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Abstract. The spaces of multi-Morrey type for positive Radon measures satisfying
a growth condition on R? are introduced. After defining the spaces, we investigate the mul-
tilinear maximal function, the multilinear fractional integral operator and the multilinear
Calderén-Zygmund operators, respectively, from multi-Morrey spaces to Morrey spaces.
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1. INTRODUCTION

In recent years, many results have indicated that the doubling condition is super-
fluous for most of the classical Calderén-Zygmund theory (see [8], [9], [10]). Con-
siderable attention has been paid to the study of the classical theory of harmonic
analysis on Euclidean spaces with non-doubling measures only satisfying the poly-
nomial growth condition (see [2], [3], [13], [14], [15], [16]). To be precise, let p be
a positive Radon measure on R? which satisfies the polynomial growth condition
that for all z € R? and r > 0,

w(B(z,r)) < cor™,

where ¢g is a positive constant, 0 < n < d, and B(z, ) is the open ball centered at
and having radius r. The analysis associated with such a non-doubling measure p has
proved to play a striking role in solving the long-standing open Painlevé’s problem
and Vitushkin’s conjecture (see [14]).
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The main purpose of this paper is to give the definition of multi-Morrey spaces
and establish the boundedness of multilinear operators from multi-Morrey spaces to
Morrey spaces associated with .

To state the main results of this paper, we need first to recall some necessary
notation and notion. We use Q(u) to denote the family of all cubes in R? satisfying
1(Q) > 0. For ¢ > 0, c@ will denote a cube concentric to ) with its sidelength ¢l (Q).

The Morrey space M}° was defined by Morrey in 1938, see [7]. In 2005, Sawano and
Tanaka in [12] gave the definition of Morrey spaces for non-doubling measures. Let
k>1and 1 <p<po<oc. The Morrey spaces M}°(k, 1) are defined by the norm

—— /Po 1 p 1/p
gz = s wtk@)" (s [ 15 as) ™

QeQ(p

It is proved in [12] that the Morrey spaces MI°(k, ) are independent of the
choices of the constant k& € (1,00). Later, Sawano in [11] introduced generalized
Morrey spaces for non-doubling measures.

Now, we give the definition of the multi-Morrey norm for the non-doubling mea-
sure. In the setting of the Euclidean space, Iida, Sato, Sawano and Tanaka in [4]
have proved that the multi-Morrey norm is strictly smaller than the m-fold product
of the Morrey norms.

Definition 1.1. Let k > 1, P = (p1y-+-y0m) With 1 < p1,...,pm < 00 and
0<p<po<oowithl/p=1/p1+ ...+ 1/pp. For some collection of measurable
functions f: (f1,-- -, fm) on R? the multi-Morrey norm is defined by

s = s k) [T (o [ 150

QeQ(p) i=1

1/pi
pi d,u(a:)) < 0.

We define the multi-Morrey space M%O (k,u) as the set of all measurable func-
tions g on (R4)™ which can be written as

oo m
(1.1) 91, ) = ZHfi(j)(xi)
j=114=1
in the sense of almost everywhere convergence in (R%)™, and ( fl(j ), 7(,{)) satisfying
o . .
(1.2) DI s D 520 1y < 00
j=1

The norm of g € M%O (k, p) is defined by

gl nezo ey 3= 108 DG, s £ s
j=1
where the functions in infimum run over all expressions as (1.1).
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By the Holder inequality and the triangle inequality, we have the following result on

the structure of ./\/lp 2. If (1.2) holds, then Z H f; @ (x;) converges absolutely almost
j=1i=1
everywhere in (R%)™. As an application, in order to prove the boundedness of the

linear operator 1" from multi-Morrey spaces M’;’(k, ) to Morrey spaces MJ°(k, 1),
it suffices to prove that there exists a constant C' such that

1T aro ey < Cl N2 gty

holds for all f = (f1, oy fm)-

Next, we prove that the definition of multi-Morrey spaces is independent of the
choice of the parameter k£ > 1. This result covers the ones in [12]. For the sake of
convenience, we provide the details.

Proposition 1.2. Let ki, ko > 1, P = (p1y---yDm) With 1 < p1,...,pm < 00 and
0<p<py<oowithl/p=1/p1+...+1/pm. Then M%O(kl,u) and M%O(k'g,u)
coincide and their norms are equivalent.

Proof. Let k1 < ko. Then the inclusion M%O(kl,u) C M%O(kg,u) is trivial by
the definition of the norms. Let us show the reverse inclusion.

For any @ € Q(u), there exist cubes Q1,Qa2,...,Qn with the same sidelength
such that

ko — 1)d.

N
QclJQ; kQjchQ and NgcQ(kl_l

j=1
oo m .
Let g € M?(kg,u) and let Y J] fi(j)(a:i) be an admissible expression of g. For

j=li=1 m
any @ € Q(u), using the fact that 1/pyg < > 1p; and the covering above, we easily

. =1
obtain @

(le)l/pOH(u v /If(]) P due ))Um

N m
SWICEIRED (s | 1w

j=1 i=1

po T 1 ()
(k2" E(u(,@% /Q 19 (@)

1/Pi
" dua) )

1/pi
" du) )

Mz

1

<.
Il

-

. , ko — ,
<YM S0y < Ca( g ) N o S 0
j=1
Then, the desired result follows from the structure of M%O (k, p). O
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2. BOUNDEDNESS OF MULTILINEAR MAXIMAL FUNCTION

Let o > 1. The maximal function M, is defined by

M,(f)(x) = 31;5” / 1F)] duly

The multilinear maximal function can be defined as follows:

Mymf(a supH / )] duly).

xEQ’L 1

It is well-known that M, is bounded on LP(u), 1 < p < oo. For details we refer
to [8]. In [5], M, m is used to obtain a precise control on the multilinear singular
integral of Calderdn-Zygmund type in the setting of the Euclidean space. We present

the main theorem in this section.

Theorem 2.1. Let k,0,p1,...,pm > 1, P = (P1y---sPm) and 1 < p < pp < 00
with 1/p=1/p1 + ...+ 1/pm. Then

IM (D) gz r, iy < CUF 20 (11

Proof. In fact, we need only to prove that

[Mem(F)llazzo 2047 /02— 1)) S ClF B2 20104 1).10)-

Fix Q € Q(u). Let L = 41(Q)/(0—1), fi.1 *= X((o+7)/(0—1))0fi and fi2 := fi— fi1
with ¢ =1,...,m. For any = € @, it follows from the definition of M, ,, that

Mg m(fl,a(l)v" 'afm,,a(m))(x) sup |dM
zeQ'€Q(p

Q' )>L

where o(1),...,0(m) € {1,2} and (o(1),...,0(m)) # (1,...,1). It follows from
r € QN and [(Q) > (4/(0 — 1)I(Q) that @ C 1(o+ 1)Q". By a standard
argument we have

m
Mo (Frors s o) (@) < sup / ()] da(w)
o.m (1) (m) QCQ/EQ(H)E( Q+1 i
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Thus, we have for x € Q,

=

Mg m( )(1[:) < Mg,m(fl,la IR fm,l)(x)

m
w0 s JI(( ‘/ilﬂ )l du(y
QcQeQu iy~ 0 + 0+17

Let k = 20(0+7)/(0®*—1) > 1. First, by the Holder inequality and the (p, p) bound-
edness of M,, we have

1/p
u(kQ)l/”“(® /Q Mo (Frnseeos ) (@)[V7 du<m>)

1/pi
)" 1] (g [, et @1 aue) )

on(*e) "

TN

< CHfHB’I;O(Q.Q/(.Q-i—l)MT

<

l/pL 1/1)7:
/ (@) u(fc))
((e+7)/(e—1))Q

Second, we have again by the Holder inequality
1/ 1 1/ e
k po —/Mm ooy fmo)(@)]7Pd x)
@) (s [ Mo (i S @ o)

) u(%Q)””O QcQS}leme)ﬁ«“(% l))_l/Q, | fiy)| /P du(y)) o

< C|\f||5’};0(2g/(g+1),u)'

Hence, we have

M (D)l arzo otorm/or— 1y < CIF 5 2os(041) )

Theorem 2.1 is therefore proved. O
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3. BOUNDEDNESS OF MULTILINEAR FRACTIONAL INTEGRAL OPERATORS

The aim of this section is to investigate the boundedness of the Adams type (see [1])
multilinear fractional integral I, ,,, 0 < o < mn, which is given by

2 _ Jiyr) - f(Ym) du(y)
D)= [ G

where f: (fiso ooy fm)-

Theorem 3.1. Let 0 < o« < mn, 1 < k, p1,...,pm < 00, P = (P1y- -y Pm)s
0<p<py<ooand0<q< gy <oo. Suppose that

Then

=

Ham (F)llazge ey < CllFl 70 (1,0
By the following lemma, Theorem 3.1 can be deduced immediately.

Lemma 3.2. Let 0 < o < mn, 1 < k, p1,...,pm < 00, P = (p1,.-.,pm) and
0<p<po<n/awithl/p=1/p1+...4+1/pm, assume that each f; is measurable.
Then

— —

Lo (f)(2)] <C|\ﬂ|g§);g?wMg’m( J ()L —ow/n

—

Proof. Take ¢ > 0 which will be determined later on. We separate I ,,,(f)(z)

int
) I ;:/ Ji(y1) -« i (ym) dp(y )
ey [ oy <e ([T =1+ 2 = ym )™

nd
a I .:/ Fi(ya) - fn(ym) du(y )
B P S P T (s T [ SR o F e

For I;, we write

n=y [ 0] L fon ()] @)
j=1 27 Je<|z—y1|+...H|z—ym|<27 It 1e (|$—y1|—|—..,—|—|x_ym|)MTL—a
i)l dus(y:) < Ce* Mo (f) (@)
; 2—ig)mn— “H/x y,\<2-j+15|f(y)| (1(ys) < Ce* Mg (f)(z)
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As to Iy,

| = i/ L1yl - [ fn (ym) [ dpe(7)
- 2j_16<‘mfy1‘+~~~+|Ifym|<2j€ (|.T/' - y1| +oF |£L‘ o yml)mn_a

oo

<03 G (e H [ 1) <0

|lz—yi|<27e

Together with the estimates above, we see that

L (F)(@)] < Ce* Mom(f)(@) + 6“‘"/pollﬂ\s;0<k,u>)-
Now take ~
<|f||M;0(k,u) )po/”
e=|—F— .
M (f)(z)
Then

—

“Mom(F)w) = Pl sy = TG0 1 g M (P ()0

Thus the lemma is proved. (I

Now, we consider the endpoint case o > n/pg. Lin and Yang in [6] showed that
Io.m is a bounded operator from m-fold product of Morrey spaces to RBMO(u)
(or the Lipschitz space). We can improve the results as follows.

Theorem 3.3. Let 1 < k, p1,...,pm < 00, 0 < a = n/pg < 1 and P =
(P1y---sPm) with 1/p1 + ...+ 1/pm = 1/po, assume that p satisfies the growth
condition. Then

[ avm (F) [ REMO 0 CHfHBpO(k 1)

Theorem 3.4. Let 1 < k,p1,...,pm < 00,0 < a—n/py < 1 and P = (P1, -y Pm)
with 1/p1 + ...+ 1/pm > 1/po, assume that p satisfies the growth condition. Then

Mo (IlLip_ o) < ClLF 520 1,1

The proof of Theorems 3.3 and 3.4 will be given below, we begin with recalling
the definition of RBMO(y) and the Lipschitz spaces Lip,, (@).
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Definition 3.5. Let k € (1,00). Set

where Ng r is the smallest positive integer j such that [(2/Q) > I[(R). Given a cube
Q C R?, let N be the smallest integer not less then 0 such that 2V@Q is doubling.
We denote this cube by @

A function f € L () is said to belong to the space RBMO(p) if there exists
a positive constant C such that

1
3.1 sup /fx—m~f du(z) < C
(3.1) Qu(kQ)QH) a(f)ldu(z)
and that for any two doubling cubes @ C R,

(3.2) Imq(f) —mr(f)| < CKq,r.

The minimal constant C in (3.1) and (3.2) is defined to be the norm of f in RBMO(u)
and denoted by || f[|%pno (1)

In [13], Tolsa proved that the definition of the space RBMO(u) does not depend on
the constant k£ > 1. He also obtained that this space also satisfies a John-Nirenberg
inequality and its predual is an atomic space H'.

The following Lipschitz space is a special case of the Lipschitz spaces introduced
by Garcia-Cuerva and Gatto in [2]. We also give the definition in the setting of
nonhomogeneous space in [17].

Definition 3.6. Let 8 € (0,00). A locally integrable function b is said to belong
to the Lipschitz space Lip, (u) if there exists a positive constant C' such that
[b() —b(y)| < Clz —yl°
for p-almost all  and y in the support of . The minimal constant C' is defined
by [1bllLip,, u)-

Proof of Theorem 3.3. For simplicity, we assume that m = 2. For any cube @),
set Qg = {(y1,92): |z — 1| + |z — 52| < 51(Q)} and

/ / J1(y1) fa(y2) dp(yr) du(ye) du()
(RH2\Qq .

(|z = y1] + [ — ya )2~
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We first verify the inequality

1 o 7
(3.3) er) /Q Laa (1, f2)(@) = O | dp() < O fll g
For (3.3), we write

/lIaQ J1, fo)(z) — CF | du(x)
1 [f1yo)llfo(y2) dulys) dplys) 4
/ /QQ du(z)

(e —wr] + e — gl e
/ fl(yl)fQ(yQ) d:u‘(yl)dﬂ(yQ) —CE?O d‘LL({E)
(R4)2\Qq

%Q

<

w(2Q
(3Q

(Jz = y1| + v — yo )2~

+ 1@ s

=:1I; 4+ Ils.

There exist po,p1,p2 € (1,00) such that p; < p; for i = 1,2 and 1/p1 + 1/p2 =
1/po — a/n > 0. For II;, from 1/py = a/n, the Kolmogorov inequality and the
boundedness of I, » from LP*(u) x LP2(u) to LP°(p), it follows that

I < ﬁ /Q 2| frxa 30l fxa o) (@) du(z)

_ @)

X H(%Q) Hf1X4/3QHLz71(M)Hf2X4/3QHL52(M) < C||f”6f30(9/8,u)-

Let

QQJ = {(yl,yQ) 2J 141( ) < |J) —y1| + |J? —y2| < 23§Z(Q)}

Notice that for (y1,y2) € (R%)?\ Qg and z,2’ € Q, it is easy to see that
1 1

(o — ol +lz —ga)> = (&' — | + |2/ — ya])>"—0
Cla — /| clQ)
< < :
(lz =l + . F e —ym)?70tt 7 (Jo —y| + .+ 20— ym])2 7o F?

Then we have the following estimate for IIs:

70 Jo o [T ST

1
g
2
/d>2\n (|l —zill(ill)f(—yz)zl)%—“ du(yr) dp(yz) dp(a’) du(z)

Q |f1 ()l f2(y2)| dpa(yr) dpa(yz)
//[Rd)2\QQ du()

(lz =1l + |z — yof)?n ot

2\

1047



ClQ) Z//Q Lf1 ()l f2(y2)| dp(yr) dp(yz) d

\ T
H(3Q) (o~ w1l + fo — gal)r-art V4

2

Z € 234;6532"—““ /2].4/362 /2j4/3Q|f1(y1)||f2(y2)|dM(y1)du(y2)
Hﬂ| B0 (9/8,1)°

Thus, (3.3) holds. Next, we need to estimate the most right-hand side as follows.
For any cube Q C R,

(3.4) |CR CQ | < CKq, R”fHBpO(Q/B DK
Similarly to IIs, we have

__¢
n3QmQ)

Syl f2(y2)llz — 2’| dplyr)pldya)
dp(a')d
/ / /WV\QQ)\((W) R I e e T LR

/ / Lf1 ()l f2(y2)| dpp(yn) u(dys) d
QQJ

X
(o=l + Jo = poly-att L)

ICr -Gl <

Jl'u

< CKQ,R”fHBfBO(s)/S,Hy

It follows from (3.3), (3.4) and K, 5 < C' that

(u(3 )/uazf g (Taa (7)) du(z)

< (u( ) | Veatde) = € aute) +165 - 0
+@/Q|a2<*><> O d) < Ol llsmmioss.

and for any doubling cube @ C R,

— —

mo(Ia2(£) = mr(Ta2(f))] < ImgLa2(f)) - C&F| +|CF — CF|
+|Cr —mr(la2(f))] < CKQ,RHfHB’};O(g/S,M)a
then
[ Zovm ()| REMO ) C”fHBpO(ku)

The theorem is thus proved.
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Proof of Theorem 3.4. Let z #y, r = |z —y| and

Q:= {(y17"'aym): |$—y1|+ +|m_ym| 27"}
Notice that, for (y1,...,ym) € (R™)™\ Q and z,y € B(z,2r), it is easy to see that

- - N (Y du(y
(P (@) - L(Hw)| < / (|x|f;fff|1)+|...|iéy_)@',m’ﬁ(ﬁfla
)] o ()| At D)
+/ (ly =wl+... +ly = ym|)mn—
F)] o ()| At (@)
@yma ([T =yl +.. 4 |z —yp|)mn-ott
=: IIT; + III5 + III5.

+Clz -y

For 11Ty, since 0 < @« —n/p < 1, there exists o; (i = 1,...,m) such that ay +...+
=« and 0 < a; — n/p; < 1; then

Il < H /B g,

(z,2r) |$—y |n i

1/p; 1 1/p;
C / \Yi pi d 1 ) (/ —/d,u Yi )
H( ) (e )
collrumaen ([ i
i=1 B

1/pi
P du(@u))
(z,27)

< Cro—n/po ”fHBT};O(k,p)'
From the fact that B(z,2r) C B(y, 3r), we obtain

M < Cro™ ™70 fll soo
B

)

Similarly to Il in Theorem 3.3, we have

M5 < Cro™ 70| fll goo
B

)

Together with the estimate above, this yields that for any x # y,

—

1o (F)(@) = (/)W) < Clz - yl“‘”/p0|\ﬂ|5;;0(k,u)~

Thus, we obtain the desired result. [l

1049



4. BOUNDEDNESS OF MULTILINEAR CALDRON-ZYGMUND OPERATORS

In this section we consider multilinear singular integral operators. Let u and n
be as above. Recall that the multilinear singular integral operator 7' is a bounded
operator which satisfies

IT(f CHHszLm

forsomel < py,...,pm < cowith1/p = 1/p1—|—. ..+1/pm, and comes with a kernel K
with the following conditions.
(1) The function K satisfies the size condition

m —mn
|K(y07y1a s 7ym)| < C<Z |y0 - yl|>
=1
(2) The function K satisfies the regularity condition
Clyi — yil°
IK(Y0y - Yise s Ym) — K Yoy Yy ooy Ym)| < —5 ! S
(3 vo—wil)
=1
for some € > 0 and all ¢ =0, ..., m, whenever |y; — y}| < %Or<nax lyi — vjl
\]

(3) It ¢ ) supp(f;), then

i=1

=

TR@ = [ K@ i) Snlan) )

Theorem 4.1. Let 1 < k, p1,...,pm < 00, P = (p1,---,pm) and 0 < p < po < 00
with 1/p =1/p1+ ...+ 1/pm. Then

1T arzo oy < C|\f||5’1;0(k,u)~

Proof. Fix a cube Q := Q(co,1(Q)) € Q(p). For z € Q and (y1,...,ym) €
(R™M)™\ (2Q X ... x 2Q), we have |cg — y1| + ...+ |co — ym| > 1(Q) and

|z — 1|+ ...+ —ym| = lco—y1|+ ...+ |co — Ym]-

Therefore,

—

T @) < T(fix2q: - -+ fmx20) ()]

leo—y1 |+ tleo—ym|>1(@) (Ico = Y1 + ...+ |co — ym[)m™

1050



First, since T is a bounded operator from LP*(u) X ... x LPm(u) to LP(u),

1/p
L(2kQ) (M(%Q) /Q T(Fixags s frrxs) @) du(x))

m

< Cpu(2kQ)/Po U<# / | fi(z)

p(2kQ) Jag

1/pi .
de)) < O Pl g

Second, let

Qqi = {1, ym): 277UQ) <leo — il + ... +lco — ym| < 27UQ)}-

Then Qg ; C 2771Q x ... x 2771Q and

U = ylv"'vym):Z(Q)<|Co_y1|+'

St |CO - ym|}a

which yields

1(2kQ) /7o / )] - fon ()| dpa(@)

lco—y1|+.- +\co I INT) (|Co—y1|+---+|Co—ym|)m”

Qq.; (lco— y1| + .ot [eo = ym|)mm

k(29H11(Q))™)~1/po
1
H(2kQ) /'“ZH RO T . i) o)

1/po
<C 92— n(j+1)/po ¥ 1(2kQ)
]Zl CIORE

: I[l 1( k23+1Q 1/pi=1/po (/ng |fi(yi)
< Cl Nl (1.

1/1)7:
bi dM(:U)i)

This implies that

||T( )HJ\IPO(Qk,p) CHfHBPO(k IDE
which yields the desired result.

O
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