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1. Introduction

Integral equations of the form

(1.1) x(t) = x(t0) +

∫ t

t0

d[A]x+ f(t)− f(t0)

which are generalizations of systems of linear differential equations admit solutions

that need not be continuous. Up to now such equations have been considered by

several authors starting with Kurzweil (see [9]) and Hildebrandt (see [5]). For fur-

ther contributions see e.g. [1], [8], [12], [10], [13], [18]–[24] and references therein.

These papers worked with several different concepts of the Stieltjes type integral

like Young’s (Hildebrandt), Kurzweil’s (Kurzweil, Schwabik and Tvrdý), Dushnik’s
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(Hönig) or Lebesgue’s (Ashordia, Meng and Zhang). Thus, an interesting question

“what are the relationships between all these concepts?” arises.

It is known that (cf. [9], Theorem 1.2.1) the Kurzweil-Stieltjes integral is in finite

dimensional setting equivalent to the Ward-Perron-Stieltjes one, while the relation-

ship between the Ward-Perron-Stieltjes and the Lebesgue-Stieltjes integrals has been

described in [16], Theorem VI.8.1. For more details, see Chapter 6 of [13]. Young

integrals are discussed in detail in Section II.19 of the monograph [6] by Hildebrandt.

Obviously, they are more general than the corresponding Riemann-Stieltjes integrals.

The relationship between the Young and the Dushnik integrals is indicated by Mac-

Nerney (see [11], Theorem B). Finally, for scalar functions the relationship between

the Young and the Kurzweil-Stieltjes integrals was considered in [18] and [17]. In

particular, it was shown there that if f : [a, b] → R is regulated and g : [a, b] → R

has a bounded variation, then the Young integral of f with respect to g on [a, b] ex-

ists and coincides with the Kurzweil-Stieltjes integral of f with respect to g on [a, b]

(cf. Schwabik [18] and [17]).

Further, it is known that integration processes based on Riemann type sums, such

as the Kurzweil integral, can be extended to Banach space-valued functions. Among

other contributions it is worth highlighting the monograph by Schwabik and Ye

(see [25]), which studies these types of integrals and their connections e.g. with the

classical ones due to Bochner and Pettis. Concerning integrals of Stieltjes type,

Hönig presented a quite complete study in [7] dealing with the Dushnik integral.

In [20] and [23] Schwabik investigated the fundamental properties of the Kurzweil-

Stieltjes integration in abstract spaces, although in those papers he called this integral

“abstract Perron-Stieltjes integral”. Some results regarding integral equations and

generalized linear differential equations in Banach spaces involving the Kurzweil-

Stieltjes integral can be found e.g. in [4], [3], [14], [21], and [22]. Moreover, Monteiro

and Tvrdý in [14] extended the results obtained by Schwabik and completed the

theory so that it was well applicable to proving results on the continuous dependence

of solutions to generalized linear differential equations in a Banach space (see [15]).

The aim of this paper is to complete this schedule in an abstract setting. In

addition, we will present also convergence results that are possibly new though not

surprising. Let us emphasize that the proofs of all the assertions presented in this

paper are based on rather elementary tools.

2. Preliminaries

The symbols like R, N, [a, b], and (a, b) have their usual and traditional meaning.

For a subsetM of [a, b], the symbol χM denotes, as usual, its characteristic function,

i.e. χM (t) = 1 if t ∈ M and χM (t) = 0 if t /∈ M .
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Recall that a finite sequence α = {α0, . . . , αν(α)} of points from [a, b] is a division

of [a, b] if a = α0 < . . . < αν(α) = b. The set of all divisions of [a, b] is denoted

by D[a, b]. The couple P = (α, ξ) is a tagged partition of [a, b] if α is a division

of [a, b] and ξ = (ξ1, . . . , ξν(P )) is such that ξj ∈ [αj−1, αj ] for all j. If P = (α, ξ) is

a partition of [a, b], the elements of α and ξ are, respectively, denoted as αj and ξj ,

while ν(P ) = ν(α) is the number of the subintervals [αj−1, αj ] generated by the

division α.

Let X be a Banach space. For any function f : [a, b] → X we set

‖f‖∞ = sup
t∈[a,b]

‖f(t)‖X

and the variation varba f of f over [a, b] is given by

varba f = sup
α∈D[a,b]

ν(α)∑

j=1

‖f(αj)− f(αj−1)‖X .

If varba f < ∞ we say that f has a bounded variation on [a, b]. BV([a, b], X) de-

notes the Banach space of all functions f : [a, b] → X of bounded variation on [a, b]

equipped with the norm ‖f‖BV = ‖f(a)‖X + varba f .

Recall that a function f : [a, b] → X is regulated on [a, b] if it has one sided limits

lim
τ→t−

f(τ) = f(t−) ∈ X and lim
τ→s+

f(τ) = f(s+) ∈ X

for all t ∈ (a, b] and s ∈ [a, b). For every function f regulated on [a, b] and points

t ∈ (a, b] and s ∈ [a, b), we denote

∆−f(t) = f(t)− f(t−) and ∆+f(s) = f(s+)− f(s).

The set of all functions regulated on [a, b] having values in X is denoted by

G([a, b], X).

Furthermore, a function f : [a, b] → X is a finite step function if there exist an

m ∈ N and a division {s0, . . . , sm} of [a, b] such that f is constant on every subinterval

(sk−1, sk) for k ∈ {1, . . . ,m}. Equivalently, if

(2.1) f(t) = c+

m−1∑

k=0

χ(sk,b](t)ck +

m∑

k=1

χ[sk,b](t)dk + χ[b](t)dm for t ∈ [a, b],

where c, ck for k ∈ {0, . . . ,m − 1}, and dk for k ∈ {1, . . . ,m} can be arbitrary

elements of X and for τ = b by χ[τ,b] we understand the characteristic function of

the one point set [b] := {b}.
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It is known (cf. e.g. [7], Theorem 3.1) that f : [a, b]→X is regulated if and only if

it is the uniform limit of finite step functions.

If X , Y and Z are Banach spaces, then, as usual, the symbols ‖·‖X , ‖·‖Y , ‖·‖Z
stand for the norms in X , Y , Z, respectively. If there is a nontrivial (i.e. not identi-

cally zero) continuous bilinear mapping B : X×Y → Z continuous in the sense that

the inequality ‖B(x, y)‖Z 6 ‖x‖X‖y‖Y holds for all x ∈ X and y ∈ Y , we say that

the triple X , Y , Z is a bilinear triple with respect to B. In such a case, we will use

the abbreviation xy instead of B(x, y).

If B = (X,Y, Z) is a bilinear triple, then for functions f : [a, b] → X , g : [a, b]→Y

and a partition P = (α, ξ) of [a, b], we set

S(f, dg, P ) =

ν(P )∑

j=1

f(ξj)[g(αj)−g(αj−1)],

S(df, g, P ) =

ν(P )∑

j=1

[f(αj)− f(αj−1)]g(ξj)

and

SY (f, dg, P ) =

ν(P )∑

j=1

(f(αj−1)∆
+g(αj−1) + f(ξj)[g(αj−)− g(αj−1+)]

+ f(αj)∆
−g(αj)) if g is regulated

SY (df, g, P ) =

ν(P )∑

j=1

(∆+f(αj−1)g(αj−1) + [f(αj−)− f(αj−1+)]g(ξj)

+ ∆−f(αj)g(αj)) if f is regulated,

and define:

(i) The Young integral (Y)
∫ b

a
f dg (the Dushnik integral (D)

∫ b

a
f dg) exists and

equals I ∈ Z if for every ε > 0 there is a division αε of [a, b] such that

‖SY (f, dg, P )− I‖Z < ε (or ‖S(f, dg, P )− I‖Z < ε)

holds for all partitions P=(α, ξ) of [a, b] such that α ⊃ αε and αj−1 < ξj < αj

for all j ∈ {1, . . . , ν(α)}.

(ii) The Kurzweil-Stieltjes integral (K)
∫ b

a
f dg exists and equals I ∈ Z if for every

ε > 0 there exists a function δε : [a, b] → (0, 1) such that

‖S(f, dg, P )− I‖Z < ε
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holds for all partitions P = (α, ξ) of [a, b] such that

[αj−1, αj ] ⊂ [ξj − δε(ξj), ξj + δε(ξj)] for all j ∈ {1, . . . , ν(α)}.

Analogously,

(i) The Young integral (Y)
∫ b

a
df g (the Dushnik integral (D)

∫ b

a
df g) exists and

equals I ∈ Z if for every ε > 0 there is a division αε of [a, b] such that

‖SY (df, g, P )− I‖Z < ε (‖S(df, g, P )− I‖Z < ε)

holds for all partitions P = (α, ξ) of [a, b] such that α ⊃ αε and αj−1 < ξj < αj

for all j ∈ {1, . . . , ν(α)}.

(ii) The Kurzweil-Stieltjes integral (K)
∫ b

a
df g exists and equals I ∈ Z if for every

ε > 0 there exists a function δε : [a, b] → (0, 1) such that

‖S(df, g, P )− I‖Z < ε

holds for all partitions P = (α, ξ) of [a, b] such that

[αj−1, αj ] ⊂ [ξj − δε(ξj), ξj + δε(ξj)] for all j ∈ {1, . . . , ν(α)}.

The integral sums of the form SY have been introduced by Young in [26]. However,

he considered the corresponding integrals only in the norm sense. So, it seems that

the above refinement type definition is due to Hildebrandt (cf. e.g. [6]). The Dushnik

integral got its name due to the thesis [2] by Dushnik and Kurzweil introduced his

integral in [9].

An arbitrary function δ defined and positive on [a, b] is said to be a gauge on [a, b].

For an arbitrary gauge δ on [a, b], any tagged division P = (α, ξ) of [a, b] such that

[αj−1, αj ] ⊂ [ξj − δ(ξj), ξj + δ(ξj)] for all j ∈ {1, . . . , ν(α)} is said to be δ-fine.

In what follows we will write more simply Kurzweil integral instead of Kurzweil-

Stieltjes integral. Moreover, throughout the rest of the paper, we always assume that

(X,Y, Z) is a bilinear triple with respect to some given and fixed nontrivial bilinear

continuous mapping.
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3. Main results

Our main goal is the following assertion.

Theorem 3.1. Suppose that f and g are regulated on [a, b] and at least one

of them has a bounded variation on [a, b]. Then

(i) all the integrals (K)
∫ b

a
f dg, (Y)

∫ b

a
f dg and (D)

∫ b

a
df g exist and

(3.1) (K)

∫ b

a

f dg = (Y)

∫ b

a

f dg = f(b)g(b)− f(a)g(a)− (D)

∫ b

a

df g

and

(ii) all the integrals (K)
∫ b

a
df g, (Y)

∫ b

a
df g and (D)

∫ b

a
f dg exist and

(3.2) (K)

∫ b

a

df g = (Y)

∫ b

a

df g = f(b)g(b)− f(a)g(a)− (D)

∫ b

a

f dg.

To prove Theorem 3.1, we will need several auxiliary results. First, we will consider

some simple special cases.

Lemma 3.2. Equalities (3.1) and (3.2) hold if f : [a, b] → X is a finite step func-

tion and g : [a, b] → Y is regulated or f : [a, b] → X is regulated and g : [a, b] → Y

is a finite step function.

P r o o f. a) First, assume that g ∈ G([a, b], Y ), x̃ ∈ X and let the functions fτ

and fσ be defined on [a, b] by

fτ = χ[τ,b]x̃ for τ ∈ [a, b] and fσ = χ(σ,b]x̃ for σ ∈ [a, b).

Obviously,

(3.3) (K)

∫ b

a

fτ dg = (Y)

∫ b

a

fτ dg = x̃(g(b)− g(a)) if τ = a,

(D)

∫ b

a

dfτ g = 0 if τ = a.

In addition, we claim that

(3.4) (K)

∫ b

a

fτ dg = (Y)

∫ b

a

fτ dg = x̃(g(b)− g(τ−)) if τ ∈ (a, b],

(D)

∫ b

a

dfτ g = x̃g(τ−) if τ ∈ (a, b],

(K)

∫ b

a

fσ dg = (Y)

∫ b

a

fσ dg = x̃(g(b)− g(σ+)) if σ ∈ [a, b),

(D)

∫ b

a

dfσ g = x̃g(σ+) if σ ∈ [a, b).
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Indeed, let τ ∈ (a, b) and let an arbitrary tagged partition P = (α, ξ) of [a, b]

such that ξj ∈ (αj−1, αj) for all j ∈ {1, . . . , ν(P )} be given. Without any loss of

generality1 we may assume that τ = αk for some k ∈ {1, . . . , ν(P )− 1}. Therefore

SY (fτ , dg, P ) = x̃

(
∆−g(τ) +

ν(α)∑

j=k+1

[∆+g(αj−1) + g(αj−)− g(αj−1+) +∆−g(αj)]

)

= x̃(g(b)− g(τ−)).

If τ = b, then SY (fτ , dg, P ) = x̃(g(b) − g(b−)) for each tagged partition P . To

summarize, we have

(Y)

∫ b

a

fτ dg = x̃(g(b)− g(τ−)) for τ ∈ (a, b].

To determine the Dushnik integral (D)
∫ b

a
dfτ g, assume that τ ∈ (a, b] and ε > 0

are given and η > 0 is such that

‖g(t)− g(τ−)‖Y <
ε

‖x̃‖X
for all t ∈ (τ − η, τ).

Let P = (α, ξ) be an arbitrary tagged partition of [a, b] such that ξj ∈ (αj−1, αj) for

j ∈ {1, . . . , ν(P )} and τ = αk for some k ∈ {1, . . . , ν(P )}. In addition, assume that

τ − η < αk−1 < ξk < τ . Then S( dfτ , g, P ) = x̃g(ξk) and

‖S(dfτ , g, P )− x̃g(τ−)‖Z = ‖x̃‖X‖g(ξk)− g(τ−)‖Y < ε.

Hence,

(D)

∫ b

a

dfτ g = x̃g(τ−).

b) Again, let ε > 0 and τ ∈ (a, b) be given and let η > 0 be such that

|g(τ−)− g(t)| <
ε

‖x̃‖X
for t ∈ (τ − η, τ).

Define

δ(t) =






1
4 (τ − t) if t ∈ [a, τ),

η if t = τ,

1
4 (t− τ) if t ∈ (τ, b].

1Recall that both the Young and the Dushnik integrals are the refinement type integrals.
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Then P = (α, ξ) is a δ-fine partition of [a, b] only if τ = ξk for some k ∈ {1, . . . , ν(P )}.

In addition, we may assume that τ = αk and αk−1 ∈ (τ − η, τ). For any such δ-fine

partition P = (α, ξ) of [a, b] we have

‖S(fτ , dg, P )− x̃[g(b)− g(τ−)]‖Z = ‖x̃‖X

∥∥∥∥
ν(P )∑

j=k

[g(αj)− g(αj−1)]− [g(b)− g(τ−)]

∥∥∥∥
Y

= ‖x̃‖X‖[g(b)− g(αk−1)]− [g(b)− g(τ−)]‖Y

= ‖x̃‖X‖g(τ−)− g(αk−1)‖Y < ε.

Therefore

(K)

∫ b

a

fτ dg = x̃(g(b)− g(τ−)).

To summarize, the formulas on the first line of (3.4) are true. Similarly, we can

justify also the relations given on the second line of (3.4).

Having in mind (3.3) and (3.4) we can verify that the formulas

(K)

∫ b

a

fτ dg = (Y)

∫ b

a

fτ dg = fτ (b)g(b)− fτ (a)g(a)− (D)

∫ b

a

dfτ g

and

(K)

∫ b

a

fσ dg = (Y)

∫ b

a

fσ dg = fσ(b)g(b)− fσ(a)g(a)− (D)

∫ b

a

dfσ g

are true for τ ∈ [a, b] and σ ∈ [a, b). Consequently, since by (2.1) every finite step

function f : [a, b] → X is a finite linear combination of functions of the type {fτ , fσ},

the relation (3.1) follows.

c) Now, assume that f : [a, b] → Y, ỹ ∈ Y and the functions gτ and gσ are defined

on [a, b] by

gτ = χ[τ,b]ỹ for τ ∈ [a, b] and gσ = χ(σ,b]ỹ for σ ∈ [a, b).

Obviously the relations

(3.5) (K)

∫ b

a

f dgτ = (Y)

∫ b

a

f dgτ = 0 if τ = a,

(D)

∫ b

a

df gτ = (f(b)− f(a))ỹ if τ = a
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are true for an arbitrary function f : [a, b] → X . Moreover, analogously to part a)

of this proof we can show that the relations

(3.6) (K)

∫ b

a

f dgτ = (Y)

∫ b

a

f dgτ = f(τ)ỹ if τ ∈ (a, b],

(D)

∫ b

a

df gτ = (f(b)− f(τ))ỹ if τ ∈ (a, b],

(K)

∫ b

a

f dgσ = (Y)

∫ b

a

f dgσ = f(τ)ỹ if σ ∈ [a, b),

(D)

∫ b

a

df gσ = (f(b)− f(τ))ỹ if σ ∈ [a, b)

are true, as well. Thus

(K)

∫ b

a

f dgτ = (Y)

∫ b

a

f dgτ = f(b)gτ (b)− f(a)gτ (a)− (D)

∫ b

a

df gτ

and

(K)

∫ b

a

f dgσ = (Y)

∫ b

a

f dgσ = f(b)gσ(b)− f(a)gσ(a)− (D)

∫ b

a

df gσ,

wherefrom the relation (3.1) again follows.

d) The proof of relation (3.2) under the assumptions of the lemma is quite analo-

gous and we believe that we can skip it. �

Estimates needed later are summarized in the following lemma.

Lemma 3.3. Let f : [a, b] → X , g : [a, b] → Y and a partition P of [a, b] be given.

Then the estimates

(3.7) ‖S(f, dg, P )‖Z 6 ‖f‖∞ varba g,

‖S(df, g, P )‖Z 6 (varba f)‖g‖∞,

‖S(f, dg, P )‖Z 6 (‖f(a)‖X + ‖f(b)‖X + varba f)‖g‖∞,

‖S(df, g, P )‖Z 6 ‖f‖∞(‖g(a)‖Y + ‖g(b)‖Y + varba g),

(3.8) ‖SY (f, dg, P )‖Z 6 ‖f‖∞ varba g,

‖SY (f, dg, P )‖Z 6 (‖f(a)‖X + ‖f(b)‖X + varba f)‖g‖∞

if g is regulated on [a, b] and

(3.9) ‖SY (df, g, P )‖Z 6 (varba f)‖g‖∞,

‖SY (df, g, P )‖Z 6 ‖f‖∞(‖g(a)‖Y + ‖g(b)‖Y + varba g)

if f is regulated on [a, b] are true.
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Moreover, the estimates

(3.10)

∥∥∥∥
∫ b

a

f dg

∥∥∥∥
Z

6 ‖f‖∞ varba g,

∥∥∥∥
∫ b

a

f dg

∥∥∥∥
Z

6 (‖f(a)‖X + ‖f(b)‖X + varba f)‖g‖∞

and

(3.11)

∥∥∥∥
∫ b

a

df g

∥∥∥∥
Z

6 (varba f)‖g‖∞,

∥∥∥∥
∫ b

a

df g

∥∥∥∥
Z

6 ‖f‖∞(‖g(a)‖Y + ‖g(b)‖Y + varba g)

hold for each of the three integrals under consideration, whenever it exists.

P r o o f. For the Kurzweil integral these inequalities are well-known, cf. [20],

Proposition 10 and [14], Lemma 3.1. Since the set of admissible partitions for the

Dushnik integral is contained in that for the Kurzweil integral, it follows immediately

that relations (3.7), (3.10) and (3.11) are true also for the Dushnik integral. So, it

remains to consider the Young integral. Assume that g is regulated.

a) If a 6 α 6 ξ 6 β 6 b, then

‖f(α)∆−g(α) + f(ξ)[g(β−)− g(α+)] + f(β)∆−g(β)‖Z

6 ‖f‖∞(‖∆−g(α)‖Y + ‖g(β−)− g(α+)‖Y + ‖∆−g(β)‖Y ) 6 ‖f‖∞ varba g,

wherefrom it is easy to deduce that the estimate

‖SY (f, dg, P )‖Z 6 ‖f‖∞ varba g

holds for every partition P of [a, b]. This means that the inequalities on the first

lines of (3.8) and (3.10) are true also for the Young integral.

b) Observe that

f(α)[g(α+)− g(α)] + f(ξ)[g(β−)− g(α+)] + f(β)[g(β)− g(β−)]

= [f(α)− f(ξ)]g(α+) + [f(ξ)− f(β)]g(β−) + f(β)g(β)− f(α)g(α)

holds for all α, ξ, β ∈ [a, b] such that a 6 α 6 ξ 6 β 6 b. Having this in mind we can

see that the estimate

‖SY (f, dg, P )‖Z 6 (‖f(a)‖X + ‖f(b)‖X + varba f)‖g‖∞

is true for every partition P of [a, b]. Consequently, the second inequalities in (3.8)

and (3.10) are true also for the Young integral.
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Similarly we can verify the inequalities (3.9) and (3.11) for the Young integral

when f is regulated. �

The next convergence results are also true for all the three integrals under con-

sideration. For the Kurzweil integral of scalar functions the proof is available e.g. in

Chapter 6 of [13]. The idea is pretty transparent and, as we will see below, it is

applicable also in the abstract situation including the Young and Dushnik integrals.

First, we notice that in both situations the sequences of integrals depending on n

are Cauchy sequences in the Banach space Z and therefore they have a limit I ∈ Z.

Further, assumptions on the convergence of functions involved, the estimates given

in Lemma 3.3 and the existence of the integrals
∫ b

a
fn dg and/or

∫ b

a
f dgn imply that

the limit integrals exist and equal I. Frankly speaking, parts (ii) of Theorems 3.4–3.7

will not be needed later. They are included just for the sake of completeness of our

convergence results.

Theorem 3.4. Let f, fn : [a, b] → X for n ∈ N, and g : [a, b] → Y be such that

the integrals
∫ b

a
fn dg exist for all n ∈ N. Suppose that at least one of the following

conditions is satisfied:

(i) The sequence fn converges on [a, b] uniformly to f and g has a bounded variation

on [a, b].

(ii) lim
n→∞

‖fn − f‖BV = 0 and g is bounded on [a, b].

Then the integral
∫ b

a
f dg exists as well, and

lim
n→∞

∫ b

a

fn dg =

∫ b

a

f dg.

P r o o f. Both the integral and the sum symbols now may refer to any of those

three integrals we are considering in this paper.

We claim that in both cases (i) and (ii) the sequence
{∫ b

a
fn dg

}
satisfies the

Cauchy condition. In case (i), we have by (3.10) from Lemma 3.3

(3.12)

∥∥∥∥
∫ b

a

fn dg −

∫ b

a

fm dg

∥∥∥∥
Z

=

∥∥∥∥
∫ b

a

(fn − fm) dg

∥∥∥∥
Z

6 ‖fn − fm‖∞ varba g

for all m,n ∈ N. Since varba g is finite and {fn} is uniformly convergent, the right-

hand side of (3.12) will be arbitrarily small if m, n are sufficiently large.

In case (ii), we use (3.10) from Lemma 3.3 to get

∥∥∥∥
∫ b

a

fn dg −

∫ b

a

fm dg

∥∥∥∥
Z

=

∥∥∥∥
∫ b

a

(fn − fm) dg

∥∥∥∥
Z

6 2‖fn − fm‖BV‖g‖∞

6 2(‖fn − f‖BV + ‖f − fm‖BV)‖g‖∞
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for all m,n ∈ N. Since ‖f − fm‖BV → 0 for m → ∞ and ‖f − fn‖BV → 0 for n → ∞

and ‖g‖∞ is finite, the right-hand side of the last relation will become arbitrarily

small for m, n sufficiently large.

Hence, in both cases, there exists I ∈ Z such that

(3.13) lim
n→∞

∫ b

a

fn dg = I.

To show that
∫ b

a
f dg = I, let ε > 0 be given. We claim that there exists an n1 ∈ N

such that

(3.14) ‖S(f − fn, dg, P )‖Z < ε

if n > n1 and P is an arbitrary partition of [a, b].

In case (i), this follows from (3.7) in Lemma 3.3, which yields

‖S(f − fn, dg, P )‖Z 6 ‖f − fn‖∞ varba g.

In case (ii), we use (3.8) in Lemma 3.3 to get

‖S(f − fn, dg, P )‖ 6 2‖f − fn‖BV‖g‖∞.

These estimates show the validity of (3.14). By (3.13), there exists an n0 > n1 such

that ∥∥∥∥
∫ b

a

fn0
dg − I

∥∥∥∥
Z

< ε.

Now, in the case of the Kurzweil integral, we can choose a gauge δε on [a, b] such

that

(3.15)

∥∥∥∥S(fn0
, dg, P )−

∫ b

a

fn0
dg

∥∥∥∥
Z

< ε

holds for each δε-fine partition P of [a, b].

Similarly, in the case of the Dushnik integral, we will choose a division αε of [a, b]

such that (3.15) holds for each partition P = (α, ξ) of [a, b] such that α ⊃ αε and

ξj ∈ (αj−1, αj) for all j ∈ {1, . . . , ν(P )}.

Finally, in the case of the Young integral, we can choose a division αε of [a, b] such

that ∥∥∥∥SY (fn0
, dg, P )−

∫ b

a

fn0
dg

∥∥∥∥
Z

< ε
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is true whenever P = (α, ξ) where α ⊃ αε and ξj ∈ (αj−1, αj) for all j ∈

{1, . . . , ν(P )}.

To summarize, for the Kurzweil integral the relations

‖S(f, dg, P )− I‖Z

6 ‖S(f − fn0
, dg, P )‖Z + ‖S(f − fn0

, dg, P )− In0
‖Z + ‖In0

− I‖Z < 3ε

are true for each δε-fine partition P of [a, b], in case of the Dushnik integral the

inequality

‖S(f, dg, P )− I‖Z < 3ε

holds for each partition P = (α, ξ) such that α ⊃ αε and ξj ∈ (αj−1, αj) for all

j ∈ {1, . . . , ν(P )}, and in the case of the Young integral we can see that the inequality

‖SY (f, dg, P )− I‖Z < 3ε

is true for each partition P = (α, ξ) such that α ⊃ αε and ξj ∈ (αj−1, αj) for all

j ∈ {1, . . . , ν(P )}. Thus,
∫ b

a
f dg = I holds in any of the considered cases. The proof

is complete. �

The next assertions are complementary to Theorem 3.4. Their proofs are quite

analogous to that of Theorem 3.4 and we leave them to the reader.

Theorem 3.5. Let f : [a, b] → X and g, gn : [a, b] → Y for n ∈ N be such that

the integrals
∫ b

a
f dgn exist for all n ∈ N. Suppose that at least one of the following

conditions is satisfied:

(i) f ∈ BV([a, b], X) and the sequence {gn} converges on [a, b] uniformly to g.

(ii) f is bounded on [a, b] and lim
n→∞

varba(gn − g) = 0.

Then the integral
∫ b

a
f dg exists as well, and

lim
n→∞

∫ b

a

f dgn =

∫ b

a

f dg.

Theorem 3.6. Let f : [a, b] → X and g, gn : [a, b] → Y for n ∈ N be such that

the integrals
∫ b

a
df gn exist for all n ∈ N. Suppose that at least one of the following

conditions is satisfied:

(i) f ∈ BV([a, b], Y ) and the sequence gn converges on [a, b] uniformly to g.

(ii) f is bounded on [a, b] and lim
n→∞

‖gn − g‖BV = 0.

Then the integral
∫ b

a
f dg exists as well, and

lim
n→∞

∫ b

a

df gn =

∫ b

a

df g.
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Theorem 3.7. Let f, fn : [a, b] → X for n ∈ N and g : [a, b] → Y be such that

the integrals
∫ b

a
dfng exist for all n ∈ N. Suppose that at least one of the following

conditions is satisfied:

(i) The sequence {fn} converges on [a, b] uniformly to f and g has a bounded

variation on [a, b].

(ii) lim
n→∞

varba(fn − f) = 0 and g is bounded on [a, b].

Then the integral
∫ b

a
f dg exists as well, and

lim
n→∞

∫ b

a

dfn g =

∫ b

a

df g.

Now we are able to prove Theorem 3.1.

Proof of Theorem 3.1.

a) First, assume that f ∈ G([a, b], X) and g ∈ BV([a, b], Y ). Choose a sequence

{fn} of finite step functions tending uniformly to f on [a, b]. Then by Lemma 3.2

we have

(K)

∫ b

a

fn dg = (Y)

∫ b

a

fn dg for all n ∈ N

and, further, by Theorem 3.4,

(K)

∫ b

a

f dg = lim
n→∞

(K)

∫ b

a

fn dg = lim
n→∞

(Y)

∫ b

a

fn dg = (Y)

∫ b

a

f dg.

For the Dushnik integral we have by Lemma 3.2 and Theorem 3.4

(D)

∫ b

a

f dg = lim
n→∞

(D)

∫ b

a

fn dg

= lim
n→∞

(
fn(b)g(b)− fn(a)g(a)− (K)

∫ b

a

fn dg

)

= f(b)g(b)− f(a)g(a)− (K)

∫ b

a

f dg.

Hence (3.1) is true.

b) Now, let f ∈ BV([a, b], X) and g ∈ G([a, b], Y ). Choose a sequence {gn} of

finite step functions which converges uniformly on [a, b] to g. By Lemma 3.2 we have

(K)

∫ b

a

f dgn = (Y)

∫ b

a

f dgn for all n ∈ N
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and, further, by Theorem 3.5,

(K)

∫ b

a

f dg = lim
n→∞

(K)

∫ b

a

f dgn = lim
n→∞

(Y)

∫ b

a

f dgn = (Y)

∫ b

a

f dg.

Moreover, Lemma 3.2 and Theorem 3.5 also imply that the relations

(D)

∫ b

a

f dg = lim
n→∞

(D)

∫ b

a

f dgn

= lim
n→∞

(
f(b)gn(b)− f(a)gn(a)− (K)

∫ b

a

f dgn

)

= f(b)g(b)− f(a)g(a)− (K)

∫ b

a

f dg

are true. This completes the proof of (3.1).

c) Relation (3.2) can be proved in a similar way using Lemma 3.2 and Theorems 3.6

and 3.7. �
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