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GROWTH OF WEIGHTED VOLUME
AND SOME APPLICATIONS

Mirjana Milijević and Luis P. Yapu

Abstract. We define cut-off functions in order to allow higher growth for
Dirichlet energy. Our results are generalizations of the classical Cheng-Yau’s
growth conditions of parabolicity. Finally we give some applications to the
function theory of Kähler and quaternionic-Kähler manifolds.

1. Introduction

Let M denote a complete non-compact n-dimensional Riemannian manifold and
Vol(Bx0(R)) denote the volume of the geodesic ball with center at x0 and radius
R. If the center is not relevant, we write simply B(R). The volume growth is a
geometric condition which is useful in the function theory of M . For instance, Cheng
and Yau [1] showed that if the volume growth of M satisfies Vol(B(R)) ≤ CR2 for
some constant C > 0, then M must be parabolic, i.e. every superharmonic positive
function on M must be constant. The growth condition in Cheng and Yau’s result
has been improved to Vol(B(R)) ≤ K(R), with K(R) a function such that R/K(R)
is not L1-integrable (cf. [4, 5, 9, 20]). We refer to [6] for other definitions and more
properties of parabolicity.

Let us now consider another definition of parabolicity. The non-compact manifold
M is parabolic if considering the exhaustion by balls {B(Ri)}i∈N of M , the sequence∫
B(Ri) |∇φRi |

2dv goes to zero when i approaches infinity, where φRi are cut-off
functions supported on the ball B(Ri), harmonic on the annulus B(Ri) − B(r0)
and identically one on the boundary sphere ∂B(r0), with r0 < Ri, i ∈ N.

Looking for a generalization of the above definition, consider a non-negative
continuous function P on M . We want to find sufficient conditions in order to
ensure that the integral of the form IR :=

∫
M
P |∇φR|2dv goes to zero for large

R, where φR is a cut-off function (a non-negative, bounded, smooth function with
compact support) supported on the ball Bx0(R). That kind of integral appears
often in computations using integration by parts and its asymptotic vanishing could
help to show that some related integrals of the form

∫
B(R) |Q|

2 φ2
Rdv converges
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also to zero as R → ∞, implying that Q is identically zero, where Q is a useful
expression having a geometric meaning.

Consequently, in order to proof that IR → 0 as R → ∞ we choose a suitable
cut-off function and use the condition on the growth of the P -weighted volume∫
Bx0 (R) P dv. Thus it is interesting to give the next definition motivated by the

definition of parabolicity and consider manifolds where the property IR → 0 as
R→∞ holds. For other definitions on weighted parabolicity we refer to [7], where
the weight P is taken positive.
Definition 1.1. Let P ∈ C0(M) be a non-negative function. A complete Riemann-
ian manifold M is said to be P -weighted parabolic if for any compact subset K ⊂M
and each ε > 0, there exists a cut-off function φR ∈ C∞(M) with 0 ≤ φR ≤ 1,
φR ≡ 1 in a neighbourhood of K and

∫
M
P |∇φR|2dv < ε as R→∞.

Note that parabolicity corresponds to taking the constant function P ≡ 1. Using
the above definition we get the following result, the main result of this paper.
Theorem 1.2. Let M be a complete Riemannian manifold and P ∈ C0(M),
non-negative and not identically zero. We define a function K by K(R) :=∫
Bx0 (R) Pdv for some point x0 such that P (x0) 6= 0.

(i) If the function K satisfies

(1)
∫ R

r0

r

K(r)dr →∞ as R→∞ ,

then M is P -weighted parabolic.
(ii) If K ′(r) > 0 almost everywhere and

∫ R
r0

1
K′(r)dr →∞ as R→∞, then M

is P -weighted parabolic.
The volume growth of orders O(R2) and O(R2ln(R)) can be usually obtained

with standard cut-off functions, see Remark 3.2. These cases are included in the
condition that r/K(r) is not L1-integrable of our theorem. A cut-off function with
similar properties appeared in [19] in a geometric application. Our result was
obtained independently, avoids the condition of r/K(r) being non-increasing and
makes explicit the method which can be used in other applications.

In Section 2, we recall some of the various concepts related to parabolicity and
its weighted generalization. The main result is proved in Section 3. Finally in
Section 4, we use our cut-off function to improve some known results on Kähler
and quaternionic-Kähler manifolds.

We are thankful to Professor Detang Zhou for his sincere help with the starting
ideas for this paper. We also appreciate suggestions from A. Setti and S. Pigola
which have improved our work. L.P.Y. wishes to thank Faperj (Brazil) for financial
support.

2. Preliminaries

Let (M, g) be a Riemannian manifold and ∇ the Levi-Civita connection. As
usual Bx0(R) denotes the geodesic ball centered at point x0 of radius R > 0, ∇f
denotes the gradient of a function f and ∆ = dd∗ + d∗d is the Hodge Laplacian.
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The function u is said to be harmonic if Laplace’s equation holds, i.e.
∆u = 0 .

When M is a complex manifold we say that a function u is pluriharmonic if
∂∂u = 0. Where ∂ : Ap,q(M) → Ap+1,q(M), ∂ : Ap,q → Ap,q+1(M) are given in
local coordinates by ∂ω = dzk ∧∇ ∂

∂zk

ω, ∂ω = dzk ∧∇ ∂

∂zk
ω, and Ap,q(M) denotes

the space of (p, q)-forms on (M, g).

Definition 2.1 ([13]). A manifold M is parabolic if for any the sequence of
functions {fi} defined on the annulus B(Ri) − B(R0), satisfying ∆fi = 0 on
B(Ri)−B(R0), with boundary conditions

fi =
{

1 , on ∂B(R0)
0 , on ∂B(Ri ,

we have that
∫
M
‖∇fi‖2 → 0 as Ri →∞ for any fixed R0.

It is known that when Vol(Bx0(R)) satisfies
∫∞ R

Vol(Bx0 (R))dR = ∞, then the
manifold is parabolic (cf. [6]).

We are more interested in the following definition of parabolicity:

Definition 2.2 ([16]). A Riemannian manifold M is called parabolic if for each
compact subset K ⊂ M and each ε > 0, there exists a smooth cut-off function
φ ∈ C∞(M) with 0 ≤ φ ≤ 1, φ ≡ 1 on a neighborhood of K and

∫
M
|∇φ|2dv < ε.

Definitions 2.1 and 2.2 are related by the concept of capacity. We denote by
Cap(K,Ω) the capacity of a compact set K inside a domain Ω ⊂M . It is defined
as

Cap(K,Ω) = inf
u∈L(K, Ω)

∫
Ω
‖∇u‖2dv ,

where L(K,Ω) is the set of Lipschitz functions u on M with a compact support in
Ω such that u|K = 1, 0 ≤ u ≤ 1. If Ω = M , we write Cap(K) = Cap(K,M). It is
known that
(2) Cap(K) = lim

i→∞
Cap(K,Ωi) ,

for any exhaustion sequence {Ωi}, K ⊂ Ω1 ⊂ Ω2 ⊂ · · · ⊂M and
⋃

Ωi = M .
Taking Ωi = Bx0(Ri), with Ri →∞, we have a harmonic function hi that is the

solution to the Dirichlet problem in Ωi −K:
∆hi = 0 , hi|∂Ωi = 0 , hi|∂K = 1 .(3)

Then from Definition 2.1, we have limi→∞
∫

Ωi ‖∇hi‖
2dv = 0, which implies

Cap(Bx0(R0)) = 0. From this we conclude that Cap(K) = 0 for any compact set
K, that is we have Definition 2.2 (see [6], Theorem 5.1, (6)).

For the converse, we take a sequence of harmonic functions hi satisfying the
boundary conditions (3). By Definition 2.2 we have that Cap(Bx0(R0)) = 0, which,
using (2), implies by that limi→∞

∫
Ωi ‖∇hi‖

2dv = 0, i.e. we have Definition 2.1.
Now we give our definition of P -weighted parabolicity. Observe that when P ≡ 1,

it coincides with Definition 2.2 of parabolicity.
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Definition 2.3. Let M be a complete Riemannian manifold and P a non-negative
continuous function on M . Then M is said P-weighted parabolic if for each geodesic
ball Bx0(R) and each ε > 0, there exist a cut-off function φR ∈ C∞(M) with
0 ≤ φR ≤ 1, φR ≡ 1 in the ball Bx0(R) and such that

∫
M
P |∇φR|2dv → 0 as

R→∞.

Example 2.4. A manifold M is called rotationally symmetric at a point p ∈M if
the isotropy subgroup at p of the isometry group of M is O(n). By Greene and
Wu [3], the rotationally symmetric manifolds are recognized as model spaces for
comparison in Riemannian geometry because of the simplicity of their geometric
structure. A rotationally symmetric manifold is diffeomorphic to Rn or to the
sphere Sn. The Riemannian metric on M in polar coordinates has the form

ds2 = dr2 + g2(r)dθ2 ,

with g(0) = 0 and g′(0) = 1. For instance, when g(r) = r, we get the Euclidean
space M = Rn, and when g(r) = sin r, we get the round sphere M = Sn. On a
rotationally symmetric manifold M it is known that the condition∫ ∞ 1

Vol(Sn−1
R )

dR =∞

is equivalent to M being parabolic [6], where Sn−1
R denotes any (n− 1)-sphere of

radius R.
Given a non-negative continuous function P and defining K(R) =

∫
Bx0 (R) PdV

as before, it is easy to see that the condition
K ′(R) ≤ CR lnR(4)

for some constant C, implies that K(R) ≤ CR2 lnR and then
∫∞ R

K(R)dR = ∞.
Therefore M is P -weighted parabolic by our main Theorem 1.2.

Let us now assume that the function P depends on the radial coordinate, that
is P = P (r). We compute,

K(R) =
∫
Bx0 (R)

P (r)dV =
∫ R

0

∫
Sn−1

P (r)gn−1(r)dΩdr = ωn−1

∫ R

0
P (r)gn−1(r)dr ,

where ωn−1 =
∫
Sn−1 dΩ is the volume of the (n− 1)-sphere of radius one. It follows

that
K ′(R) = ωn−1P (R)gn−1(R) .

Using (4), we conclude that if P (R)gn−1(R) ≤ CR lnR, then
∫∞ 1

K′(R)dR =∞,
that is M is P -weighted parabolic.

Therefore, we have the following:

Proposition 2.5. Let M be a rotationally symmetric manifold with a metric
ds2 = dr2 + g2(r)dθ2. If the radial function P (r) satisfies P (r)gn−1(r) ≤ Cr ln r,
then M is P (r)-weighted parabolic.

For instance the Euclidean space R3 (i.e. g(r) = r) is not parabolic but it is
P (r)-weighted parabolic for any P (r) ≤ C ln r

r .
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3. Proof of the main theorem

In this section we prove the main result of this paper following some ideas of
Section 7 in [6].
Proof of Theorem 1.2. For item (i), since P (x0) 6= 0, by continuity of P we
have that K(r) > 0 for any r > 0.

For 0 < r0 < R, define the cut-off function φR such that

φR(x) =
{

1, 0 ≤ x ≤ r0

0, x ≥ R .

Denoting by ρ the distance function with respect to the point x0, ρ(·) = dist(x0, ·),
choose φR on the interval (r0, R) such that

φ′R(ρ) = −aR
ρ

K(ρ) ,

where aR :=
(∫ R

r0
s

K(s)ds
)−1

. Hence φR(ρ) = aR
∫ R
ρ

s
K(s)ds, and the function φR

verifies φR(r0) = aR
∫ R
r0

s
K(s)ds = aRa

−1
R = 1 and φR(R) = 0. Let us divide the

interval [r0, R] into N subintervals of equal length. Denoting by tk := r0 + kR−r0
N ,

k = 0, · · · , N − 1, we compute

IR :=
∫
Bx0 (R)−Bx0 (r0)

|∇φR|2Pdv =
N−1∑
k=0

∫
Bx0 (tk+1)−Bx0 (tk)

|∇φR|2Pdv

≤
N−1∑
k=0

a2
Rs

2
k

(K(sk))2

∫
Bx0 (tk+1)−Bx0 (tk)

Pdv =
N−1∑
k=0

a2
Rs

2
k

(K(sk))2 (K(tk+1)−K(tk)) ,

(5)

where sk ∈ [tn, tn+1] gives the maximum of |∇φR| in the annulus Bx0(tk+1) −
Bx0(tk). The last expression in (5) can be interpreted as a Riemann sum which
converges to

∫ R
r0

a2
Rρ

2

(K(ρ))2 dK(ρ) as N →∞. Using integration by parts, we get∫ R

r0

a2
Rρ

2

(K(ρ))2 dK(ρ) = −a2
R

∫ R

r0

ρ2d
( 1
K(ρ)

)
= −a2

R

ρ2

K(ρ) |
R
r0

+ a2
R

∫ R

r0

2 ρ

K(ρ)dρ ≤ 2a2
Ra
−1
R = 2aR .

By the growth assumption (1), the expression aR → 0 as R→∞, which means
that IR → 0 as R→∞. This concludes the proof of item (i).

For item (ii), using the notations of (i), we choose the cut-off function φR in the
interval (r0, R) so that

φ′R(ρ) = − aR
K ′(ρ) ,
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where aR =
(∫ R

r0
ds

K′(s)

)−1
. Hence, φR(ρ) = aR

∫ R
ρ

ds
K′(s) . The same computation

as in (5) gives

IR ≤
∫ R

r0

a2
R

K ′(ρ)2 dK(ρ) .

Moreover
∫ R
r0

a2
R

K′(ρ)2 dK(ρ) ≤ a2
R

∫ R
r0

K′(ρ)
K′(ρ)2 dρ = a2

Ra
−1
R = aR. As before, by the

growth assumption (1), we have aR → 0 as R→∞, and then IR → 0 as R→∞.
The conclusion follows. �

Note that in the case K ′(r) > 0 almost everywhere, item (i) is a consequence
of item (ii) using the fact that the condition

∫ R
r0

r
K(r)dr → ∞, R → ∞ implies∫ R

r0
1

K′(r)dr →∞, R→∞ (see [15]). For P ≡ 1, we get the well known sufficient
condition of parabolicity:

Corollary 3.1. Let M be a complete Riemannian manifold such that Vol(B(R)) =
K(R), where

∫ R
r0

r
K(r)dr →∞ as R→∞, then M is parabolic.

Remark 3.2. One standard cut-off function is:

φR(x) =


1, x ∈ Bx0(eR)
2− log ρ(x)

R , x ∈ Bx0(e2R)−Bx0(eR)
0, x ∈M −Bx0(e2R) ,

where ρ(x) denotes the distance from a fixed point x0. Then |∇φR(x)| = 1
Rρ(x) .

That cut-off function allows a growth of order O(R2) as in the classical Cheng-Yau
theorem on parabolicity. On the other hand, the following less-known (to our
knowledge) cut-off function improves the order to O(R2 ln(R)). Put

φR(x) =


1, x ∈ Bx0(eeR)
2− ln(ln ρ(x))

R , x ∈ Bx0(ee2R)−Bx0(eeR)
0, x ∈M −Bx0(ee2R) ,

then |∇φR(x)| = 1
Rρ(x) ln ρ(x) . The growth orders can be slightly improved following

the pattern but they are all contained in our condition (1).

4. Some applications

Recall that the differential form Ω is parallel if ∇XΩ = 0 for any vector field
X ∈ TM , where as usual ∇ denotes the Levi-Civita connection.

A quaternionic Kähler manifold is a Riemannian manifold (M, g) with a rank 3
vector bundle V ⊂ End(TM) satisfying:

(1) In any coordinate domain U of M there exists a local basis {I, J,K} of V
such that

I2 = J2 = K2 = −1 , IJ = −JI = K , JK = −KJ = I , KI = −IK = J ,

and g(IX, IY ) = g(JX, JY ) = g(KX,KY ) = g(X,Y ) for all X, Y ∈ TM .
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(2) If φ ∈ Γ(V ), then ∇Xφ ∈ Γ(V ) for all X ∈ TM .
If for any nonzero tangent vector X, we have uX,X +uIX,IX +uJX,JX +uKX,KX

= 0, then the function u is said quaternionic harmonic. Here we used the notation
uX,X = ∇du(X,X).

First we recall the following theorem which illustrates the kind of results that
can be improved with our main Theorem 1.2.

Theorem 4.1 ([10, Theorem 3.1]). Let M be a complete Riemannian manifold
with a parallel p-form Ω. Assume that u is a harmonic function with its Dirichlet
integral over geodesic balls centered at x0 of radius R satisfying the growth condition∫

Bx0 (R)
|∇u|2dv = o(R2)

as R→∞. Then u satisfies

(6) d ∗ (du ∧ Ω) = 0.

Note that the vanishing of d ∗ (du∧Ω) implies the vanishing of ∇du and then u
is harmonic. The result can be interpreted as an generalization to the non-compact
case of the fact that exterior multiplication with a parallel form on a Riemannian
manifold commutes with the Laplacian. For others generalizations of expression
(6) and further consequences see [2].

Using our main Theorem, we improve the growth of Dirichlet integral to a
function K(r) verifying condition (1). We suppose that the harmonic function u is
non-constant. Otherwise, the conclusion holds trivially.

Proposition 4.2. Let M be a complete Riemannian manifold with parallel p-form
Ω. Assume that u is a non-constant harmonic function and define the growth
function K by K(r) :=

∫
Bx0 (r) |∇u|

2dv for some x0 with |∇u|(x0) 6= 0. If the
function K(·) verifies that∫ R

r0

r

K(r)dr →∞, R→∞,

then d ∗ (du ∧ Ω) = 0.

Proof. We use the same cut-off function φR as in our main theorem. The same
computations done in the proof of Theorem 3.1 of [10] leads to

∫
M

φ2
R|d ∗ (du ∧ Ω)|2dv ≤ C

∫
M

|∇φR|2| ∗ (du ∧ Ω)|2dv ≤ C
∫
M

|∇φR|2|du|2dv ,

(7)

where C is a positive constant.
Because of the growth assumption, the manifold is P -weighted parabolic with

P = |∇f |2. Thus the right hand side of (7) tends to zero as R→∞ which implies
that d ∗ (du ∧ Ω) = 0.

�
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The importance of the condition d ∗ (du ∧ Ω) = 0 for quaternionic Kähler
manifolds can be seen in Lemma 3.1 of [10] where it is proved that a function u
satisfying d∗ (du∧Ω) = 0, for Ω the parallel 4-form determined by the quaternionic
Kähler structure, is quaternionic harmonic. In our case, the growth hypothesis of
Proposition 4.2 implies the same conclusion:

Corollary 4.3. Let M4n be a complete quaternionic Kähler manifold. Assume that
u is a harmonic function with its Dirichlet integral satisfying the growth condition∫
Bx0 (R) |∇u|

2dv < K(R), with K(R) verifying the growth condition (1), then u is
quaternionic harmonic.

Now we present the following result on Kähler manifolds which motivated our
research. Consider a smooth function f and a volume measure e−fdv, i.e. a weight
of the form P = e−f . Then, a function u is called f -harmonic if

∆fu := (dd∗f + d∗fd)u = 0 ,
where the co-differential d∗f verifies d∗f = d∗ + ι∇f and ι∇f denotes the interior
product with the vector field∇f . The original result (cf. [14], Theorem 1.2) supposed
a growth of order O(R2). In fact, this is a Liouville-type theorem because in [14] it
was proven that if, in addition, f is proper, then u is constant.

Proposition 4.4. Let (M, g) be a Kähler manifold and f ∈ C∞(M) with ∇f
real holomorphic. If u is an f-harmonic function on M such that the growth
function K(r) =

∫
Bx0 (r) |∇u|

2e−fdv verifies
∫ R
r0

r
K(r)dr → ∞ as R → ∞, then u

is pluriharmonic.

Proof. By the growth assumption, for θ := ∂u, we have∫
Bx0 (r)

|θ|2e−fdv ≤ CK(r) ,

with
∫ R
r0

r
K(r)dr →∞ as R →∞, and C > 0. By Theorem 1.2, M is P -weighted

parabolic with P = |θ|2e−f . We repeat the steps (1.3) and (1.4) as in the proof of
Theorem 1.2 in [14]. Thus θ is f -harmonic and we get

(8)
∫
M

|dθ|2φRe−f +
∫
M

|d∗fθ|2φRe−f ≤ C ′
∫
M

|θ|2|∇φR|2e−f .

By P -weighted parabolicity the right-hand side goes to zero as R → ∞, and
therefore (8) implies that dθ = d∗fθ = 0. The conclusion follows by observing that
∂̄∂u = d∂u = dθ = 0. �

Using the proof of Proposition 4.4, we can also apply our main theorem to one
result of Lam on L2 harmonic 1-forms (c.f. [11, Theorem 5]), where the 1-form Θ
verifies

∫
M
|Θ|2 < +∞.

Proposition 4.5. Let M be a complete Riemannian manifold with a parallel
p-form Ω. Assume that Θ is a harmonic 1-form satisfying

∫
Bx0 (R) |Θ|

2 = K(R),

where
∫ R
r0

r
K(r)dr →∞ as R→∞. Then Θ satisfies d ∗ (Θ ∧ Ω) = 0.
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Proof. Since Θ is a harmonic 1-form and under the growth condition on
∫
Bx0 (R) |Θ|

2,
one shows that Θ is closed and co-closed, that is dΘ = d∗Θ = 0. Indeed, following
the steps mentioned in the last proposition we get the estimate (8), without the
factors e−f . Then, the same computation as in the original proof of Theorem 5
in [11] gives ∗d ∗ (Θ ∧ Ω) = (−1)n−1d ∗ (Θ ∧ ∗Ω) and the conclusion follows by
replacing the cut-off function φ by the cut-off function φR in our main theorem. �

Remark 4.6. The argument above can be generalized to k-forms. In fact, Vieira
[21] showed that on a smooth metric measure space (M, g, e−fdv), a L2

f -integrable
f -harmonic k-form Θ is closed and co-closed (i.e. d∗fΘ = 0). Using our cut-off func-
tion, instead of L2

f -integrability we can allow the growth condition
∫
B(R) |Θ|

2e−fdv ≤
K(R), with K(R) verifying condition (1), and conclude as in the proof of Proposi-
tion 4.4 that Θ is closed and co-closed.

Remark 4.7. Li showed in [12] a Lemma analogous to Proposition 4.4 (in the
unweighted case) for a harmonic map u from a complete Kähler manifold M into
a Riemannian manifold N with hermitian negative curvature as defined in [17]
and having an energy growth of order o(R2). When N is also Kähler with strongly
seminegative curvature and M is compact, the result was due originally to Siu
[18] (see also [17] for a generalization). In the e−f -weighted case, the argument
of Siu was generalized by Munteanu-Wang [14] for f -harmonic maps between
Kähler manifolds, the target having strongly seminegative curvature, with ∇f real
holomorphic and energy growth of order O(R2).

The consequences of those results are Liouville-type theorems and deep rigidity
results which do not depend on our technical improvements. See for instance
Chapter 8 of [8] for an introduction on harmonic maps, other related results
and more bibliography. Nevertheless, our cut-off function may be useful for other
applications having geometrical or topological consequences.
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