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Abstract. We prove that for any positive integers n1, n2, . . . , nk there exists a real flag
manifold F (1, . . . , 1, n1, n2, . . . , nk) with cup-length equal to its dimension. Additionally,
we give a necessary condition that an arbitrary real flag manifold needs to satisfy in order
to have cup-length equal to its dimension.
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1. Introduction

The Z2-cohomology cup-length (or cup-length) of a path connected space X , de-

noted by cup(X), is the supremum of all positive integers m such that there exist

classes a1, a2, . . . , am ∈ H̃∗(X ;Z2) with nonzero cup product, i.e., a1a2 . . . am 6= 0.

It is well-known that cup(M) provides a lower bound for the Lyusternik-Shnirel’man

category of M (recall that the Lyusternik-Shnirel’man category of M , denoted

by cat(M), is the minimum number of open subsets ofM coveringM , each of which

is contractible in M). In fact, one has

(1.1) 1 + dim(M) > cat(M) > 1 + cup(M)

(in this paper dimension of a manifold M will be denoted by dim(M)). A triv-

ial upper bound for the cup-length of a manifold is its dimension. Furthermore, if

cup(M) = dim(M), then (1.1) implies cat(M) = 1 + cup(M). In general, determin-

ing cat(M) poses a very difficult problem, so it is of interest to find manifolds M
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with cup-length equal to its dimension. In this paper, if cup(M) = dim(M), then

we say that the cup-length of M (or just cup(M)) is maximal.

We consider this question for real flag manifolds (in this paper we only work with

real flag manifolds, so we often use the term flag manifold). Let n1, n2, . . . , nk ∈ N,

k > 2. The (real) flag manifold F (n1, n2, . . . , nk) is defined as the homogeneous

space

O(n1 + n2 + . . .+ nk)/O(n1)×O(n2)× . . .×O(nk).

The numbers ni, for i ∈ [k], are the steps of this flag manifolds. Two special cases

of flag manifolds are particularly important—flag manifolds with k = 2 are the

Grassmann manifolds, and flag manifolds with n1 = . . . = nk = 1 are the complete

flag manifolds.

Although the cup-length of Grassmann manifold F (m,n) is known only for m 6 4

(see [3] and [10]), all Grassmann manifolds with maximal cup-length are known due

to Berstein.

Theorem 1.1 ([1]). The cup-length of Grasmmann manifold F (m,n) is maximal

if and only if m = 1, or m = 2 and n = 2t − 1, for some t ∈ N.

The cup-length of all complete flag manifolds is maximal. In fact, the following

stronger result holds (in this paper, we use the following notation: a...k := a, . . . , a︸ ︷︷ ︸
k

).

Lemma 1.2 ([5]). For all j, n ∈ N, the cup-length of F (1...j , n) is maximal.

Having in mind the previous two results, one may think that a similar (simple)

classification of all flag manifolds with maximal cup-length can be found, but it

seems that this question is much more difficult. There have been attempts in the

literature to solve this problem, but only some partial results were obtained. In [5]

a family of flag manifolds of the form F (1...j , 2...d, n) with maximal cup-length was

found. This family was extended in [6], where, additionally, a necessary and sufficient

condition for cup(F (1...j , 2...d, n)) = dim(F (1...j, 2...d, n)) in cases d = 1 and d = 2

were obtained. Up to now, no infinite family of flag manifolds with maximal cup-

length and at least two steps greater than 2 was known.

The main result of this paper is the following.

Theorem 1.3. For any positive integers n1, n2, . . . , nk there exists a positive in-

teger j such that cup(F (1...j , n1, . . . , nk)) is maximal.

We divide the proof of this result into two parts. In Section 3, we use the method

of embedding the cohomology of a flag manifold in the cohomology of a complete

flag manifold, developed by Korbaš and Lörinc in [5], and prove the result for k = 2
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and n1 = n2. In Section 4, we complete the proof using the method of “fiberings”

introduced by Horanská and Korbaš in [4].

In Section 5 we give a necessary condition that a flag manifold with maximal

cup-length needs to satisfy. In particular, this implies the following result.

Theorem 1.4. If the cup-length F (n1, . . . , nk) is maximal, then at least one of

the numbers ni, i ∈ {1, 2, . . . , k}, is not greater than 3.

2. Preliminaries and notation

Let N0 = N∪{0}. Also, for k ∈ N we denote [k] := {1, 2, . . . , k}. Furthermore, for

an m-tuple α = (α1, α2, . . . , αm) ∈ N
m
0 we use the following notation:

|α| :=

m∑

j=1

αj and ‖α‖ :=

m∑

j=1

jαj .

Let F := F (n1, n2, . . . , nk) be a flag manifold. Then dim(F ) =
∑

16i<j6k

ninj .

There are k canonical vector bundles over F , which we denote by γi, for i ∈ [k]

(dim γi = ni). By Borel’s description from [2] (more precisely, its slight modifica-

tion, see for example [7]), each class in H∗(F ;Z2) is a polynomial in Stiefel-Whitney

of the vector bundles γi for i ∈ [k − 1]. In this paper we denote by wi,j the jth

Stiefel-Whitney of the vector bundles γi for i ∈ [k − 1] and j ∈ [ni].

For i ∈ [k−1] and an ni-tuple α = (α1, α2, . . . , αni
) ∈ N

ni

0 we use the notationW
α
i

for the monomial wα1

i,1w
α2

i,2 . . . w
αni

i,ni
. Also, let

S0 := nk and Si := nk + n1 + n2 + . . .+ ni, i ∈ [k − 1].

Furthermore, by an abuse of notation, we denote Wi = {wi,1, . . . , wi,ni
}, i ∈ [k − 1].

So,

Z2[W1, . . . ,Wk−1] = Z2[w1,1, . . . , w1,n1
, . . . , wk−1,1, . . . , wk−1,nk−1

].

Note that the cup-length of F is maximal if and only if a1 . . . adimF
6= 0 for some

ai ∈ H̃∗(F ;Z2), i ∈ [dim(F )]. Note that the latter implies ai ∈ H1(F ;Z2) for all

i ∈ [dim(F )]. Hence, the cup-length of F is maximal if and only if there exist αi ∈ N0,

i ∈ [k − 1], such that wα1

1,1 . . . w
αk−1

k−1,1 6= 0. Of course, a necessary condition for the

last relation is that αi 6 ht(wi,1) for i ∈ [k − 1], where ht(a) denotes the height of

the class a (the height of a class a ∈ H̃∗(X ;Z2) is the largest positive integer n such

that an 6= 0).
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Although the cup-length of a general flag manifold is far from being understood,

the heights of the first Stiefel-Whitney classes are known by the following result of

Korbaš and Lörinc (see [5]).

Proposition 2.1. Let t be the unique integer such that 2t < Sk−1 6 2t+1, and

let mi = min{ni, Sk−1 − ni}. Then

ht(wi,1) =






Sk−1 − 1 if mi = 1,

2t+1 − 2 if mi = 2, or mi = 3 and Sk−1 = 2t + 1,

2t+1 − 1 otherwise.

We also denote ht(ni) := ht(wi,1) for i ∈ [k − 1].

3. Evaluation of cup-length and complete flags

In this section we prove our main result in the case k = 2 and n1 = n2. The

method that we use in the proof is the one introduced by Korbaš and Lörinc in [5].

First, we explain this method.

Letm > 2 and observe the complete flag manifold F (1...m). Denote by ei := w1(γi)

the first Stiefel-Whitney class of the canonical line bundle γi over F (1...m), i ∈ [m].

The following lemma is well-known (see [5], [10]).

Lemma 3.1. A monomial ea1

1 . . . eam

m ∈ H(m2 )(F (1...m);Z2) ∼= Z2 is nonzero if and

only if (a1, a2, . . . , am) is a permutation of the m-tuple (m− 1,m− 2, . . . , 1, 0).

Let n1, n2, . . . , nk (k > 2) be positive integers, νi = n1+n2+ . . .+ni, i ∈ [k] (it is

understood that ν0 = 0), and m = νk. For the flag manifold F (n1, n2, . . . , nk) we

have the map p : F (1...m) → F (n1, n2, . . . , nk), given by

p(V1, . . . , Vn1
, . . . , Vνk−1+1, . . . , Vm) = (V1 ⊕ . . .⊕ Vn1

, . . . , Vνk−1+1 ⊕ . . .⊕ Vm).

Our proof is based on the following result from [5], page 154.

Lemma 3.2. If F = F (n1, n2, . . . , nk), u ∈ HdimF (F ;Z2) and

v = en1−1
1 . . . en1−1e

n2−1
n1+1 . . . en1+n2−1 . . . e

nk−1
νk−1+1 . . . eνk−1 ∈ H∗(F (1...m);Z2),

then p∗(u) · v ∈ H(m2 )(F (1...m);Z2) and

u 6= 0 if and only if p∗(u) · v 6= 0.
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In [5], page 155 the authors also gave a description of the map p∗ from the previ-

ous lemma. If wi,j is the jth Stiefel-Whitney class of the canonical bundle γi over

F (n1, n2, . . . , nk), i ∈ [k], j ∈ [ni], then p∗(wi,j) is the jth elementary symmetric

polynomial in the variables eνi−1+1, eνi−1+2, . . . , eνi . In our application the most

important will be the case j = 1, when one has

(3.1) p∗(wi,1) = eνi−1+1 + eνi−1+2 + . . .+ eνi .

For a1, a2, . . . , ak ∈ N0, we denote the multinomial coefficient by

(
a1 + a2 + . . .+ ak

a1, a2, . . . , ak

)
:=

(a1 + a2 + . . .+ ak)!

a1! a2! . . . ak!
.

The following lemma is probably well-known, but we prove it for the sake of com-

pleteness.

Lemma 3.3. Let a1, . . . , ak be nonnegative integers and ai = (α1,i, . . . , αsi,i)2,

for i ∈ [k], their representations in base 2. Then

(
a1 + a2 + . . .+ ak

a1, a2, . . . , ak

)
is odd

if and only if for all i, j ∈ [k], i 6= j, and l ∈ [max{si, sj}] at least one of the

numbers αl,i and αl,j is equal to zero.

P r o o f. (⇒) By symmetry, it is enough to prove the claim for i = k − 1 and

j = k. Since

(
a1 + a2 + . . .+ ak

a1

)
. . .

(
ak−1 + ak

ak−1

)
=

(
a1 + a2 + . . .+ ak

a1, a2, . . . , ak

)
≡ 1 (mod 2),

the number
(
ak−1+ak

ak

)
is odd. Now, the result follows from [6], Lemma 2.3.

(⇐) Note that the given condition implies that for every i ∈ [k] and every l ∈ N0

at most one of the numbers ai and ai+1 + . . .+ ak has digit 1 in position l. By [6],

Lemma 2.3, this implies that
(
ai+ai+1+...+ak

ai

)
is odd (for all i ∈ [k − 1]), which

completes our proof. �

Lemma 3.4. For every n ∈ N there exists j ∈ N such that cup(F (1...j , n, n)) is

maximal.
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P r o o f. If n = 1, then by Lemma 1.2 we can take j = 1. So, we may assume

that n > 2. Let s be the unique integer such that 2s−1 < n 6 2s. We will prove that

j = 2s+n−1 has the desired property. Let a1, a2, . . . , aj be the sequence obtained

from the sequence n, n + 1, . . . , 2n + j − 1 by removing numbers 2s+i + i for i ∈

[n − 1] ∪ {0} (note that 2n + j − 1 > 2s+n−1 + n − 1 > 2s > n). Finally, let

m = 2s + 2s+1 + . . .+ 2s+n−1 = 2s+n − 2s.

Note that

m+

j∑

i=1

ai = n2 + 2nj +

(
j

2

)
= dim(F (1...j , n, n)),

so it is enough to prove that
j∏

i=1

wai

i,1 ·w
m
j+1,1 is nonzero (in H

∗(F (1...j , n, n);Z2)). By

Lemma 3.2 and (3.1), this is equivalent with (in H∗(F (1...j+2n);Z2))

(3.2) 0 6= (ej+1 + . . .+ ej+n)
men−1

j+1 . . . ej+n−1e
n−1
j+n+1 . . . ej+2n−1

j∏

i=1

eai

i

=
∑

t1+...+tn=m

(
m

t1, . . . , tn

)
et1+n−1
j+1 . . . e

tn−1+1
j+n−1 e

tn
j+ne

n−1
j+n+1 . . . ej+2n−1

j∏

i=1

eai

i .

By Lemma 3.1, a summand in the last expression is nonzero if and only if the multi-

nomial coefficient
(

m
t1,...,tn

)
is odd and (t1 + n− 1, . . . , tn−1 + 1, tn) is a permutation

of the n-tuple (2s+n−1 + n− 1, . . . , 2s+1 + 1, 2s).

Let (t1, . . . , tn) be an n-tuple satisfying these conditions. Since ti + n− i > 2s >

n− 1, we have that ti > 0 for all i ∈ [n], i.e. ti has at least one nonzero digit in the

binary expansion. On the other hand, m has exactly n digits in the binary expansion,

so by Lemma 3.3,
(

m
t1,...,tn

)
is odd if and only if

{t1, . . . , tn−1, tn} = {2s+n−1, . . . , 2s+1, 2s}.

Additionally, {t1 + n − 1, . . . , tn−1 + 1, tn} = {2s+n−1 + n − 1, . . . , 2s+1 + 1, 2s}, so

there is an index i ∈ [n] such that 2s+n−1 + n − 1 = ti + n − i. Since 2s+n−1 > ti
and n− 1 > n− i, we have that i = 1 and t1 = 2s+n−1. Continuing in the same way

we conclude that t2 = 2s+n−2, . . . , tn = 2s.

Hence, (t1, . . . , tn) = (2s+n−1, . . . , 2s+1, 2s) is the only n-tuple for which the cor-

responding summand in (3.2) is nonzero. This completes our proof. �

Note that j constructed in the previous lemma satisfies j = 2s+n−1 6 (n− 1)2n.
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4. Fiberings and cup-length

To complete the proof of our main result we use the method of “fiberings” intro-

duced by Horanská and Korbaš in [4]. This method proved very useful in cup-length

calculation (see [4], [5], [9]). It is based on the following result.

Theorem 4.1 ([4]). Let p : E → B be a smooth fiber bundle with connected

base B and connected fiber F . Suppose that the fiber inclusion induces an epimor-

phism in Z2-cohomology. Then cup(E) > cup(F ) + cup(B).

Let us observe the following fiber bundle (see [5]):

F (nl+1, . . . , nk) F (n1, . . . , nk)
�

�

//

F (n1, . . . , nl, nl+1 + . . .+ nk).
��
✤

✤

✤

✤

✤

✤

Since the inclusion i : F (nl+1, . . . , nk) → F (n1, . . . , nk) induces an epimorphism in

Z2-cohomology (see [5]), we can apply Theorem 4.1 on this fiber bundle. Additionally,

we have

dim(F (nl+1, . . . , nk)) + dim(F (n1, . . . , nl, nl+1 + . . .+ nk)) = dim(F (n1, . . . , nk)),

so from Theorem 4.1 and the fact that the upper bound for the cup-length is the

dimension of the manifold, we obtain the following result:

(4.1) If cup(F (nl+1, . . . , nk)) and cup(F (n1, . . . , nl, nl+1 + . . .+ nk)) are

maximal, then cup(F (n1, . . . , nk)) is also maximal.

We are ready to prove our main result.

P r o o f of Theorem 1.3. By Lemma 1.2 for k = 1 it is enough to take j = 1. So,

we may assume that k > 2. We continue our proof by induction on k.

Base case k = 2. Since F (1...j , n1, n2) is homeomorphic to F (1...j , n2, n1) (for

any j), we may assume that n1 6 n2. If n1 = n2, then the result follows from

Lemma 3.4.

So, let us assume that n1 < n2. Furthermore, let j
′ be a positive integer such that

cup(F (1...j
′

, n2, n2)) is maximal (j
′ exists by Lemma 3.4) and consider the following

fiber bundle:

F (1...(n2−n1), n1) F (1...j
′

, n2, 1
...(n2−n1), n1)

�

�

//

F (1...j
′

, n2, n2).
��
✤

✤

✤

✤

✤
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By Lemma 1.2, Lemma 3.4 and (4.1), we conclude that the cup-length of the flag

manifold F (1...j
′+n2−n1 , n1, n2) is maximal.

Inductive step. Suppose that the claim is true for all l ∈ [k] \ {1} and let us prove

it for k + 1.

Let j′ be a positive integer such that cup(F (1...j
′

, nk, nk+1)) is maximal and j′′

a positive integer such that cup(F (1...j
′′

, n1, . . . , nk−1, j
′ + nk + nk+1)) is maximal

(j′ and j′′ exist by inductional hypothesis). Now, using (4.1) for the fiber bundle

F (1...j
′

, nk, nk+1) F (1...j
′′

, n1, . . . , nk−1, 1
...j′ , nk, nk+1)

�

�

//

F (1...j
′′

, n1, . . . , nk−1, j
′ + nk + nk+1)

��
✤

✤

✤

✤

✤

we conclude that cup(F (1...j
′+j′′ , n1, . . . , nk+1)) is also maximal. �

The number j constructed in the previous proof is quite large. We demonstrate

this in cases k = 2 and k = 3 (we use the same notation as above).

Let k = 2 and w.l.o.g. n1 6 n2. Then j = j′+n2−n1, where, by the remark after

Lemma 3.4, j′ 6 (n2 − 1)2n2 . So, j 6 (n2 − 1)2n2 + n2 − n1 < n2 · 2
n2 .

Now, let k = 3 and w.l.o.g. n1 > n2 > n3. Then j = j′ + j′′, and from the case

k = 2 one has j′ < n2 · 2
n2 and j′′ < max{(j′ + n2 + n3)2

j′+n2+n3 , n1 · 2
n1}. So,

j < max{(n2 · 2
n2 + n2 + n3)2

n2·2
n2+n2+n3 , n1 · 2

n1}.

At the end of this section we show that if cup(F (1...j , n1, . . . , nk)) is maximal,

then cup(F (1...j
′

, n1, . . . , nk)) is also maximal for all j
′ > j. Clearly, it is enough

to consider the case j′ = j + 1. Then the proof follows from Lemma 1.2 and (4.1)

applied to the following fiber bundle:

F (1...j , n1, . . . , nk) F (1...j+1, n1, . . . , nk)
�

�

//

F (1, j + n1 + . . .+ nk).
��
✤

✤

✤

✤

✤

✤

This construction implies that in order to obtain all flag manifolds with maximal

cup-length, it is enough to find (for every k > 2 and n1, . . . , nk ∈ N) the minimal

j = j(n1, . . . , nk) such that F (1...j , n1, . . . , nk) has maximal cup-length.
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5. Gröbner bases and cup-length

In this section we give a necessary condition that a flag manifold with maximal

cup-length needs to satisfy. This proof is based on a result from [7] (in fact, its mod 2

variant), where Gröbner bases for all flag manifolds were constructed.

Throughout this section, let F denote the flag manifold F (n1, n2, . . . , nk) and t

the unique integer such that 2t < Sk−1 6 2t+1. Also, we use the notation introduced

in Section 2.

Lemma 5.1. For every f ∈ Z2[W1,W2, . . . ,Wk−1] there is a polynomial p such

that p = f in H∗(F ;Z2) and

(i) for each monomial W
α(1)
1 . . .W

α(k−1)
k−1 of p and i ∈ [k− 1] we have |α(i)| 6 Si−1;

(ii) if no monomial of f contains a variable fromW1∪W2∪ . . .∪Wl for an l ∈ [k−1],

then the same holds for p.

The following lemma will be the key for obtaining the main result of this section

(this lemma generalizes [8], Corollary 3.1.4.).

Lemma 5.2. Let α(i) for i ∈ [k− 1] be an arbitrary ni-tuple of nonnegative inte-

gers. If
k−1∑
i=l

‖α(i)‖ >
k−1∑
i=l

niSi−1 for an l ∈ [k − 1], then W
α(1)
1 W

α(2)
2 . . .W

α(k−1)
k−1 = 0

in H∗(F ;Z2).

P r o o f. It suffices to prove that W
α(l)
l . . .W

α(k−1)
k−1 = 0 in H∗(F ;Z2). We know

that W
α(l)
l . . .W

α(k−1)
k−1 ∈ Hq(F ;Z2), where q =

k−1∑
i=l

‖α(i)‖. Let p be the polynomial

from Lemma 5.1 such that p = W
α(l)
l . . .W

α(k−1)
k−1 in H∗(F ;Z2). Suppose that p is

nonzero. Then an arbitrary monomial in p is of the form W
β(l)
l . . .W

β(k−1)
k−1 , where

β(i) ∈ N
ni

0 and |β(i)| 6 Si−1 for all i ∈ {l, . . . , k − 1}. But the dimension of

W
β(l)
l . . .W

β(k−1)
k−1 (and also of p) is

k−1∑

i=l

‖β(i)‖ 6

k−1∑

i=l

ni|β(i)| 6
k−1∑

i=l

niSi−1 < q,

which is a contradiction since p = W
α(l)
l . . .W

α(k−1)
k−1 ∈ Hq(F ;Z2). �

We are ready to prove the main result of this section.

Proposition 5.3. Suppose that a flag manifold F has maximal cup-length and

let t be as above. Then for every permutation π of the set {1, 2, . . . , k} and every
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l ∈ [k − 1] we have

nπ(k)

l∑

i=1

nπ(i) +
∑

16i<i′6l

nπ(i)nπ(i′) 6

l∑

i=1

ht(nπ(i)).

P r o o f. Since F has the maximal cup-length, so does the flag manifold F̃ :=

F (nπ(1), nπ(2), . . . , nπ(k)). Let w̃i,1 for i ∈ [k− 1] be the first Stiefel-Whitney class of

the ith tautological vector bundle over this manifold, and

w̃a1

1,1w̃
a2

2,1 . . . w̃
ak−1

k−1,1 6= 0

a class in H∗(F̃ ;Z2) such that
k−1∑
i=1

ai = dim(F̃ ). Then, by Lemma 5.2, we have

l∑

i=1

ai = dim(F̃ )−

k∑

i=l+1

ai > dim(F̃ )−

k∑

i=l+1

nπ(i)

(
nπ(k) +

i−1∑

j=1

nπ(j)

)

= nπ(k)

l∑

i=1

nπ(i) +
∑

16i<i′6l

nπ(i)nπ(i′).

On the other hand, ai 6 ht(nπ(i)), for i ∈ [k−1], which together with the previous

inequality gives us the desired result. �

Let us go back to the question from the previous sections. So, for the given positive

integers n1, n2, . . . , nk, k > 2, we want to find j such that cupF (1...j , n1, . . . , nk) is

maximal. In what follows we show that if the numbers ni are large enough, then

Proposition 5.3 implies that j also must be large.

Suppose that ni > m for an m > 4 and all i ∈ [k]. As usual, let t be the

unique integer such that 2t < j +
k∑

i=1

ni 6 2t+1. Then, by Proposition 2.1, ht(ni) =

2t+1 − 1, so applying Proposition 5.3 for the permutation (π(1), . . . , π(k + j)) =

(n1, . . . , nk−1, 1, . . . , 1, nk) and l = k − 1, gives

(2t+1 − 1)(k − 1) >
∑

16i<i′6k

nini′ .

Since j > 2t −
k∑

i=1

ni + 1, one has 2j + 2
k∑

i=1

ni − 3 > 2t+1 − 1, so by the previous

inequality

2(k − 1)j >
∑

16i<i′6k

nini′ − 2(k − 1)

k∑

i=1

ni + 3(k − 1) = f(n1, . . . , nk).
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Note that f is a linear function in each nt, t ∈ [k]. Furthermore, for t ∈ [k]

f(n1, . . . , nk) =

(∑

i′ 6=t

ni′ − 2(k− 1)

)
nt +

∑

16i<i′6k

i,i′ 6=t

nini′ − 2(k− 1)
∑

i′ 6=t

ni′ +3(k− 1),

and since
∑
i′ 6=t

ni′ − 2(k − 1) > 2(k − 1), this function is increasing in nt for every

t ∈ [k]. This implies f(n1, . . . , nk) > f(m, . . . ,m), and hence

(5.1) j >
f(m, . . . ,m)

2(k − 1)
=

1

4
(km2 − 4km+ 6) > 1.

This inequality immediately implies Theorem 1.4. However, we note that to obtain

this result one does not need Lemma 5.2, i.e. it follows from the case l = k − 1 of

Proposition 5.3, which is in fact (obvious) inequality dim(F ) 6
k−1∑
i=1

ht(ni).

Remark 5.4. Of course, j obtained using the proofs of Lemma 3.4 and Theo-

rem 1.3 is much larger than the lower bound from (5.1) (see the paragraphs after

the proof of Theorem 1.3), i.e. there is quite a gap between the lower and the upper

bound (that we obtain in this paper) for the minimal j with the desired property.

We finish this section with the following example.

Example 5.5. The cup-length of F (1...17, 3, 5, 7) is not maximal. To prove this,

it is enough to apply Proposition 5.3 for the permutation π = (3, 5, 1, . . . , 1, 7) and

l = 2. Indeed, ht(3) = ht(5) = 31, but the left-hand side of the inequality from

Proposition 5.3 is equal to 71.
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