖f‖Ep,λ(Rn)|detA(y)||Q(x0, r)|(‖A(y)‖r)λ+n/p,(2.23)

where Q(x̃0, r̃) is as in the proof of Theorem 1.1. Hence, we infer from (2.20), (2.21),

and (2.23) that

(2.24) ‖HΦ,Af‖Ep,λ(Rn) � ‖f‖Ep,λ(Rn)

∫

Rn

|Φ(y)|
( ‖A(y)‖n
|detA(y)|

)1/p

‖A(y)‖λ dy.

Secondly, an estimation similar to that in (2.22) and the argument in the proof of
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Theorem 1.1 show that

(2.25)

(∫

A(y)Q(x0,r)

(∫

A(y)Q(x0,r)

|f(v)− f(u)| du
)p

dv

)1/p

� |A(y)Q(x0, r)|
(∫

A(y)Q(x0,r)

|f(u)− f2Q(x̃0,r̃)|p du
)1/p

� |A(y)Q(x0, r)|
( Γ∑

i=1

∫

Qi

|f(u)− f2Q(x̃0,r̃)|p du
)1/p

,

where {Qi}Γi=1 is the family of cubes as in the proof of Theorem 1.1. On the other

hand, Lemma 2.2 and (2.15) tell us that, if λ = 0, then

(2.26)

∫

Qi

|f(u)− f2Q(x̃0,r̃)|p du � ‖f‖pBMO(Rn)

(
1 + log

L

l

)p

ln

� ‖f‖pBMO(Rn)

(
1 + log

‖A(y)‖n
|detA(y)|

)p

ln

and, if 0 < λ 6 1, then

(2.27)

∫

Qi

|f(u)− f2Q(x̃0,r̃)|p du � ‖f‖p
Ep,λ(Rn)

(L
l

)λp
ln+λp = ‖f‖p

Ep,λ(Rn)
Lλpln.

Thus (2.17), (2.25), and (2.26) yield that, if λ = 0, then

(2.28)

(∫

A(y)Q(x0,r)

(∫

A(y)Q(x0,r)

|f(v)− f(u)| du
)p

dv

)1/p

� ‖f‖Ep,λ(Rn)

(
1 + log

‖A(y)‖n
|detA(y)|

)
|detA(y)|rn(Γln)1/p

� ‖f‖Ep,λ(Rn)

(
1 + log

‖A(y)‖n
|detA(y)|

)
(|detA(y)|rn)1+1/p.

And (2.17), (2.25), and (2.27) tell us that, if 0 < λ 6 1, then

(2.29)

(∫

A(y)Q(x0,r)

(∫

A(y)Q(x0,r)

|f(v)− f(u)| du
)p

dv

)1/p

� ‖f‖Ep,λ(Rn)|detA(y)|rn(Γln)1/pLλ

� ‖f‖Ep,λ(Rn)(|detA(y)|rn)1+1/p(‖A(y)‖r)λ.

Therefore, we infer from (2.20), (2.21), and (2.28) that, if λ = 0, then

(2.30) ‖HΦ,Af‖BMO(Rn) � ‖f‖BMO(Rn)

∫

Rn

|Φ(y)|
(
1 + log

‖A(y)‖n
|detA(y)|

)
dy
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and from (2.20), (2.21), and (2.29) that, if 0 < λ 6 1, then

(2.31) ‖HΦ,Af‖Ep,λ(Rn) � ‖f‖Ep,λ(Rn)

∫

Rn

|Φ(y)|‖A(y)‖λ dy.

Thus we complete the proof of Theorem 1.2 by (2.24), (2.30), and (2.31). �

2.3. Proof of Corollary 1.1. Using the second part of Theorem 1.2 and the

celebrated H1-BMO inequality by Fefferman and Stein (see [4]), we finish the proof

by the same argument as in the proof of Theorem 2.2 in [6]. �

2.4. Proof of Theorem 1.3. The sufficiency part is easily obtained by Theo-

rem 1.1. It remains to prove the necessity part.

Since the space Lp,−n/p(Rn) reduces to the Lebesgue space Lp(Rn) and the corre-

sponding results were obtained in [15], we will just consider the case of −n/p < λ < 0.

Let f0(x) = |x|λ. It follows from [5] that f0 ∈ Lp,λ(Rn) and ‖f0‖Lp,λ(Rn) > 0. There-

fore

HΦ,Af0(x) =

∫

Rn

Φ(y)|A(y)x|λ dy

> |x|λ
∫

Rn

Φ(y)‖A(y)‖λ dy = f0(x)

∫

Rn

Φ(y)‖A(y)‖λ dy,

which completes the proof of the theorem. �

2.5. Proof of Theorem 1.4. The sufficiency part is obvious in view of Theo-

rem 1.2 (ii). It remains to prove the necessity part.

Without loss of generality, we assume that λ1(y) > 0 uniformly on supp(Φ). Let

f0(x) = 1 for x ∈ R
n
l , f0(x) = −1 for x ∈ R

n
r , where R

n
l and R

n
r denote the left and

right halves of Rn, separated by the hyperplane x1 = 0 (x1 is the first coordinate

of x ∈ R
n). It follows from [17] that f0 ∈ BMO(Rn) and ‖f0‖BMO(Rn) > 0. A simple

calculation leads to

HΦ,Af0(x) =





∫

Rn

Φ(y) dy, x ∈ R
n
l ,

−
∫

Rn

Φ(y) dy, x ∈ R
n
r .

That is

HΦ,Af0(x) = f0(x)

∫

Rn

Φ(y) dy,

which finishes the proof of the theorem. �
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