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Abstract. We obtain the factorization theorem for Hardy space via the variable expo-
nent Lebesgue spaces. As an application, it is proved that if the commutator of Coifman,
Rochberg and Weiss [b, T ] is bounded on the variable exponent Lebesgue spaces, then b is
a bounded mean oscillation (BMO) function.
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1. Introduction

Let T be a Calderón-Zygmund operator defined by

Tf(x) = p.v.

∫

Rn

K(x− y)f(y) dy,

where the kernel K(x) = Ω(x)/|x|n satisfies the following conditions:
(i) Ω is homogeneous of degree zero on R

n, i.e., Ω(λx) = Ω(x) for all λ > 0 and

x ∈ R
n;

(ii) Ω ∈ C∞(Sn−1) and
∫

Sn−1 Ω(x) dx = 0.

A locally integrable function b belongs to the BMO space if b satisfies

‖b‖∗ := sup
Q

1

|Q|

∫

Q

|b(x)− bQ| dx < ∞,
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where bQ := |Q|−1
∫

Q
b(x) dx and the supremum is taken over all cubes Q in R

n.

A well known result of Coifman, Rochberg and Weiss [3] states that the commutator

[b, T ](f) := bT (f)− T (bf)

is bounded on some Lp, 1 < p < ∞, if and only if b ∈ BMO.

In 2003, Cruz-Uribe, Fiorenza, Martell and Pérez in [4] showed that if b ∈ BMO,

then [b, T ] is bounded on a variable exponent Lebesgue space. It is natural to ask

whether the converse of their theorem is true.

In this paper we give an affirmative answer to this problem. After we finished

writing this paper, we found that Chaffee and Cruz-Uribe in [2] had solved this

problem. Morevover, they obtained the results using much weaker hypotheses on

the exponent p(·) and on the operator T , and they hold for a large family of Banach
function spaces and not just variable Lebesgue spaces. However, one advantage of the

approach taken in this paper is that it provides a constructive algorithm producing

the weak factorization of Hardy spaces in terms of the variable exponent Lebesgue

spaces.

2. Preliminaries and main results

Given a measurable function p : R
n → [1,∞), Lp(·)(Rn) denotes the set of mea-

surable functions f such that for some λ > 0,

∫

Rn

( |f(x)|
λ

)p(x)

dx < ∞.

Lp(·)(Rn) is a Banach function space when equipped with the norm

‖f‖Lp(·)(Rn) = inf
{

λ > 0:

∫

Rn

( |f(x)|
λ

)p(x)

dx 6 1
}

.

Such space is called a variable Lebesgue space, since it is generalized from the stan-

dard Lebesgue space. Variable Lebesgue spaces have become one of the most impor-

tant function spaces due to the fundamental paper by Kováčik and Rákosník, see [8].

Recently, Cruz-Uribe, Fiorenza, Martell and Pérez in [4] proved that many classi-

cal operators in harmonic analysis, such as maximal operators, singular integrals,

commutators and fractional integrals are bounded on the variable Lebesgue space.

Define P(Rn) to be the set of p(·) : R
n → [1,∞) such that

p− = ess inf{p(x) : x ∈ R
n} > 1, p+ = ess sup{p(x) : x ∈ R

n} < ∞.
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Denote p′(x) = p(x)/(p(x) − 1). Let B(Rn) be the set of p(·) ∈ R
n such that the

Hardy-Littlewood maximal operator M is bounded on Lp(·)(Rn).

For variable Lebesgue spaces there are some important lemmas as follows.

Lemma 2.1 ([1]). If p(·) ∈ P(Rn) satisfies

(2.1) |p(x)− p(y)| 6 C

− log |x− y| , |x− y| < 1

2

and

(2.2) |p(x)− p(y)| 6 C

log(|x|+ e)
, |y| > |x|,

then p(·) ∈ B(Rn).

Lemma 2.2 ([8]). Let P(Rn). If f ∈ Lp(·)(Rn) and g ∈ Lp′(·)(Rn), then fg is

integrable on R
n and

∫

Rn

|f(x)g(x)| dx 6 rp‖f‖Lp(·)(Rn)‖g‖Lp′(·)(Rn),

where rp = 1 + 1/p− − 1/p+.

Lemma 2.3 ([5]). Let P(Rn) satisfy conditions (2.1) and (2.2) in Lemma 2.1.

Then

‖χQ‖Lp(·) ≈
{

|Q|1/p(x) if |Q| 6 2n and x ∈ Q,

|Q|1/p∞ if |Q| > 1

for every cube (or ball) Q ⊂ R
n, where p∞ = lim

x→∞

p(x).

Next, we recall a technical lemma about certain H1(Rn) functions.

Lemma 2.4 ([9]). Suppose f is a function defined onRn satisfying
∫

Rn f(x) dx = 0,

and |f(x)| 6 χB(x0,1)(x) + χB(y0,1)(x), where |x0 − y0| = M > 10. Then we have

‖f‖H1(Rn) 6 C logM.

We also define that T is homogeneous if the kernel K satisfies

(2.3) K(x− y) >
C

Mn

for disjoint balls B0 = B(x, r) and B1(y, r) satisfying |x − y| ≈ Mr, where r > 0

and M > 1.
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Remark 2.1. If T = 0, it is easy to see that [b, T ] is bounded on the variable

Lebesgue space for any locally function b, so we need to assume some homogeneous

condition for T . The condition (2.3) is natural. The Riesz transforms and the Hilbert

transform satisfy (2.3).

Our main result is the following factorization theorem for H1(Rn).

Theorem 2.1. Suppose that p(·) ∈ P(Rn) satisfies conditions (2.1) and (2.2)

in Lemma 2.1 and T is a homogeneous Calderón-Zygmund operator. Then for ev-

ery f ∈ H1(Rn), there exist sequences {λk
s} ∈ l1 and functions gks ∈ Lp′(·)(Rn),

hk
s ∈ Lp(·)(Rn) such that

(2.4) f =

∞
∑

k=1

∞
∑

s=1

λk
s (h

k
sT

∗(gks )− gksT (h
k
s))

in the sense of H1(Rn), where T ∗ is the adjoint operator of T . Moreover,

‖f‖H1(Rn) ≈ inf

∞
∑

k=1

∞
∑

s=1

|λk
s |‖gks‖Lp′(·)(Rn)‖hk

s‖Lp(·)(Rn),

where the infimum above is taken over all possible representations of f that sat-

isfy (2.4).

By Theorem 2.1, we conclude:

Theorem 2.2. Suppose that p(·) ∈ P(Rn) satisfies conditions (2.1) and (2.2) in

Lemma 2.1 and T is a homogeneous Calderón-Zygmund operator. If the commuta-

tor [b, T ] is bounded on Lp(·), then b ∈ BMO.

3. Proofs of Theorem 2.1 and Theorem 2.2

We now proceed with proofs of Theorem 2.1 and Theorem 2.2.

P r o o f of Theorem 2.1. We apply the method due to Coifman, Rochberg and

Weiss in [3], see also [7] or [10], which is different from that applied by Janson in [6].

Note that for any g ∈ Lp′(·)(Rn) and h ∈ Lp(·)(Rn), we have hT ∗(g)−gT (h) ∈ L1(Rn)

by Lemma 2.2 and the boundedness of T on the variable Lebesgue space, see [4].

Moreover, we get

∫

Rn

(h(x)T ∗(g)(x) − g(x)T (h)(x)) dx = 0.
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For any b ∈ BMO, we conclude that

∣

∣

∣

∣

∫

Rn

b(x)(h(x)T ∗(g)(x) − g(x)T (h)(x)) dx

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

Rn

g(x)[b, T ](h)(x) dx

∣

∣

∣

∣

6 C‖h‖Lp(·)(Rn)‖g‖Lp′(·)(Rn)‖b‖∗.

Therefore, (hT ∗(g)− gT (h)) is in H1(Rn) with

‖hT ∗(g)− gT (h)‖H1(Rn) 6 C‖h‖Lp(·)(Rn)‖g‖Lp′(·)(Rn).

It is immediate that for any representation of f ,

f =

∞
∑

k=1

∞
∑

s=1

λk
s (h

k
sT

∗(gks )− gksT (h
k
s)),

we have that ‖f‖H1(Rn) is bounded by

C inf

∞
∑

k=1

∞
∑

s=1

|λk
s |‖hk

s‖Lp(·)(Rn)‖gks‖Lp′(·)(Rn).

We turn to showing that the reverse inequality holds and that it is possible to

obtain such a decomposition for any f ∈ H1(Rn).

We first show that for every H1(Rn)-atom a(x) and for all ε > 0 and for all

p(·) ∈ P(Rn) satisfying conditions (2.1) and (2.2), there exist g ∈ Lp′(·)(Rn),

h ∈ Lp(·)(Rn) and a large positive number M (depending only on ε) such that

‖a−
(

hT ∗(g)− gT (h)
)

‖H1(Rn) < ε

and that ‖g‖Lp′(·)(Rn)‖h‖Lp(·)(Rn) 6 CMn, where C is an absolute positive constant.

Let a(x) be an H1(Rn)-atom supported in B(x0, r), satisfying

∫

Rn

a(x) dx = 0 and ‖a‖L∞(Rn) 6 rn.

Fix ε > 0, choose M , a large integer which we shall determine later. Select y0 ∈ R
n

so that y0,i− x0,i = Mr/
√
n with |y0,i| > |x0,i|, where x0,i, y0,i are, respectively, the

ith coordinates of x0, y0 for i = 1, 2, . . . , n. Then

(3.1) |x0 − y0| = Mr and |y0| > |x0|.
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We then set

g(x) = χB(y0,r)(x), h(x) =
a(x)

T ∗(g)(x0)
.

By (2.3), we have that there exists a positive constant C such that

|T ∗(g)(x0)| > CM−n.

From the definitions of functions g and f we obtain that supp g ⊂ B(y0, r) and

supph ⊂ B(x0, r). Moreover,

‖g‖Lp′(·)(Rn) = ‖χB(y0,r)‖Lp′(·)(Rn) and ‖h‖Lp(·)(Rn) 6 CMnr−n‖χB(x0,r)‖Lp(·)(Rn).

If |B(y0, r)| = |B(x0, r)| > 1, by Lemma 2.3 we have

‖g‖Lp′(·)(Rn)‖h‖Lp(·)(Rn) = ‖χB(y0,r)‖Lp′(·)(Rn)‖χB(x0,r)‖Lp(·)(Rn)

6 CMnr−n|B(y0, r)|1/p
′

∞ |B(x0, r)|1/p∞ 6 CMn,

where

p′
∞

= lim
x→∞

p′(x) = lim
x→∞

(

1− 1

p(x)− 1

)

= 1− 1

p∞ − 1
.

If |B(y0, r)| = |B(x0, r)| < 2n, Lemma 2.3 and (3.1) imply that

‖g‖Lp′(·)(Rn)‖h‖Lp(·)(Rn) = ‖χB(y0,r)‖Lp′(·)(Rn)‖χB(x0,r)‖Lp(·)(Rn)

6 CMnr−n|B(y0, r)|1/p
′(y0)|B(x0, r)|1/p(x0)

6 CMn|B(x0, r)|1/p(x0)−1/p(y0) 6 CMn,

where in the last inequality we use the fact that

1

p(x0)
− 1

p(y0)
=

p(y0)− p(x0)

p(x0)p(y0)
6

C

(p−)2

and |B(x0, r)| < 2n.

Next, we have

a(x)− (h(x)T ∗(g)(x) − g(x)T (h)(x))

=
a(x)(T ∗(g)(x0)− T ∗(g)(x))

T ∗(g)(x0)
− g(x)T (h)(x) = I + II.

We first estimate I. For x ∈ B(x0, r),

|I| 6 |a(x)|
T ∗(g)(x0)

∫

B(y0,r)

|K(x0 − y)−K(x− y)| dy

6 CMnr−n

∫

B(y0,r)

|x− x0|
|x0 − y|n+1

dy 6 CMnr−n r

(Mr)n+1
rn 6

C

Mrn
.

Hence we conclude that |I| 6 (1/Mrn)χB(x0,r)(x).
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For II, from the definitions of g and h and the fact that
∫

Rn a(x) dx = 0, it follows

that for any x ∈ B(y0, r),

|T (h)(x)| 6 T (a)(x)

T ∗(g)(x0)
6 CMn

∫

B(x0,r)

∣

∣

∣
K(y0 − y)−K(x− y)

∣

∣

∣
|a(y)| dy 6

C

Mrn
.

Thus,

|II| 6 1

Mrn
χB(y0,r)(x)

which yields that

(3.2) |a(x)− (h(x)T ∗(g)(x)− g(x)T (h)(x))| 6 C

Mrn
(χB(x0,r)(x) + χB(y0,r)(x)).

Since ∫

Rn

a(x) − (h(x)T ∗(g)(x) − g(x)T (h)(x)) dx = 0,

and for M sufficiently large such that

C logM

M
< ε,

from Lemma 2.4 we get

‖a− (hT ∗(g)− gT (h))‖H1(Rn) < ε.

Now we return to the proof. For any f ∈ H1(Rn) we can find a sequence

{λ1
s} ∈ l1 and a sequence of H1(Rn)-atoms {a1s} such that f =

∞
∑

s=1
λ1
sa

1
s and

∞
∑

s=1

|λ1
s| 6 C0‖f‖H1(Rn).

Let ε ∈ (0, 1/C0). For each atom a1s, there exist g
1
s ∈ Lp′(·)(Rn) and h1

s ∈Lp′(·)(Rn)

such that

‖a1s − (h1
sT

∗(g1s)− g1sT (h
1
s))‖H1(Rn) < ε.

We have

f =

∞
∑

s=1

λ1
sa

1
s =

∞
∑

s=1

λ1
s(h

1
sT

∗(g1s)− g1s(x)T (h
1
s)) +

∞
∑

s=1

λ1
s(a

1
s − h1

sT
∗(g1s)− g1sT (h

1
s))

= F1 +G1.

Observe that

‖G1‖H1(Rn) 6

∞
∑

s=1

|λ1
s|‖a1s − h1

sT
∗(g1s))− g1sT (h

1
s)‖H1(Rn) 6 εC0‖f‖H1(Rn).
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Repeating this construction on the function G1 we obtain that

G1 =

∞
∑

s=1

λ2
sa

2
s =

∞
∑

s=1

λ2
s(h

2
sT

∗(g2s)− g2sT (h
2
s)) +

∞
∑

s=1

λ2
s(a

2
s − h2

sT
∗(g)− g2sT (h

2
s))

= F2 +G2

and ‖G2‖H1(Rn) 6 (εC0)
2‖f‖H1(Rn).

Continuing this process indefinitely, we obtain for any K

f =

K
∑

k=1

Fk + EK =

K
∑

k=1

∞
∑

s=1

λk
s (h

k
sT

∗(gks )− gksT (h
k
s)) +GK ,

where ‖GK‖H1(Rn) 6 (εC0)
K‖f‖H1(Rn). Letting K → ∞ gives the desired decom-

position of

f =

∞
∑

k=1

∞
∑

s=1

λk
s (h

k
sT

∗(gks )− gksT (h
k
s))

and
∞
∑

k=1

∞
∑

s=1

|λk
s | 6

∞
∑

k=1

(εC0)
k‖f‖H1(Rn) 6

C0

1− εC0
‖f‖H1(Rn).

Thus, we have completed the proof of Theorem 2.1. �

P r o o f of Theorem 2.2. For f ∈ H1(Rn), by Theorem 2.1 and the Lp(·)(Rn)

boundedness of [b, T ], we obtain

∣

∣

∣

∣

∫

Rn

b(x)f(x) dx

∣

∣

∣

∣

=

∞
∑

k=1

∞
∑

s=1

|λk
s |
∣

∣

∣

∣

∫

Rn

b(x)hk
s (x)T

∗(gks )(x) − b(x)gks (x)T (h
k
s )(x) dx

∣

∣

∣

∣

=
∞
∑

k=1

∞
∑

s=1

|λk
s |
∣

∣

∣

∣

∫

Rn

gks (x)[b, T ](h
k
s)(x) dx

∣

∣

∣

∣

6 C

∞
∑

k=1

∞
∑

s=1

|λk
s |‖gks‖Lp′(·)(Rn)‖hk

s‖Lp(·)(Rn) 6 C

∞
∑

k=1

∞
∑

s=1

|λk
s |.

From the duality theorem between H1(Rn) and BMO, it follows that b ∈ BMO. �
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