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Abstract. Let R be a commutative ring, G be a generalized matrix algebra over R

with weakly loyal bimodule and Z(G) be the center of G. Suppose that q : G ×G → G is an
R-bilinear mapping and that Tq : G → G is a trace of q. The aim of this article is to describe
the form of Tq satisfying the centralizing condition [Tq(x), x] ∈ Z(G) (and commuting
condition [Tq(x), x] = 0) for all x ∈ G. More precisely, we will revisit the question of when
the centralizing trace (and commuting trace) Tq has the so-called proper form from a new
perspective. Using the aforementioned trace function, we establish sufficient conditions
for each Lie-type isomorphism of G to be almost standard. As applications, centralizing
(commuting) traces of bilinear mappings and Lie-type isomorphisms on full matrix algebras
and those on upper triangular matrix algebras are totally determined.

Keywords: generalized matrix algebra; commuting trace; centralizing trace; Lie isomor-
phism; Lie triple isomorphism

MSC 2010 : 16R60, 16W10, 15A78

1. Introduction

LetR be a commutative ring with identity, A be a unital algebra overR and Z(A)

be the center of A. Let us denote the commutator or the Lie product of the elements

a, b ∈ A by [a, b] = ab − ba. Recall that an R-linear mapping f : A → A is said

to be centralizing if [f(a), a] ∈ Z(A) for all a ∈ A. In particular, the mapping f is

called commuting if [f(a), a] = 0 for all a ∈ A. When dealing with a centralizing

(or commuting) mapping, the usual goal is to provide a precise description of its

form. The identity mapping and every mapping which has its range in Z(A) are two

classical examples of commuting mappings. Furthermore, the sum and the pointwise
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product of commuting mappings are also commuting mappings. For instance, the

mapping

(♦) f(x) = λ0(x)x
n + λ1(x)x

n−1 + . . . . . .+ λn−1(x)x + λn(x), λi : A → Z(A)

is commuting for any choice of central maps λi. Of course, there are other examples,

namely, elements commuting with x may not necessarily be equal to a polynomial

in x (with central coefficients) and so in most rings there is a variety of possibilities of

how to find commuting maps different from those described in (♦). We encourage the

reader to read the well-written monograph (see [11]), in which the author presented

the development of the theory of commuting mappings and their applications in

details.

Let n be a positive integer and q : An → A. We say that q is n-linear if

q(a1, . . . , an) is R-linear in each variable ai, that is, q(a1, . . . , rai + sbi, . . . , an) =

rq(a1, . . . , ai, . . . , an) + sq(a1, . . . , bi, . . . , an) for all r, s ∈ R, ai, bi ∈ A and i =

1, 2, . . . , n. The mapping Tq : A → A defined by Tq(a) = q(a, a, . . . , a) is called

a trace of q. We say that a centralizing trace Tq is proper if it can be written as

Tq(a) =

n
∑

i=0

µi(a)a
n−i ∀ a ∈ A,

where µi (0 6 i 6 n) is a mapping from A into Z(A) and every µi (0 6 i 6 n) is in

fact a trace of an i-linear mapping qi from Ai into Z(A). Let n = 1 and f : A → A

be an R-linear mapping. In this case, an arbitrary trace Tf of f exactly equals to

itself. Moreover, if a centralizing trace Tf of f is proper, then it has the form

Tf(a) = za+ η(a) ∀ a ∈ A,

where z ∈ Z(A) and η is an R-linear mapping from A into Z(A). Let us see the case

of n = 2. Suppose that g : A × A → A is an R-bilinear mapping. If a centralizing

trace Tg of g is proper, then it is of the form

Tg(a) = za2 + µ(a)a+ ν(a) ∀ a ∈ A,

where z ∈ Z(A), µ is an R-linear mapping from A into Z(A) and ν is a trace of

some bilinear mapping A into Z(A). Brešar started the study of commuting and

centralizing traces of multilinear mappings in his series of works (see [9], [8], [10]),

where he investigated the structure of centralizing traces of (bi-)linear mappings on

prime rings. It was proved that in certain rings, in particular, prime rings of char-

acteristic different from 2 and 3, every centralizing trace of a biadditive mapping
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is commuting. Moreover, every centralizing mapping of a prime ring of character-

istic different from 2 is of the proper form and is actually commuting. An exciting

discovery (see [63]) is that every centralizing trace of arbitrary bilinear mapping on

triangular algebras is commuting in some additional conditions. It has turned out

that this study is closely related to the problem of characterizing Lie isomorphisms

or Lie derivations of associative rings, see [4], [39], [62], [63].

Cheung in [17] and [18] studied commuting mappings of triangular algebras (e.g. of

upper triangular matrix algebras and nest algebras). He determined the class of

triangular algebras for which every commuting mapping is proper. Xiao and Wei

in [61] extended Cheung’s result to the case of generalized matrix algebras. They es-

tablished sufficient conditions for each commuting mapping of a generalized matrix

algebra
[

A M

N B

]

to be proper. Benkovič and Eremita in [4] considered commuting

traces of bilinear mappings on a triangular algebra
[

A M

O B

]

. They gave conditions

under which every commuting trace of a triangular algebra
[

A M

O B

]

is proper. More

recently, Franca in [25], [26], [27], [28], [29], [30], [31], Xu and Yi in [64] indepen-

dently investigated commuting mappings on subsets of matrices that are not closed

under addition such as invertible matrices, singular matrices, matrices of rank k, etc.

The research results demonstrate that the commuting mappings on these sets basi-

cally have the proper form. Liu in [44] and [45] immediately extended Franca’s and

Xu’s works to the case of centralizing mappings. These works explicitly imply that

functional identities can be developed to the sets that are not closed under addition.

The form of commuting traces of multilinear mappings of upper triangular matrix

algebras was earlier described. Simultaneously, some researchers engage in charac-

terizing k-commuting mappings of generalized matrix algebras and those of unital

algebras with notrivial idempotents, see [22], [40], [41], [52]. Motivated by Benkovič

and Eremita’s work (see [4]), the present authors (see [43], [62], [63]) undertook the

study of centralizing (or commuting) traces of bilinear mappings on triangular alge-

bras and generalized matrix algebras. It is shown that every centralizing trace of an

arbitrary bilinear mapping on a class of generalized matrix algebra has the so-called

proper from. González et al. in [49] and [54] investigated commuting mappings

with automorphisms on triangular algebras. Wang in [58] and [59] revisited the cen-

tralizing (commuting) traces of bilinear mappings and Lie (triple) isomorphisms on

triangular algebras via a new tool-weakly loyal module. Its advantage is to embrace

those upper triangular matrix algebras over 2-torsion free commutative rings which

are not recovered in the existing works.

Another important purpose of this article is devoted to the study of Lie-type iso-

morphisms problem of generalized matrix algebras. Given a commutative ringR with

identity and two associativeR-algebrasA and B, one defines a Lie triple isomorphism
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from A into B to be an R-linear bijective mapping l satisfying the condition

l([[a, b], c]) = [[l(a), l(b)], l(c)] ∀ a, b, c ∈ A.

For example, an isomorphism or the negative of an anti-isomorphism of one algebra

onto another is also a Lie isomorphism. Furthermore, every Lie isomorphism and

every Jordan isomorphism are Lie triple isomorphisms. One can ask whether the

converse is true in some special cases. That is, does every Lie triple isomorphism

between certain associative algebras arise from isomorphisms and anti-isomorphisms

in the sense of modulo mappings whose range is central? If m is an isomorphism or

the negative of an anti-isomorphism from A onto B and n is an R-linear mapping

from A into the center Z(B) of B such that n([[a, b], c]) = 0 for all a, b, c ∈ A, then

the mapping

(♠) l = m+ n

is a Lie triple homomorphism. We shall say that a Lie triple isomorphism l : A → B

is standard when it can be expressed in the preceding form (♠).

Hua in [33] proved that every Lie automorphism of the full matrix algebraMn(D)

(n > 3) over a division ring D is of the standard form (♠). This result was extended

to the nonlinear case by Dolinar in [20] and Šemrl in [56] and was further refined

by them. Marcoux and Sourour in [47] classified the linear mappings preserving

commutativity in both directions (i.e., [x, y] = 0 if and only if [f(x), f(y)] = 0) on

upper triangular matrix algebras Tn(F) over a field F. Such a mapping is either

the sum of an algebraic automorphism of Tn(F) (which is inner) and a mapping

into the center FI, or the sum of the negative of an algebraic anti-automorphism

and a mapping into the center FI. The classification of the Lie automorphisms

of Tn(F) is obtained as a consequence. Benkovič and Eremita in [4] directly applied

the theory of commuting traces to the study of Lie isomorphisms on a triangular

algebra
[

A M

O B

]

. They provided sufficient conditions under which every commuting

trace of
[

A M

O B

]

is proper. This is directly applied to the study of Lie isomorphisms

of
[

A M

O B

]

. It turns out that under some mild assumptions, each Lie isomorphism

of
[

A M

O B

]

has the standard form (♠). These results are further extended to the case

of generalized matrix algebras, see [43], [62], [63]. Lie triple isomorphisms between

rings and between (non-)self-adjoint operator algebras have received a fair amount

of attention and have also been intensively studied, see [2], [13], [14], [15], [16], [20],

[21], [32], [46], [48], [51], [52], [53], [56], [55], [57], [58], [59], [65], [66].

The aim of this paper is to revisit commuting (centralizing) traces of bilinear map-

pings and Lie (triple) isomorphisms on generalized matrix algebras. One significant
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improvement in this paper is that we proceed to prove our results under the frame of

weakly loyal bimodules, which is explicitly distinguished from our previous works in

this vein. Its advantage is that it permits us to embrace two prevailing examples—full

matrix algebras and upper triangular matrix algebras over an arbitrary commuta-

tive ring. Section 2 contains the definition of generalized matrix algebra and some

classical examples. In Section 3 (and Section 4), we provide sufficient conditions

for each commuting trace (and centralizing trace) of arbitrary bilinear mappings on

a generalized matrix algebra
[

A M

N B

]

with weakly loyal bimodule M to be proper. In

Section 5 (and Section 6), we will use the main result of Section 4 (and Section 3) to

characterize Lie triple isomorphisms (and Lie isomorphisms) on generalized matrix

algebras with weakly loyal bimodules. As consequences, we can obtain a complete

description of Lie triple isomorphisms (and Lie isomorphisms) on full matrix algebras

and upper triangular matrix algebras over a 2-torsion free commutative ring.

2. Generalized matrix algebras and examples

Let us begin with the definition of generalized matrix algebras given by a Morita

context. Let R be a commutative ring with identity. A Morita context consists of

two unital R-algebras A and B, two bimodules AMB and BNA, and two bimodule

homomorphisms called the pairings ΦMN : M ⊗B N → A and ΨNM : N ⊗AM → B

satisfying the following commutative diagrams:

M ⊗B N ⊗A M
ΦMN⊗IM

//

IM⊗ΨNM

��

A⊗A M

∼=

��

M ⊗B B
∼=

// M

and N ⊗A M ⊗B N
ΨNM⊗IN

//

IN⊗ΦMN

��

B ⊗B N

∼=

��

N ⊗A A
∼=

// N

Let us write this Morita context as (A,B,M,N,ΦMN ,ΨNM ). We refer the reader

to [50] for the basic properties of Morita contexts. If (A,B,M,N, ΦMN ,ΨNM ) is

a Morita context, then the set

[

A M

N B

]

=

{[

a m

n b

]

: a ∈ A, m ∈ M, n ∈ N, b ∈ B

}

form an R-algebra under matrix-like addition and matrix-like multiplication, where

at least one of the two bimodules M and N is distinct from zero. Such an R-algebra

is usually called a generalized matrix algebra of order 2 and is denoted by

G =

[

A M

N B

]

.
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In a similar way, one can define a generalized matrix algebra of order n > 2. It

was shown that up to isomorphism, arbitrary generalized matrix algebra of order n

(n > 2) is a generalized matrix algebra of order 2, see [40], Example 2.2. If one of the

modules M and N is zero, then G exactly degenerates to an upper triangular algebra

or a lower triangular algebra. In this case, we denote the resulted upper triangular

algebra (and lower triangular algebra) by

T U = T (A,M,B) =

[

A M

O B

] (

and TL = T (A,N,B) =

[

A O

N B

])

.

LetMn(R) be the full matrix algebra consisting of all n× n matrices over R. It is

worth to point out that the notion of generalized matrix algebras efficiently unifies

triangular algebras with full matrix algebras together. The feature of our systematic

work is to deal with all questions related to (non-)linear mappings of triangular

algebras and of full matrix algebras under a unified frame, which is the admired

generalized matrix algebras frame, see [40], [41], [42], [61], [62], [63].

Let us list some classical examples of generalized matrix algebras which will be

invoked in the sequel (Section 3–6). Since these examples have already been presented

in many papers, we just state their titles without any details.

(i) Unital algebras with nontrivial idempotents,

(ii) full matrix algebras,

(iii) inflated algebras,

(iv) triangular algebras, such as upper or lower triangular matrix algebras, block

upper (or lower) triangular matix algebras and nest algebras over a Hilbert

space,

(v) factor von Neumann algebra acting on a Hilbert space,

(vi) von Neumann algebra with no central summand of type I1,

(vii) algebra of all bounded linear operators over a Banach space X ,

(viii) standard operator algebras over a Banach space.

These generalized matrix algebras frequently appear in the theory of associative

algebras and noncommutative Noetherian algebras in the most diverse situations,

which is due to its powerful persuasiveness and intuitive illustration effect. However,

people pay less attention to the linear mappings of generalized matrix algebras. It

was Krylov who initiated the study of linear mappings on generalized matrix algebras

from the classifying point of view [34]. Since then many articles are devoted to this

topic, and a number of interesting results are obtained (see [1], [3], [6], [7], [12],

[19], [23], [24], [40], [41], [42], [60], [61], [62]). Nevertheless, it leaves so much to be

desired. The representation theory, homological behavior, K-theory of generalized

matrix algebras are intensively intestigated by Krylov and his coauthors in [34], [35],

[36], [37], [38].
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Throughout this article, we denote the generalized matrix algebra of order 2 orig-

inated from the Morita context (A,B,A MB,B NA,ΦMN ,ΨNM ) by

G =

[

A M

N B

]

,

where at least one of the two bimodules M and N is distinct from zero. We always

assume that M is faithful as a left A-module and also as a right B-module, but

without any constraint conditions on N . The center of G is

Z(G) =

{[

a 0

0 b

]

: am = mb, na = bn ∀m ∈ M ∀n ∈ N

}

.

Indeed, by [34], Lemma 1, we know that the center Z(G) consists of all diagonal

matrices
[

a 0

0 b

]

, where a ∈ Z(A), b ∈ Z(B) and am = mb, na = bn for all m ∈ M ,

n ∈ N . However, in our situation when M is faithful as a left A-module and also as

a right B-module, the conditions that a ∈ Z(A) and b ∈ Z(B) become redundant

and can be deleted. Indeed, if am = mb for all m ∈ M , then for any a′ ∈ A we get

(aa′ − a′a)m = a(a′m)− a′(am) = (a′m)b − a′(mb) = 0.

The assumption that M is faithful as a left A-module leads to aa′ − a′a = 0 and

hence a ∈ Z(A). Likewise, we also have b ∈ Z(B).

Let us define two natural R-linear projections πA : G → A and πB : G → B by

πA :

[

a m

n b

]

7→ a and πB :

[

a m

n b

]

7→ b.

By the above paragraph, it is not difficult to see that πA(Z(G)) is a subalgebra

of Z(A) and that πB(Z(G)) is a subalgebra of Z(B). Given an element a ∈ πA(Z(G)),

if
[

a 0

0 b

]

,
[

a 0

0 b′

]

∈ Z(G), then we have am = mb = mb′ for all m ∈ M . Since M is

faithful as a rightB-module, b = b′. That implies there exists a unique b ∈ πB(Z(G)),

which is denoted by ϕ(a), such that
[

a 0

0 b

]

∈ Z(G). It is easy to verify that the map

ϕ : πA(Z(G)) → πB(Z(G)) is an algebraic isomorphism such that am = mϕ(a) and

na = ϕ(a)n for all a ∈ πA(Z(G)), m ∈ M , n ∈ N .

Let A and B be algebras. Recall an (A,B)-bimoduleM is loyal if aMb = 0 implies

that a = 0 or b = 0 for all a ∈ A, b ∈ B. We say that an (A,B)-bimodule M is

weakly loyal if

(1) for any a ∈ A the condition aM [B,B] = 0 implies that a = 0 or [B,B] = 0,

(2) for any b ∈ B the condition [A,A]Mb = 0 implies that b = 0 or [A,A] = 0.
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Example 2.1. Let us see two prevailing generalized matrix algebras which are

endowed with weakly loyal bimodules.

(1) Let Tn(R) be the algebra of all n × n upper triangular matrices over a unital

commutative ring R, where n > 2 is an integer. For every 1 6 r 6 n − 1

let A = Tr(R), M = Mr×(n−r)(R) and B = Tn−r(R). Then M is a weakly

loyal (A,B)-bimodule. However, if R is not a domain, then M is not a loyal

(A,B)-bimodule, see [58], Remark 2.1.

(2) Let n > 2 and R be a 2-torsion free unital commutative ring. Mn(R) be a full

matrix algebra defined over R. For every 1 6 r 6 n − 1 let A = Mr(R),

M = Mr×(n−r)(R), N = M(n−r)×r(R), B = Mn−r(R). Then M is a weakly

loyal (A,B)-bimodule. Indeed, let us write

Mn(R) =

[

Mr(R) Mr×(n−r)(R)

M(n−r)×r(R) Mn−r(R)

]

.

Note that Z(Mn(R)) = R · IMn(R). We claim that condition (1) holds true. If

n = 2, there is nothing to prove, since A and B are commutative algebras. If

n > 2, we may assume [B,B] 6= 0, then n − r > 2. Suppose that for all a =

[ai,j ]r×r ∈ A, aM [B,B] = 0. Let us take ei,r+1 ∈ M and er+1,r+1, er+1,n ∈ B

for all 1 6 i 6 r. Then we have

aei,r+1[er+1,r+1, er+1,n] = aei,n = 0.

We therefore get aj,i = 0 for all 1 6 j 6 r. In view of the scope of i, we get

aj,i = 0 for all 1 6 j, i 6 r, i.e., a = 0.

3. Commuting traces of bilinear mappings

on generalized matrix algebras

In this section we will establish sufficient conditions which enable each commuting

trace of an arbitrary bilinear mapping on a generalized matrix algebra
[

A M

N B

]

to be

proper (Theorem 3.13). Consequently, we are able to describe commuting traces of

bilinear mappings on triangular algebras and those on full matrix algebras. Most

important is that Theorem 3.13 can be used to characterize Lie isomorphisms from

a generalized matrix algebra into another one in Section 6.

Simulating the proofs of [58], Lemmas 2.1–2.2, Lemmas 3.1–3.3 one can obtain

similar results for generalized matrix algebras with weakly loyal bimodules.

Lemma 3.1. Let G =
[

A M

N B

]

be a generalized matrix algebra with weakly loyal

(A,B)-bimodule M .
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(1) For any λ ∈ πA(G) the condition λ[A,A] = 0 implies that either λ = 0 or

[A,A] = 0.

(2) For any λ ∈ πB(G) the condition λ[B,B] = 0 implies that either λ = 0 or

[B,B] = 0.

Lemma 3.2. Let M be a weakly loyal (A,B)-bimodule.

(1) Let f, g : M → A be arbitrary mappings. Suppose that f(m)n + g(n)m = 0

holds true for all m,n ∈ M . If B is noncommutative, then f = g = 0.

(2) Let f, g : M → B be arbitrary mappings. Suppose that nf(m) + mg(n) = 0

holds true for all m,n ∈ M . If A is noncommutative, then f = g = 0.

In 2012, Benkovic and Eremita (see [5]) introduced the following useful condition

for an arbitrary R-algebra A:

(♥) [x,A] ∈ Z(A) ⇒ x ∈ Z(A) ∀x ∈ A.

This amounts to saying that

[[x,A],A] = 0 ⇒ [x,A] = 0 ∈ Z(A) ∀x ∈ A.

Note that (♥) is equivalent to the condition that there do not exist nonzero central

inner derivations on A. The usual examples of algebras satisfying (♥) are commu-

tative algebras, prime algebras, and triangular algebras (see [5], Example 5.2 and

Example 5.3). Except for these algebras, we next show that there do not exist

nonzero central derivations on generalized matrix algebras.

Indeed, for an arbitrary central derivation d of a generalized matrix algebra

G =
[

A M

N B

]

. Let us set e =
[

1 0

0 0

]

and f =
[

0 0

0 1

]

. Suppose that d(e) =
[

w 0

0 u

]

.

Since d is a central derivation of G, we have that d(e) = ed(e) + ed(e) and that
[

w 0

0 u

]

= 2
[

w 0

0 0

]

. And hence w = 0. Note that u = ϕ(w) = 0. Thus, we assert that

d(e) =
[

0 0

0 0

]

. In an analogous manner, one can show that d(f) =
[

0 0

0 0

]

.

For an arbitrary
[

a 0

0 0

]

∈ G assume that d
([

a 0

0 0

])

=
[

wa 0

0 ua

]

. Since d is a central

derivation of G, d
([

a 0

0 0

])

= d
(

e
[

a 0

0 0

])

= d(e)
[

a 0

0 0

]

+ ed
([

a 0

0 0

])

= ed
([

a 0

0 0

])

=
[

wa 0

0 0

]

. Thus, we arrive at ua = 0. Note that wa = ϕ−1(ua). So wa = 0 and

hence d
([

a 0

0 0

])

=
[

0 0

0 0

]

. Likewise, for an arbitrary
[

0 0

0 b

]

∈ G, we can show that

d
([

0 0

0 b

])

=
[

0 0

0 0

]

.

Suppose that d
([

0 m

0 0

])

=
[

wm 0

0 um

]

for all
[

0 m

0 0

]

∈ G. Since d is a cen-

tral derivation of G, d
([

0 m

0 0

])

= d
(

e
[

0 m

0 0

])

= d(e)
[

0 m

0 0

]

+ ed
([

0 m

0 0

])

=
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ed
([

0 m

0 0

])

=
[

wm 0

0 0

]

. We obtain that um = 0 and that wm = ϕ−1(um) = 0.

Thus d
([

0 m

0 0

])

=
[

0 0

0 0

]

. In a similar way, we can prove that d
([

0 0

n 0

])

= 0 for all
[

0 0

n 0

]

∈ G. We therefore conclude that d(x) = 0 for all x ∈ G.

Using [40], Theorem 3.4 and condition (♥), one easily obtains the following result

for generalized matrix algebras. We omit its proof for conciseness.

Proposition 3.3. Let G =
[

A M

N B

]

be a generalized matrix algebra over a com-

mutative ring R with 1
2 ∈ R. Then every centralizing mapping of G is proper if the

following conditions are satisfied:

(1) πA(Z(G)) = Z(A) and πB(Z(G)) = Z(B),

(2) both A and B satisfy condition (♥),

(3) there exist m0 ∈ M , n0 ∈ N such that

Z(G) =

{[

a 0

0 b

]

: am0 = m0b, n0a = bn0 ∀ a ∈ Z(A) ∀ b ∈ Z(B)

}

.

Let us see several consequences of Proposotion 3.3.

Corollary 3.4 ([58], Proposition 2.1). Let T =
[

A M

O B

]

be a triangular algebra

over a commutative ring R with 1
2 ∈ R. Then every centralizing mapping of T is

proper if the following conditions hold:

(1) πA(Z(T )) = Z(A) and πB(Z(T )) = Z(B),

(2) both A and B satisfy condition (♥),

(3) there exists m0 ∈ M such that

Z(T ) =

{[

a 0

0 b

]

: am0 = m0b ∀ a ∈ Z(A) ∀ b ∈ Z(B)

}

.

Corollary 3.5. Let n be a positive integer with n > 2 and R be a commutative

ring with 1
2 ∈ R. Then every centralizing linear mapping onMn(R) is proper.

Corollary 3.6 ([58], Corollary 2.1). Let n be a positive integer with n > 2 and R

be a commutative ring with 1
2 ∈ R. Then every centralizing linear mapping on Tn(R)

is proper.

Corollary 3.7 ([58], Corollary 2.2). Then every centralizing linear mapping on

nest algebras is proper.
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In order to prove the main theorem of this section, we need much more elementary

results.

Lemma 3.8. Let G =
[

A M

N B

]

be a generalized matrix algebra over a commutative

ring R with 1
2 ∈ R. Suppose that there exist m0 ∈ M , n0 ∈ N such that

Z(G) =

{[

a 0

0 b

]

: am0 = m0b, n0a = bn0 ∀ a ∈ Z(A), b ∈ Z(B)

}

.

(1) If f : M → Z(A) and g : M → Z(B) are R-linear mappings such that

f(m)m = mg(m), nf(m) = g(m)n

for all m ∈ M , n ∈ N , then f(m)⊕ g(m) ∈ Z(G).

(2) If f : M×M → Z(A) and g : M×M → Z(B) are R-linear mappings such that

(3.1) f(m,m)m = mg(m,m), g(m,m)n = nf(m,m)

for all m ∈ M , n ∈ N , then f(m,m)⊕ g(m,m) ∈ Z(G).

(3) If f : M ×N → Z(A) and g : M ×N → Z(B) are R-linear mappings such that

(3.2) f(m,n)m = mg(m,n), g(m,n)n = nf(m,n)

for all m ∈ M , n ∈ N , then f(m,n)⊕ g(m,n) ∈ Z(G).

P r o o f. We only prove statements (2) and (3). Statement (1) can be proved in

a similar way.

(2) Let us take m = m0 ∈ M , n = n0 ∈ N in (3.1). Then we have

(3.3) f(m0,m0)m0 = m0g(m0,m0), g(m0,m0)n0 = n0f(m0,m0).

Furthermore, we know that f(m0,m0)⊕ g(m0,m0) ∈ Z(G),

(3.4) f(m0,m0)m = mg(m0,m0)

for all m ∈ M . Replacing m by m+m0 in (3.1) gives

f(m+m0,m+m0)(m+m0) = (m+m0)g(m+m0,m+m0)

for all m ∈ M . Expanding this identity and using both (3.3) and (3.4), we obtain

(3.5) (f(m0,m) + f(m,m0))m0 + (f(m0,m) + f(m,m0))m+ f(m,m)m0

= m0(g(m0,m) + g(m,m0)) +m(g(m0,m) + g(m,m0)) +m0g(m,m)
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for all m ∈ M . Substituting −m for m in (3.5) and comparing both identities we get

(3.6) (f(m0,m) + f(m,m0))m0 = m0(g(m0,m) + g(m,m0))

for all m ∈ M . Replacing m by m+m0 and taking n = n0 in (3.1) we arrive at the

relation

g(m+m0,m+m0)n0 = n0f(m+m0,m+m0)

for all m ∈ M . Combining this identity with (3.1) and (3.3), we conclude that

(3.7) (g(m0,m) + g(m,m0))n0 = n0(f(m0,m) + f(m,m0)).

Comparing (3.6) with (3.7) yields

(f(m0,m) + f(m,m0))⊕ (g(m0,m) + g(m,m0)) ∈ Z(G).

In view of the assumptions, we assert that

(3.8) (f(m0,m) + f(m,m0))m = m(g(m0,m) + g(m,m0))

for all m ∈ M . According to relations (3.5), (3.6) and (3.8), we get f(m,m)m0 =

m0g(m,m) for all m ∈ M . Together with relation g(m,m)n0 = n0f(m,m), we

obtain that f(m,m)⊕ g(m,m) ∈ Z(G).

(3) Taking m = m0, n = n0 in (3.2) leads to

(3.9) f(m0, n0)m0 = m0g(m0, n0), g(m0, n0)n0 = n0f(m0, n0)

and

(3.10) f(m,n0)m = mg(m,n0), g(m0, n)n = nf(m0, n).

It follows from (3.9) that

(3.11) f(m0, n0)m = mg(m0, n0), g(m0, n0)n = nf(m0, n0).

Substituting m+m0 for m in (3.2) and comparing both identities, we observe

(3.12) f(m,n)m0 + f(m0, n)m = mg(m0, n) +m0g(m,n).

Substituting n+ n0 for n in (3.2) and comparing both identities, we know that

(3.13) g(m,n)n0 + g(m,n0)n = nf(m,n0) + n0f(m,n).
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Setting n = n0 in (3.12) and m = m0 in (3.13) we see that

(3.14) f(m,n0)m0 = m0g(m,n0) and g(m0, n)n0 = n0f(m0, n).

Substituting m+m0 for m and n+ n0 for n in (3.2), we arrive at

f(m+m0, n+ n0)(m+m0) = (m+m0)g(m+m0, n+ n0).

g(m+m0, n+ n0)(n+ n0) = (n+ n0)f(m+m0, n+ n0).

For the sake of relations (3.9)–(3.14), we obtain

(3.15) f(m0, n)m0 = m0g(m0, n) and g(m,n0)n0 = n0f(m,n0).

Substituting m+m0 for m and n+ n0 for n in (3.10) and using relation (3.10), we

get

(3.16) g(m0, n)n0 = n0f(m0, n) and f(m,n0)m0 = m0g(m,n0).

Combining (3.15) with (3.16) gives

(3.17)

[

f(m,n0) 0

0 g(m,n0)

]

∈ Z(G) and

[

f(m0, n) 0

0 g(m0, n)

]

∈ Z(G).

It follows from (3.17) that

(3.18) f(m0, n)m = mg(m0, n) and g(m0, n)n = nf(m0, n),

f(m,n0)m = mg(m,n0) and g(m,n0)n = nf(m,n0).

Relations (3.12), (3.13) together with (3.18) imply that

f(m,n)m0 = m0g(m,n) and g(m,n)n0 = n0f(m,n).

That is
[

f(m,n) 0

0 g(m,n)

]

∈ Z(G).

�

Lemma 3.9 ([58], Lemma 3.2). Let G =
[

A M

N B

]

be a generalized matrix algebra

over a commutative ring R. Suppose that [A,A] 6= 0 and there exist a0 ∈ A, m0 ∈ M

such that a0m0 and m0 are independent over Z(A). If f : M → Z(A) is an R-linear

mapping and g : A×M → Z(A) is an R-bilinear mapping such that

(f(m)a+ g(a,m))m = 0

for all a ∈ A, m ∈ M , then f(m) = 0 = g(a,m) for all a ∈ A, m ∈ M .
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Lemma 3.10 ([58], Lemma 3.3). Let G =
[

A M

N B

]

be a generalized matrix algebra

over a commutative ring R. Suppose that [B,B] 6= 0 and there exists b0 ∈ B,

m0 ∈ M such that m0b0 and m0 are independent over Z(B). If f : M → Z(B) is

an R-linear mapping and g : B ×M → Z(B) is an R-bilinear mapping such that

m(f(m)b+ g(b,m)) = 0

for all b ∈ B, m ∈ M , then f(m) = 0 = g(b,m) for all b ∈ B, m ∈ M .

To round off we need to give two more useful lemmas.

Lemma 3.11. Let G =
[

A M

N B

]

be a generalized matrix algebra over a commu-

tative ring R with 1
2 ∈ R such that πA(Z(G)) = Z(A) and πB(Z(G)) = Z(B).

Then both A and B are commutative if and only if there exist an R-liner mapping

µ : G → Z(G) and a trace ν : G → Z(G) of some R-bilinear mapping such that

x2 + µ(x)x + ν(x) = 0

for all x ∈ G.

P r o o f. We first assert that if both A and B are commutative, then
[

mn 0

0 nm

]

∈

Z(G) for all m ∈ M , n ∈ N .

Let us define two R-bilinear mappings f : M×N → Z(A) and g : N×M → Z(B)

by the relations f(m,n) = mn and g(m,n) = nm, respectively. Then they satisfy

the relations f(m,n)m = mg(m,n) and g(m,n)n = nf(m,n). In light of Lemma 3.8,

we obtain the assertion.

Suppose that both A and B are commutative. We take

µ

[

a m

n b

]

=

[

−a− ϕ−1(b) 0

0 −ϕ(a)− b

]

and

ν

[

a m

n b

]

=

[

aϕ−1(b)−mn 0

0 ϕ(a)b − nm

]

for all a ∈ A, b ∈ B, n ∈ N , m ∈ M . It is easy to verify that x2 + µ(x)x + ν(x) = 0

holds true for all x ∈ G.

Conversely, suppose that there exist an R-linear mapping µ : G → Z(G) and

a trace ν : G → Z(G) of some R-bilinear mapping such that

x2 + µ(x)x + ν(x) = 0

for all x ∈ G. One can easily check that [[x2, y], [x, y]] = 0 for all x, y ∈ G. Apply-

ing [62], Lemma 4.1 yields that both A and B are commutative. �
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Adopting the same methods as [58], Lemma 2.4, one can prove the following

lemma.

Lemma 3.12. Let G =
[

A M

N B

]

be a generalized matrix algebra over a commuta-

tive ring R with 1
2 ∈ R. Then both A and B are commutative if and only if

[[[x2, y], z], [x, y]] = 0

for all x, y, z ∈ G.

We are ready to prove the main theorem of this section.

Theorem 3.13. Let G =
[

A M

N B

]

be a generalized matrix algebra over a commu-

tative ring R with 1
2 ∈ R. Let q : G × G → G be an R-bilinear mapping. Suppose

that

(1) every commuting linear mapping on A or B is proper,

(2) πA(Z(G)) = Z(A) and πB(Z(G)) = Z(B),

(3) if [A,A] 6= 0 and [B,B] = 0, then there exist a0 ∈ A, m0 ∈ M such that a0m0

and m0 are independent over Z(A),

(4) if [A,A] = 0 and [B,B] 6= 0, then there exist b0 ∈ B, m0 ∈ M such that m0b0

and m0 are independent over Z(B),

(5) there exist m0 ∈ M , n0 ∈ N such that

Z(G) =

{[

a 0

0 b

]

: am0 = m0b, n0a = bn0 ∀ a ∈ Z(A), b ∈ Z(B)

}

,

(6) M is weakly loyal.

If Tq : G → G is a commuting trace of the bilinear mapping q, then there exist

λ ∈ Z(G), an R-linear mapping µ : G → Z(G) and a trace ν : G → Z(G) of some

R-bilinear mapping such that

Tq(x) = λx2 + µ(x)x + ν(x)

for all x ∈ G. If A and B are commutative, we may take λ = 0.

For convenience, let us write A1 = A, A2 = M , A3 = N and A4 = B. Suppose

that Tq is an arbitrary trace of theR-bilinear mapping q. Then there existR-bilinear

mappings fij : Ai × Aj → A1, gij : Ai × Aj → A2, hij : Ai × Aj → A3 and kij :

Ai ×Aj → A4 (1 6 i 6 j 6 4) such that

Tq : G → G
[

a1 a2

a3 a4

]

7→

[

F (a1, a2, a3, a4) G(a1, a2, a3, a4)

H(a1, a2, a3, a4) K(a1, a2, a3, a4)

]

for all

[

a1 a2

a3 a4

]

∈ G,
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where

F (a1, a2, a3, a4) =
∑

16i6j64

fij(ai, aj), G(a1, a2, a3, a4) =
∑

16i6j64

gij(ai, aj),

H(a1, a2, a3, a4) =
∑

16i6j64

hij(ai, aj), K(a1, a2, a3, a4) =
∑

16i6j64

kij(ai, aj).

Since Tq is commuting, we have

0 =

[[

F G

H K

]

,

[

a1 a2

a3 a4

]]

(⋆)

=

[

Fa1 +Ga3 − a1F − a2H Fa2 +Ga4 − a1G− a2K

Ha1 +Ka3 − a3F − a4H Ha2 +Ka4 − a3G− a4K

]

for all
[

a1 a2

a3 a4

]

∈ G.

Now we divide the proof of Theorem 3.13 into a series of lemmas for comfortable

reading.

Lemma 3.14 ([62], Lemma 3.5). With notations as above we have

H(a1, a2, a3, a4) = h13(a1, a3) + h23(a2, a3) + h33(a3, a3) + h34(a3, a4).

Lemma 3.15 ([62], Lemma 3.6). With notations as above we have

G(a1, a2, a3, a4) = g12(a1, a2) + g22(a2, a2) + g23(a2, a3) + g24(a2, a4).

Lemma 3.16 ([62], Lemma 3.7). With notations as above we have:

(1) a1 7→ f11(a1, a1) is a commuting trace,

(2) a1 7→ f12(a1, a2), a1 7→ f13(a1, a3), a1 7→ f14(a1, a4) are commuting linear

mappings for each a2 ∈ A2, a3 ∈ A3, a4 ∈ A4, respectively,

(3) f22, f24, f33, f34, f44 map into Z(A1).

Lemma 3.17 ([62], Lemma 3.8). With notations as above we have:

(1) a4 7→ k44(a4, a4) is a commuting trace,

(2) a4 7→ k14(a1, a4), a4 7→ k24(a2, a4), a4 7→ k34(a3, a4) are commuting mappings

for each a1 ∈ A1, a2 ∈ A2, a3 ∈ A3, respectively,

(3) k11, k12, k13, k22, k33 map into Z(A4).
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Lemma 3.18.

[

f22(a2, a2) 0

0 k22(a2, a2)

]

∈ Z(G) and

[

f33(a3, a3) 0

0 k33(a3, a3)

]

∈ Z(G).

P r o o f. By relation (⋆), we know that

(3.19) Fa2 +Ga4 − a1G− a2K = 0

for all ai ∈ Ai, i = 1, 2, 3, 4. Assigning a1 = 0, a4 = 0 in (3.19), we obtain

(3.20)

(f22(a2, a2) + f23(a2, a3) + f33(a3, a3))a2 = a2(k22(a2, a2) + k23(a2, a3) + k33(a3, a3))

for all ai ∈ Ai (i = 2, 3). Furthermore, setting a3 = 0 in (3.20), we get

(3.21) f22(a2, a2)a2 = a2k22(a2, a2)

for all a2 ∈ A2. Taking into account (3.20) and (3.21), we conclude that

(3.22) (f22(a2, a3) + f33(a3, a3))a2 = a2(k22(a2, a3) + k33(a3, a3))

for all ai ∈ Ai (i = 2, 3). Replacing a3 by −a3 in (3.22) and comparing both

identities, we arrive at

(3.23) f33(a3, a3)a2 = a2k33(a3, a3)

for all ai ∈ Ai (i = 2, 3).

On the other hand, according to relations (⋆), we know that

(3.24) Ha1 +Ka3 − a3F − a4H = 0

for all ai ∈ Ai (i = 1, 2, 3, 4). Adopting similar methods for (3.24), one can show

that

(3.25) a3f22(a2, a2) = k22(a2, a2)a3 and a3f33(a3, a3) = k33(a3, a3)a3

for all ai ∈ Ai (i = 2, 3). By relations (3.21), (3.23), (3.25) and Lemma 3.8, we assert

that
[

f22(a2, a2) 0

0 k22(a2, a2)

]

∈ Z(G)

and
[

f33(a3, a3) 0

0 k33(a3, a3)

]

∈ Z(G).

�
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Lemma 3.19. With notations as above, we have

(1) f12(a1, a2) = α(a2)a1 + ϕ−1(k12(a1, a2)),

(2) k24(a2, a4) = ϕ(α(a2))a4 +ϕ(f24(a2, a4)),

where α(a2) = f12(1, a2)− ϕ−1(k12(1, a2)).

P r o o f. Let us take a1 = 0 and a4 = 0 in (3.19). Then (3.19) implies that

(f22(a2, a2) + f23(a2, a3) + f33(a3, a3))a2 = a2(k22(a2, a2)(3.26)

+ k23(a2, a3) + k33(a3, a3))

for all a2 ∈ A2, a3 ∈ A3. Taking a4 = 0 in (3.19) and using (3.26), we see that

(3.27) (f11(a1, a1) + f12(a1, a2) + f13(a1, a3))a2 − a2(k11(a1, a1) + k12(a1, a2)

+ k13(a1, a3))− a1(g12(a1, a2) + g22(a2, a2) + g23(a2, a3)) = 0

for all a2 ∈ A2, a3 ∈ A3. Substituting −a1 for a1 in (3.27), we get

(3.28) (f11(a1, a1)− f12(a1, a2)− f13(a1, a3))a2 − a2(k11(a1, a1)− k12(a1, a2)

− k13(a1, a3))− a1(g12(a1, a2)− g22(a2, a2)− g23(a2, a3)) = 0

for all a2 ∈ A2, a3 ∈ A3. Combining (3.27) with (3.28) gives

a1g12(a1, a2) = f11(a1, a1)a2 − a2k11(a1, a1),(3.29)

a1g22(a2, a2) = f12(a1, a2)a2 − a2k12(a1, a2),(3.30)

a1g23(a2, a3) = f13(a1, a3)a2 − a2k13(a1, a3)(3.31)

for all a2 ∈ A2, a3 ∈ A3. In an analogous way, taking a1 = 0 in (3.19) and us-

ing (3.26), we obtain

g24(a2, a4)a4 = a2k44(a4, a4)− f44(a4, a4)a2,(3.32)

g22(a2, a2)a4 = a2k24(a2, a4)− f24(a2, a4)a2,(3.33)

g23(a2, a3)a4 = a2k34(a3, a4)− f34(a3, a4)a2(3.34)

for all a2 ∈ A2, a3 ∈ A3, a4 ∈ A4.

According to (3.24) and using similar methods, we obtain the relations

h23(a2, a3)a1 = a3f12(a1, a2)− k12(a1, a2)a3,(3.35)

h33(a3, a3)a1 = a3f13(a1, a3)− k13(a1, a3)a3,(3.36)

h13(a1, a3)a1 = a3f11(a1, a1)− k11(a1, a1)a3,(3.37)

a3f23(a2, a3) = k23(a2, a3)a3,(3.38)

a4h34(a3, a4) = k44(a4, a4)a3 − a3f44(a4, a4),(3.39)

730



a4h33(a3, a3) = k34(a3, a4)a3 − a3f34(a3, a4),(3.40)

a4h23(a2, a3) = k24(a2, a4)a3 − a3f24(a2, a4)(3.41)

for all ai ∈ Ai, i = 1, 2, 3, 4.

On the other hand, by (2) in Lemma 3.16, we know that [f12(a1, a2), a1] = 0 for

all a1 ∈ A1, a2 ∈ A2. Substituting a1 + 1 for a1 in [f12(a1, a2), a1] = 0 leads to

f12(1, a2) ∈ Z(A1) for all a2 ∈ A2. By relation (3.30) it follows that g22(a2, a2) =

α(a2)a2, where α(a2) = f12(1, a2)− ϕ−1(k12(1, a2)) ∈ Z(A1).

Let us set E(a1, a2) = f12(a1, a2) − α(a2)a1 − ϕ−1(k12(a1, a2)). Then (3.30) to-

gether with g22(a2, a2) = α(a2)a2 imply that

E(a1, a2)a2 = 0

for all a1 ∈ A1 and a2 ∈ A2.

Using similar methods, setting a1 = 1 in (3.35), one can show that

(3.42) h23(a2, a3) = a3f12(1, a2)− k12(1, a2)a3 = a3α(a2).

Furthermore, by relation (3.35) and (3.42) it follows that

a3E(a1, a2) = 0.

Claim. E(a1, a2) = 0, i.e., f12(a1, a2) = α(a2)a1+ϕ−1(k12(a1, a2)). The process

can be divided into two cases.

Case 1 : [A4, A4] 6= 0.

With the help of the definition of E(a1, a2), one can define a mapping E(a1, ·) :

A2 → A1. By the previous discussion, we know that this mapping satisfies the

conditionE(a1, a2)a2 = 0 for all a1 ∈ A1. Replacing a2 bym1+m2 in E(a1, a2)a2 = 0

for each a1 ∈ A1, we obtain

E(a1,m1)m2 + E(a1,m2)m1 = 0

for all m1,m2 ∈ A2. Since A4 is noncommutative, we conclude that E(a1,m2) = 0

by (1) of Lemma 3.2, hence f12(a1, a2) = α(a2)a1 + ϕ−1(k12(a1, a2)).

Case 2 : [A4, A4] = 0.

In order to obtain this claim under this subcase, we will divide its proof into two

subcases.

Case 2.1 : [A1, A1] = 0.

In this subcase, A1 is a commutative algebra. Thus, we get

E(a1, a2) = f12(a1, a2)− α(a2)a1 − ϕ−1(k12(a1, a2)) ∈ Z(A).
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On the other hand, we should remark that E(a1, a2)a2 = 0 = a20 and a3E(a1, a2) =

0 = 0a3 holds true for all a1 ∈ A1. By the conclusion (1) of Lemma 3.8, we can say

that E(a1, a2)⊕ 0 ∈ Z(G) and hence E(a1, a2) = 0. That is,

f12(a1, a2) = α(a2)a1 + ϕ−1(k12(a1, a2)),

which is the desired form.

Case 2.2 : [A1, A1] 6= 0.

Since a1 7→ f12(a1, a2) is a commuting mapping of A1 for each a2 ∈ A2, there exist

mappings ξ : A4 → Z(A1) and κ : A1 ×A2 → Z(A1) such that

(3.43) f12(a1, a2) = ξ(a2)a1 + κ(a1, a2),

where κ is R-linear in the first argument. Let us show that ξ is R-linear and that κ is

R-bilinear. It is not difficult to see that

f12(a1, a2 + b2) = ξ(a2 + b2)a1 + κ(a1, a2 + b2)

and

f12(a1, a2) + f12(a1, b2) = ξ(a2)a1 + κ(a1, a2) + ξ(b2)a1 + κ(a1, b2)

for all a1 ∈ A1 and a2, b2 ∈ A2. We therefore have

(ξ(a2 + b2)− ξ(a2)− ξ(b2))a1 + κ(a1, a2 + b2)− κ(a1, a2)− κ(a1, b2) = 0

for all a1 ∈ A1 and a2, b2 ∈ A2. Note that both ξ and κ map into Z(A1). And

hence (ξ(a2 + b2) − ξ(a2) − ξ(b2))[a1, b1] = 0 for all a1, b1 ∈ A1 and a2, b2 ∈ A2.

Applying Lemma 3.1 yields that ξ is R-linear. Consequently, κ is R-linear in the

second argument as well.

Taking (3.43) in the equality E(a1, a2)a2 = 0, we get

(ξ(a2)− α(a2))a1a2 + (κ(a1, a2)− ϕ−1(k12(a1, a2)))a2 = 0

for all a1 ∈ A1 and a2 ∈ A2. It should be remarked that ξ(a2) − α(a2) ∈ Z(A1)

and that κ(a1, a2) − ϕ−1(k12(a1, a2)) ∈ Z(A1). By assumption (3) and Lemma 3.9

it follows that ξ(a2) = α(a2) and κ(a1, a2) = ϕ−1(k12(a1, a2)) for all a1 ∈ A1 and

a2 ∈ A2. Hence f12 has the desired form.

In an analogous manner, one can use relations (3.33) and (3.41) to show that k24
is of the desired form as well. �

732



Lemma 3.20. With notations as above we have

(1) f13(a1, a3) = τ(a3)a1 + ϕ−1(k13(a1, a3)),

(2) k34(a3, a4) = ϕ(τ(a3))a4 + ϕ(f34(a3, a4)),

where τ(a3) = f13(1, a3)− ϕ−1(k13(1, a3)).

P r o o f. In light of (2) of Lemma 3.16, we know that [f13(a1, a3), a1] = 0 for

all a1 ∈ A1, a3 ∈ A3. Substituting a1 + 1 for a1 in [f13(a1, a3), a1] = 0 gives

f13(1, a3) ∈ Z(A1) for all a3 ∈ A3. Taking a1 = 1 in (3.31), we see that

g23(a2, a3) = f13(1, a3)a2 − a2k13(1, a3) = τ(a3)a2,

where τ(a3) = f13(1, a3)− ϕ−1(k13(1, a3)) ∈ Z(A1).

Let us set S(a1, a3) = f13(a1, a3) − τ(a3)a1 − ϕ−1(k13(a1, a3)) ∈ A1. It follows

from (3.31) that S(a1, a3)a2 = 0 for all a1 ∈ A1, a2 ∈ A2, a3 ∈ A3. Since M = A2 is

faithful as a left A-module, we get S(a1, a3) = 0. And hence f13(a1, a3) = τ(a3)a1 +

ϕ−1(k13(a1, a3)). Likewise, using (3.34), one can prove that k34 is of the desired form

as well. �

Lemma 3.21. With notations as above we have:

(1) There exist linear mapping γ : A4 → Z(A1) and bilinear mapping δ : A1×A4 →

Z(A1) such that f14(a1, a4) = γ(a4)a1 + δ(a1, a4).

(2) k14(a1, a4) = γ′(a1)a4 + ϕ(δ(a1, a4)), where γ
′(a1) = k14(a1, 1)− ϕ(δ(a1, 1)).

P r o o f. Notice the fact [f11(a1, a1), a1] = 0, which is due to (1) of Lemma 3.16.

Substituting a1 + 1 for a1 in [f11(a1, a1), a1] = 0 yields

[f11(a1, 1) + f11(1, a1) + f11(1, 1), a1] = 0.

Replacing a1 by −a1 in this equality and comparing both identities, we obtain

[f11(1, 1), a1] = 0. That is, f11(1, 1) ∈ Z(A1). Taking a1 = 1 in (3.29), we arrive at

(3.44) g12(1, a2) = f11(1, 1)a2 − a2k11(1, 1) = a2ζ,

where ζ = ϕ(f11(1, 1))− k11(1, 1) for all a2 ∈ A2.

On the other hand, relations (3.29)–(3.34) together with (3.19) imply that

(3.45) f14(a1, a4)a2 + g12(a1, a2)a4 = a1g24(a2, a4) + a2k14(a1, a4)

for all a1 ∈ A1, a2 ∈ A2, a4 ∈ A4. Let us take a1 = 1 in (3.45). Then we have

(3.46) g24(a2, a4) = a2(ζa4 + ϕ(f14(1, a4))− k14(1, a4))
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for all a2 ∈ A2, a4 ∈ A4, where ζ = ϕ(f11(1, 1))− k11(1, 1). In a similar discussion,

considering relations (3.32), (3.35) together with equality [k44(a4, a4), a4] = 0, we

arrive at

(3.47) g12(a1, a2) = (θa1 + ϕ−1(k14(a1, 1))− f14(a1, 1))a2

for all a1 ∈ A1, a2 ∈ A2, where θ = ϕ−1(k44(1, 1))− f44(1, 1).

In order to obtain the conclusion of this lemma, we divide its proof into two

different cases.

Case 1 : [A1, A1] 6= 0.

Since a1 7→ f14(a1, a4) is a commuting mapping of A1 for all a4 ∈ A4, there exist

mappings γ : A4 → Z(A1) and δ : A1 ×A4 → Z(A1) such that

(3.48) f14(a1, a4) = γ(a4)a1 + δ(a1, a4),

where δ is R-linear in the first argument. Let us show that γ is R-linear and that δ

is R-bilinear. It is easy to observe that

f14(a1, a4 + b4) = γ(a4 + b4)a1 + δ(a1, a4 + b4)

and

f14(a1, a4) + f14(a1, b4) = γ(a4)a1 + δ(a1, a4) + γ(b4)a1 + δ(a1, b4)

for all a1 ∈ A1 and a4, b4 ∈ A4. We therefore assert that

(

γ(a4 + b4)− γ(a4)− γ(b4)
)

a1 + δ(a1, a4 + b4)− δ(a1, a4)− δ(a1, b4) = 0

for all a1 ∈ A1 and a4, b4 ∈ A4. Note that both γ and δ map into Z(A1). Thus,

(γ(a4 + b4)− γ(a4)− γ(b4))[a1, b1] = 0 for all a1, b1 ∈ A1 and a4, b4 ∈ A4. Applying

Lemma 3.1 yields that γ is R-linear. Consequently, δ is R-linear in the second

argument.

Now equalities (3.45)–(3.48) jointly show that

(γ(a4)a1 + δ(a1, a4))a2 + (θa1 + ϕ−1(k14(a1, 1))− f14(a1, 1))a2a4

= a2k14(a1, a4) + a1a2(ζa4 + ϕ(f14(1, a4))− k14(1, a4))

for all a1 ∈ A1, a2 ∈ A2, a4 ∈ A4. That is,

(3.49) a1a2(ζ + ϕ(γ(1)− θ)a4 + ϕ(δ(1, a4))− k14(1, a4))

= a2(γ
′(a1)a4 + ϕ(δ(a1, a4))− k14(a1, a4)),

734



where γ′(a1) = k14(a1, 1)−ϕ(δ(a1, 1)) for all a1 ∈ A1, a2 ∈ A2, a4 ∈ A4. Replacing a2
by b1a2 in (3.49) and subtracting the left multiplication of (3.49) by b1 gives

[a1, b1]a2(ζ + ϕ(γ(1)− θ)a4 + ϕ(δ(1, a4))− k14(1, a4)) = 0

for all a1, b1 ∈ A1, a2 ∈ A2, a4 ∈ A4. Note that M = A2 is weakly loyal and A = A1

is noncommutative. It follows that

k14(1, a4) = (ζ + ϕ(γ(1)− θ)a4 + ϕ(δ(1, a4))

for all a4 ∈ A4. Consequently, relation (3.49) implies that

A2(γ
′(a1)a4 + ϕ(δ(a1, a4))− k14(a1, a4)) = 0

for all a1, a4 ∈ A4. Since A2 = M is weakly loyal as a right B-module, k14 is of the

desired form.

Case 2 : [A1, A1] = 0.

It follows from relations (3.45)–(3.47) that

(3.50) f14(a1, a4)a2 + (θa1 + ϕ−1(k14(a1, 1))− f14(a1, 1))a2a4

= a1a2(ζa4 + ϕ(f14(1, a4))− k14(1, a4)) + a2k14(a1, a4)

for all a1 ∈ A1, a2 ∈ A2, a4 ∈ A4. This implies that

(3.51) a2ϕ(f14(a1, a4)) + (θa1 + ϕ−1(k14(a1, 1))− f14(a1, 1))a2a4

= a2ϕ(a1)(ζa4 + ϕ(f14(1, a4))− k14(1, a4)) + a2k14(a1, a4)

for all a1 ∈ A1, a2 ∈ A2, a4 ∈ A4. Since A2 is faithful as a right A4-module,

from (3.51) we get

(3.52) ϕ(f14(a1, a4)) + (ϕ(θ)ϕ(a1) + k14(a1, 1)− ϕ(f14(a1, 1)))a4

= ϕ(a1)(ζa4 + ϕ(f14(1, a4))− k14(1, a4)) + k14(a1, a4)

for all a1 ∈ A1, a2 ∈ A2, a4 ∈ A4. We further get the following equality based on

the deformation of the above equality (3.52):

(3.53) ϕ(f14(a1, a4)− a1(f14(1, a4)− ϕ−1(k14(1, a4))))

= k14(a1, a4) + (ϕ(a1)ζ − (ϕ(θ)ϕ(a1) + k14(a1, 1)) + ϕ(f14(a1, 1)))a4.
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Let us set

(3.54) γ(a4) = f14(1, a4)− ϕ−1(k14(1, a4))

δ(a1, a4) = −γ(a4)a1 + f14(a1, a4)

γ
′

(a1) = −ϕ(a1)ς + ϕ(θ)ϕ(a1) + k14(a1, 1)− ϕ(f14(a1, 1))

for all a1 ∈ A1, a4 ∈ A4.

We claim that γ′(a1) = k14(a1, 1) − ϕ(δ(a1, 1)). Indeed, setting a1 = 1, a4 = 1

in (3.45), we obtain

(3.55) f14(1, 1)a2 + g12(1, a2) = g24(a2, 1) + a2k14(1, 1).

Taking a1 = 1, a4 = 1 in (3.47) and (3.46), respectively, we get

(3.56) g24(a2, 1) = a2(ζ + ϕ(f14(1, 1))− k14(1, 1)),

g12(1, a2) = (θ + ϕ−1(k14(1, 1))− f14(1, 1))a2,

where ζ = ϕ(f11(1, 1)) − k11(1, 1), θ = ϕ−1(k44(1, 1)) − f44(1, 1) for all a2 ∈ A2,

a4 ∈ A4. Combining (3.55) with (3.56), we see that ϕ(θ)−ζ = ϕ(f14(1, 1))−k14(1, 1).

Furthermore, we arrive at

(3.57) ϕ(θ)ϕ(a1)− ζϕ(a1) = ϕ(f14(1, 1))ϕ(a1)− k14(1, 1)ϕ(a1)

for all a1 ∈ A1. On the other hand,

(3.58) k14(a1, 1)− ϕ(δ(a1, 1))

= k14(a1, 1)− ϕ((f14(1, 1)− ϕ−1(k14(1, 1)))a1 − f14(a1, 1))

= k14(a1, 1)− ϕ(f14(a1, 1))− k14(1, 1)ϕ(a1) + ϕ((f14(1, 1))ϕ(a1).

Considering relations (3.54), (3.57), (3.58) together with the definition of γ′(a1), this

claim holds true.

Thus, equality (3.52) can be rewritten as

k14(a1, a4)− γ′(a1)a4 = ϕ(f14(a1, a4))− a1δ(a1, a4)) = ϕ(δ(a1, a4)).

That is, k14(a1, a4) = γ′(a1)a4+ϕ(δ(a1, a4)). So f14(a1, a4) and k14(a1, a4) have the

desired forms. �
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P r o o f of Theorem 3.13. Let us write ε = θ − γ(1) and ε′ = ζ − γ′(1). Using

equalities (3.46)–(3.47) and considering the form of f14, k14, we conclude that

(3.59) g12(a1, a2) = εa1a2 + ϕ−1(γ′(a1))a2, g24(a2, a4) = a2(ε
′a4 + ϕ(γ(a4)))

for all a1 ∈ A1, a2 ∈ A2, a4 ∈ A4. Taking into accounts equalities (3.24) and

(3.35)–(3.41) and adopting similar computational procedures, we obatin

(3.60) h13(a1, a3) = a3εa1 + γ′(a1)a3, h34(a3, a4) = ε′a4a3 + ϕ(γ(a4))a3

for all a1 ∈ A1, a3 ∈ A3, a4 ∈ A4. Taking a1 = 1 and a4 = 1 in (2.45) and

combining Lemma 3.20 with (3.59), we arrive at εa2 = a2ε
′ for all a2 ∈ A2. Note

that ε ∈ Z(A1) = πA(Z(G)) and ε′ ∈ Z(A4) = πB(Z(G)). We get
[

ε 0

0 ε′

]

∈ Z(G).

It follows from (3.29) and (3.59) that

(f11(a1, a1)− εa21 − ϕ−1(γ′(a1))a1 − ϕ−1(k11(a1, a1)))a2 = 0

for all a1 ∈ A1, a2 ∈ A2. Since A2 = M is faithful as a left A-module,

f11(a1, a1) = εa21 + ϕ−1(γ′(a1))a1 + ϕ−1(k11(a1, a1))

for all a1 ∈ A1. Likewise, in light of relations (3.39) and (3.60), we assert that

k44(a4, a4) = ε′a24 + ϕ(γ(a4))a4 + ϕ(f44(a4, a4))

for all a4 ∈ A4.

Finally, let us set z =
[

ε 0

0 ε′

]

and define the mapping µ : G → Z(G) by

[

a1 a2

a3 a4

]

7→

[

ϕ−1(γ′(a1)) + γ(a4) + α(a2) + τ(a3) 0

0 γ′(a1) + ϕ(γ(a4) + α(a2) + τ(a3))

]

.

In view of all obtained results as above, we see that

ν(x) := Tq(x)− zx2 − µ(x)x

≡

[

f23(a2, a3)− εa2a3 0

0 k23(a2, a3)− ε′a3a2

]

modZ(G),

where x =
[

a1 a2

a3 a4

]

. Thus, we can write

Tq(x) = zx2 + µ(x)x +

[

f23(a2, a3)− εa2a3 0

0 k23(a2, a3)− ε′a3a2

]

+ c
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for some c ∈ Z(G). Since q is a commuting mapping, we have

[[

f23(a2, a3)− εa2a3 0

0 k23(a2, a3)− ε′a3a2

]

,

[

a1 a2

a3 a4

]]

= 0.

This implies that f23(a2, a3)−εa2a3 ∈ Z(A1) = πA(Z(G)) and k23(a2, a3)−ε′a3a2 ∈

Z(A4) = πB(Z(G)). Moreover, it shows that

(f23(a2, a3)− εa2a3)a2 = a2(k23(a2, a3)− ε′a3a2)

and

a3(f23(a2, a3)− εa2a3) = (k23(a2, a3)− ε′a3a2)a3

for all a2 ∈ A2, a3 ∈ A3. For convenience, let us write f(a2, a3) = f23(a2, a3)− εa2a3

and k(a2, a3) = k23(a2, a3) − ε′a3a2, where f : A2 × A3 → Z(A1) is an R-bilinear

mapping and k : A2 × A3 → Z(A4) is also an R-bilinear mapping. They satisfy the

following relations:

f(a2, a3)a2 = a2k(a2, a3) and a3f(a2, a3) = k(a2, a3)a3.

We therefore get
[

f(a2,a3) 0

0 k(a2,a3)

]

∈ Z(G), which is due to (3) of Lemma 3.8. That

is,
[

f23(a2,a3)−εa2a3 0

0 k23(a2,a3)−ε′a3a2

]

∈ Z(G). Hence, ν maps G into Z(G).

In the case when A and B are commutative and considering Lemma 3.11, we may

take λ = 0. �

In particular, we have:

Corollary 3.22. Let R be a 2-torsionfree commutative ring andMn(R) (n > 2)

be the full matrix algebra over R. Suppose that q : Mn(R)×Mn(R) → Mn(R) is

an R-bilinear mapping. Then every commuting trace Tq : Mn(R) → Mn(R) of q

is proper.

Corollary 3.23. Let R be a 2-torsionfree commutative ring and V be an

R-linear space and B(R, V, γ) be the inflated algebra of R along V . Suppose

that q : B(R, V, γ)×B(R, V, γ) → B(R, V, γ) is an R-bilinear mapping. Then every

commuting trace Tq : B(R, V, γ) → B(R, V, γ) of q is proper.

It should be remarked that Corollary 3.22 or Corollary 3.23 removes the assump-

tion that R is a domain in [62], Corollary 3.18 or Corollary 3.19.

Corollary 3.24 ([58], Theorem 4.1). Let T =
[

A M

O B

]

be a 2-torsionfree triangular

algebra over a commutative ring R and q : T × T → T be an R-bilinear mapping.

Suppose that
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(1) every commuting linear mapping on A or B is proper,

(2) πA(Z(G)) = Z(A) and πB(Z(G)) = Z(B),

(3) if [A,A] 6= 0 and [B,B] = 0, then there exist a0 ∈ A, m0 ∈ M such that a0m0

and m0 are independent over Z(A),

(4) if [A,A] = 0 and [B,B] 6= 0, then there exist b0 ∈ B, m0 ∈ M such that m0b0

and m0 are independent over Z(B),

(5) there exist m0 ∈ M , n0 ∈ N such that

Z(T ) =

{[

a 0

0 b

]

: am0 = m0b ∀ a ∈ Z(A), b ∈ Z(B)

}

,

(6) M is weakly loyal.

If q : T → T is a commuting trace of the bilinear mapping q, then there exist

λ ∈ Z(T ), an R-linear mapping µ : T → Z(T ) and a trace ν : T → Z(T ) of some

R-bilinear mapping such that

Tq(x) = λx2 + µ(x)x + ν(x)

for all x ∈ T . If A and B are commutative, we may take λ = 0.

4. Centralizing traces of bilinear mappings

on generalized matrix algebras

This section will be devoted to building the sufficient condition under which each

centralizing trace of an arbitrary bilinear mapping on a generalized matrix algebra

G =
[

A M

N B

]

is proper (Theorem 4.2). Accordingly, we can characterize centralizing

traces of bilinear mappings on triangular algebras and those on full matrix algebras.

In addition, the main theorem will be applied to describe Lie triple isomorphisms

from a generalized matrix algebra into another one in Section 5.

We begin with the following technical result whose proof is basically similar to

that of [58], Lemma 4.1.

Lemma 4.1. Let G =
[

A M

N B

]

be a generalized matrix algebra over a commutative

ring R with 1
2 ∈ R.

(1) If centralizing linear mapping on A is proper, then A satisfies (♥).

(2) If centralizing linear mapping on B is proper, then B satisfies (♥).
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P r o o f. We only provide the proof of statement (2). Statement (1) can be proved

in an analogous manner. Suppose that for any b ∈ B, [b, B] ⊆ Z(B). We may assume

that [B,B] 6= 0. Then

[b, y2] = [b, y]y + y[b, y] = 2[b, y]y = 2[by, y] ∈ Z(B)

for all y ∈ B. This implies that [by, y] ∈ Z(B). Let us define a mapping f : B → B

satisfying f(y) = by for some b ∈ B. Then f is a linear mapping satisfying the

condition [by, y] ∈ Z(B). Since every centralizing linear mapping on B is proper, we

assert that there exist α ∈ Z(B) and some central mapping β : B → Z(B) satisfying

the relation

f(y) = λy + β(y).

Furthermore, we know that by − λy ∈ Z(B) for all y ∈ B. Setting y = 1 in

by − λy ∈ Z(B), we obtain b− λ ∈ Z(B), i.e., b ∈ Z(B). �

Applying Lemma 4.1 and Theorem 3.13, we can prove the following theorem.

Theorem 4.2. Let G =
[

A M

N B

]

be a generalized matrix algebra over a commu-

tative ring R with 1
2 ∈ R. Let q : G × G → G be an R-bilinear mapping. Suppose

that

(1) every centralizing linear mapping on A or B is proper,

(2) πA(Z(G)) = Z(A) and πB(Z(G)) = Z(B),

(3) if [A,A] 6= 0 and [B,B] = 0, then there exist a0 ∈ A, m0 ∈ M such that a0m0

and m0 are independent over Z(A),

(4) if [A,A] = 0 and [B,B] 6= 0, then there exist b0 ∈ B, m0 ∈ M such that m0b0

and m0 are independent over Z(B),

(5) there exist m0 ∈ M , n0 ∈ N such that

Z(G) =

{[

a 0

0 b

]

: am0 = m0b, n0a = bn0 ∀ a ∈ Z(A), b ∈ Z(B)

}

,

(6) M is weakly loyal.

If Tq : G → G is a centralizing trace of the bilinear mapping q, then there exist

λ ∈ Z(G), an R-linear mapping µ : G → Z(G) and a trace ν : G → Z(G) of some

R-bilinear mapping such that

Tq(x) = λx2 + µ(x)x + ν(x)

for all x ∈ G.
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P r o o f. Now following the same notations as in Theorem 3.13, we get

(♦)

[

Fa1 +Ga3 − a1F − a2H Fa2 +Ga4 − a1G− a2K

Ha1 +Ka3 − a3F − a4H Ha2 +Ka4 − a3G− a4K

]

∈ Z(G).

By relation (♦) we know that

(4.1) [F, a1] +Ga3 − a2H = ϕ−1([K, a4] +Ha2 − a3G)

for all ai ∈ Ai, i = 1, 2, 3, 4. Taking a2 = 0, a3 = 0 in (4.1) we obtain

(4.2) [f11(a1, a1) + f14(a1, a4) + f44(a4, a4), a1]

= ϕ−1([k11(a1, a1) + k14(a1, a4) + k44(a4, a4), a4])

for all a1 ∈ A1, a4 ∈ A4. Let us choose a4 = 0. Thus [f11(a1, a1), a1] = 0. Adopting

similar computational techniques, we arrive at [k44(a4, a4), a4] = 0. Replacing a4

by −a4 in (4.2) yields

(4.3) ϕ([f14(a1, a4), a1]) = [k11(a1, a1), a4] ∈ ZA4
(G)

and

(4.4) [f44(a4, a4), a1] = ϕ−1([k14(a1, a4), a4]) ∈ ZA1
(G)

for all a1 ∈ A1, a4 ∈ A4. For each a4 ∈ A4 we know that f14(·, a4) : A1 ×A4 → A1

is a centralizing R-linear mapping. By assumption (1) and Lemma 4.1, we assert

that f14(a1, a4) ∈ Z(A1). Thus [k11(a1, a1), a1] = 0. In an analogous manner, we

can show that [k14(a1, a4), a4] = 0 and hence f44(a4, a4) ∈ Z(A).

Let us take a1 = 0, a4 = 0 in (4.1) and together with Lemma 3.14 and Lemma 3.15

we conclude that

(4.5) (g22(a2, a2) + g23(a2, a3))a3 − a2(h23(a2, a3) + h33(a3, a3))

= ϕ−1((h23(a2, a3) + h33(a3, a3))a2 − a3(g22(a2, a2) + g23(a2, a3)))

for all a1 ∈ A1, a2 ∈ A2, a3 ∈ A3. Replacing a2 by −a2 in (4.5) and comparing both

identities we get that

(4.6) g22(a2, a2)a3 − a2h23(a2, a3) = ϕ−1(h23(a2, a3)a2 − a3g22(a2, a2))

and

(4.7) g23(a2, a3)a3 − a2h33(a3, a3) = ϕ−1(h33(a3, a3)a2 − a3g23(a2, a3))

for all a2 ∈ A2, a3 ∈ A3, a4 ∈ A4.
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Combining (4.1) with (4.6) and (4.7) we obtain

(4.8) [f12(a1, a2) + f13(a1, a3) + f22(a2, a2) + f23(a2, a3)

+ f24(a2, a4) + f33(a3, a3) + f34(a3, a4), a1]

+ (g12(a1, a2) + g24(a2, a4))a3 − a2(h13(a1, a3) + h34(a3, a4))

= ϕ−1([k12(a1, a2) + k13(a1, a3) + k22(a2, a2)

+ k23(a2, a3) + k24(a2, a4) + k33(a3, a3) + k34(a3, a4), a4]

− a3(g12(a1, a2) + g24(a2, a4)) + (h13(a1, a3) + h34(a3, a4))a2)

for all a1 ∈ A1, a2 ∈ A2, a3 ∈ A3, a4 ∈ A4. Substituting −a1 for a1 in (4.8) and

comparing both identities we get

(4.9) [f12(a1, a2) + f13(a1, a3), a1] + g24(a2, a4)a3 − a2h34(a3, a4)

= ϕ−1([k22(a2, a2) + k23(a2, a3) + k24(a2, a4) + k33(a3, a3) + k34(a3, a4), a4]

− a3g24(a2, a4) + h34(a3, a4)a2)

and

(4.10) [f22(a2, a2) + f23(a2, a3) + f24(a2, a4) + f33(a3, a3) + f34(a3, a4), a1]

+g12(a1, a2)a3 − a2h13(a1, a3)

= ϕ−1([k12(a1, a2) + k13(a1, a3), a4]− a3g12(a1, a2) + h13(a1, a3)a2)

for all a1 ∈ A1, a2 ∈ A2, a3 ∈ A3, a4 ∈ A4. Let us take a3 = 0, a4 = 0; a1 = 0,

a3 = 0; a2 = 0, a4 = 0; a1 = 0, a2 = 0 in (4.9) and (4.10), respectively. Thus we

have

(4.11) [f12(a1, a2), a1] = 0, [f22(a2, a2), a1] = 0,

[k22(a2, a2), a4] = 0, [k24(a2, a4), a4] = 0,

[f13(a1, a2), a3] = 0, [f33(a3, a3), a1] = 0,

[k34(a3, a4), a4] = 0, [k33(a3, a3), a4] = 0

for all a1 ∈ A1, a2 ∈ A2, a3 ∈ A3, a4 ∈ A4. Let us choose a2 = 0 and a3 = 0

in (4.10). We, respectively, arrive at

(4.12) [f34(a3, a4), a1] = ϕ−1([k13(a1, a3), a4]) ∈ πA1
(Z(G))

and

(4.13) ϕ([f24(a2, a4), a1]) = [k12(a1, a2), a4] ∈ πA4
(Z(G))
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for all a1 ∈ A1, a2 ∈ A2, a3 ∈ A3, a4 ∈ A4. It follows from Lemma 4.1 that

k12(a1, a2) ∈ Z(A4) and [f12(a1, a2), a1] = 0, and that f34(a4, a4) ∈ Z(A1) and

[k13(a1, a3), a4] = 0.

Setting a1 = 0 in (4.9) and considering (4.11) gives

(4.14) g24(a2, a4)a3 − a2h34(a3, a4)

= ϕ−1([k23(a2, a3), a4]− a3g24(a2, a4) + h34(a3, a4)a2)

for all a2 ∈ A2, a3 ∈ A3, a4 ∈ A4. Putting a4 = 0 in (4.10) and using (4.11) yields

(4.15) [f23(a2, a3), a1] + g12(a1, a2)a3 − a2h13(a1, a3)

= ϕ−1(h13(a1, a3)a2 − a3g12(a1, a2))

for all a1 ∈ A1, a2 ∈ A2, a3 ∈ A3.

Claim 1. With notations as above, we have

g22(a2, a2)a3 = a2h23(a2, a3), g23(a2, a3)a3 = a2h33(a3, a3)

for ai ∈ Ai (i = 2, 3). Let us take a1 = 1 in (3.35). We get

(4.16) h23(a2, a3) = a3f12(1, a2)− k12(1, a2)a3 = (ϕ(f12(1, a2))− k12(1, a2))a3

for all a2 ∈ A2, a3 ∈ A3. In a similar way, setting a1 = 1 in (3.30), we obtain

(4.17) g22(a2, a2) = f12(1, a2)a2 − a2k12(1, a2) = a2(ϕ(f12(1, a2))− k12(1, a2))

for all a2 ∈ A2. Relations (4.6), (4.7), (4.16) and (4.17) jointly imply that

g22(a2, a2)a3 = a2h23(a2, a3)

for all a2 ∈ A2, a3 ∈ A3. In other words, we can say that equation (4.6) is actually

zero.

Similarly, taking a4 = 1 in (3.34) and taking a4 = 1 in (3.40) we arrive at

g23(a2, a3)a3 = a2h33(a3, a3). That is, both sides of equation (4.7) are zero.

Claim 2. With notations as above, we have

h13(a1, a3)a2 = a3g12(a1, a2), g24(a2, a4)a3 = a2h34(a3, a4)

for all ai ∈ Ai (i = 1, 2, 3, 4). Setting a1 = 1 in (3.37) and (3.29) we see that

h13(1, a3) = a3̟ and g12(1, a3) = ̟a2,
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where ̟ = f11(1, 1) − τ(k11(1, 1)) ∈ Z(A1). Replacing a1 by a1 + 1 in (3.37)

and (3.29) we get

h13(a1, a3) = a3(f11(a1, 1) + f11(1, a1))− (k11(a1, 1) + k11(1, a1))a3 + a3̟a1

g12(a1, a3) = (f11(a1, 1) + f11(1, a1))a2 − a2(k11(a1, 1) + k11(1, a1)) + a1̟a3.

Note that (k11(a1, 1) + k11(1, a1)) ∈ Z(A4). We therefore have

h13(a1, a3)a2 = a3g12(a1, a2).

Accordingly, we see that equality (4.15) is zero.

Considering relations (3.32) and (3.39) and using similar arguments, one can show

that g24(a2, a4)a3 = a2h34(a3, a4). In view of Claim 1 and Claim 2, we assert that

Fa1 +Ga3 − a1F − a2H = 0, Ha2 +Ka4 − a3G− a4K = 0.

Hence, the R-bilinear mapping q is actually commuting. This theorem follows from

Theorem 3.13. �

In particular, we have:

Corollary 4.3 ([58], Theorem 4.1). Let T =
[

A M

O B

]

be a 2-torsionfree triangular

algebra over a commutative ring R. Let q : T × T → T be an R-bilinear mapping.

Suppose that

(1) every centralizing linear mapping on A or B is proper,

(2) πA(Z(T )) = Z(A) and πB(Z(T )) = Z(B),

(3) if [A,A] 6= 0 and [B,B] = 0, then there exist a0 ∈ A, m0 ∈ M such that a0m0

and m0 are independent over Z(A),

(4) if [A,A] = 0 and [B,B] 6= 0, then there exist b0 ∈ B, m0 ∈ M such that m0b0

and m0 are independent over Z(B),

(5) there exist m0 ∈ M,n0 ∈ N such that

Z(T ) =

{[

a 0

0 b

]

: am0 = m0b, ∀ a ∈ Z(A), b ∈ Z(B)

}

,

(6) M is weakly loyal.

If Tq : T → T is a centralizing trace of bilinear mapping q, then there exist

λ ∈ Z(T ), an R-linear mapping µ : G → Z(T ) and a trace ν : T → Z(T ) of some

R-bilinear mapping such that

Tq(x) = λx2 + µ(x)x + ν(x)

for all x ∈ T .
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As direct consequences of Theorem 4.2, we have:

Corollary 4.4. Let R be a 2-torsionfree commutative ring andMn(R) (n > 2)

be the full matrix algebra over R. Suppose that q : Mn(R)×Mn(R) → Mn(R) is

an R-bilinear mapping. Then every centralizing trace Tq : Mn(R) → Mn(R) of q

is proper.

Corollary 4.5. LetR be a 2-torsionfree commutative ring, V be anR-linear space

and B(R, V, γ) be the inflated algebra of R along V . Suppose that q : B(R, V, γ) ×

B(R, V, γ) → B(R, V, γ) is an R-bilinear mapping. Then every centralizing trace

Tq : B(R, V, γ) → B(R, V, γ) of q is proper.

It should be remarked that Corollary 4.4 and Corollary 4.5 removes the assumption

that R is a domain in [43], Corollary 3.22 and Corollary 3.23.

Corollary 4.6 ([58], Corollary 4.1). Let R be a 2-torsion-free commutative ring

and Tn(R) (n > 2) be the upper triangular matrix algebra over R. Suppose that

q : Tn(R)×Tn(R) → Tn(R) is an R-bilinear mapping. Then every centralizing trace

Tq : Tn(R) → Tn(R) of q is proper.

5. Lie triple isomorphisms on generalized matrix algebras

In this section we shall use Theorem 4.2 to describe the form of Lie triple isomor-

phisms of generalized matrix algebras. As applications of Theorem 4.2, we charac-

terize Lie triple isomorphisms of a class of generalized matrix algebras. The involved

algebras include upper triangular matrix algebras over a commutative ring R and

full matrix algebras over a commutative ring R.

Throughout this section, we denote the generalized matrix algebra of order 2

originated from the Morita context (A,B,A MB,B NA,ΦMN ,ΨNM ) by

G =

[

A M

N B

]

,

where at least one of the two bimodules M and N is distinct from zero. We always

assume that M is weak loyal as a left A-module and also as a right B-module, but

without any constraint conditions on N .

Lemma 5.1 ([62], Lemma 4.1). Let G =
[

A M

N B

]

be a 2-torsionfree generalized

matrix algebra over a commutative ring R. Then G satisfies the polynomial identity

[[x2, y], [x, y]] if and only if both A and B are commutative.
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Lemma 5.2. Let G =
[

A M

N B

]

be a 2-torsionfree generalized matrix algebra over

a commutative ring R. Suppose that M is a weakly loyal (A,B)-bimodule.

(1) For all a ∈ A the condition [a,A] ⊆ πA(Z(G)) implies that a ∈ Z(A).

(2) For all b ∈ B the condition [b, B] ⊆ πB(Z(G)) implies that b ∈ Z(B).

P r o o f. We only provide the proof of statement (1). Statement (2) can be proved

in an analogous manner. Suppose that [a,A] ⊆ πA(Z(G)) ⊆ Z(A) for all a ∈ A. Then

[a, a21] = [a, a1]a1 + a1[a, a1] = 2[a, a1]a1 ∈ πA(Z(G))

for all a1 ∈ A. Thus, we assert that 2[a, a1]a1 ∈ πA(Z(G)) and so [a, a1]a1 ∈

πA(Z(G)) ⊆ Z(A) for all a1 ∈ A. We therefore have [[a, a1]a1, a] = 0. It can be

rewritten as

0 = [[a, a1]a1, a] = −[a, a1]
2.

Hence

[a, a1]
2m = {0} = [a, a1]mϕ([a, a1])

holds true for all m ∈ M . Since M is weakly loyal as a left A-module and also as

a right B-module, we obtain [a, a1] = 0 for all a1 ∈ A. This shows that a ∈ Z(A). �

Lemma 5.3. Let G =
[

A M

N B

]

and G′ =
[

A′ M ′

N ′ B′

]

be 2-torsionfree generalized ma-

trix algebra over a commutative ring R. Let θ : G → G′ be a Lie triple isomorphism.

(1) If πA′(Z(G′)) = Z(A′) and πB′(Z(G′)) = Z(B′), then θ(Z(G)) ⊆ Z(G′).

(2) If πA′(Z(G′)) = Z(A′), πB′(Z(G′)) = Z(B′) and θ(w) ∈ Z(G′), then w ∈ Z(G).

P r o o f. (1) According to the assumption, we know that

θ[[x, y], z] = [[θ(x), θ(y)], θ(z)] = 0

for all x ∈ Z(G), y, z ∈ G. Then we obtain

[θ(x),G′] ⊆ Z(G′),

since θ : G → G′ is a Lie triple isomorphism for all y, z ∈ G.

Furthermore, we claim that θ(x) ∈ Z(G′). Indeed, let us define θ(x) =
[ a m

n b

]

. For

y =
[

1 0

0 0

]

∈ G′ we have

[θ(x), y] =

[

a m

n b

][

1 0

0 0

]

−

[

1 0

0 0

][

a m

n b

]

=

[

0 −m

n 0

]

∈ Z(G′).

Thus m = 0 = n.
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Let us take y =
[

a1 0

0 b1

]

∈ G′ (for all a1 ∈ A1, b1 ∈ A4). Then we have

[θ(x), y] =

[[

a 0

0 b

]

,

[

a1 0

0 b1

]]

=

[

[a, a1] 0

0 [b, b1]

]

∈ Z(G′).

Furthermore, we arrive at [a, a1] ∈ πA′(Z(G′)) and [b, b1] ∈ πB′(Z(G′)). By

Lemma 5.2 it follows that a ∈ Z(A′) and that b ∈ Z(B′). Moreover, we have

θ(x) ∈ Z(G′), which is due to the assumption.

(2) It can be shown by an analogous manner. �

The following theorem is a much more common generalization of [58], Theorem 5.1.

Theorem 5.4. Let G =
[

A M

N B

]

and G′ =
[

A′ M ′

N ′ B′

]

be generalized matrix algebras

over a commutative ringR with 1
2 ∈ R. Let l : G → G′ be a Lie triple isomorphism. If

(1) every centralizing trace of an arbitrary R-bilinear mapping on G′ is proper,

(2) every centralizing R-linear mapping on G is proper,

(3) at least one of A, B and at least one of A′, B′ are noncommutative,

(4) M and M ′ are weakly loyal,

then l = λm+ n with λ2 = 1G′ , where m : G → G′ is Jordan homomorphism, m is in-

jective, and n : G → Z(G′) is a linear mapping vanishing on each second commutator.

Moreover, if G′ is central over R, then m is surjective.

P r o o f. For arbitrary elements x, z ∈ G it is easy to check that l satisfies the

relation [[l(x2), l(x)], l(z)] = l([[x2, x], z]) = 0. Since l is onto, [l(x2), l(x)] ∈ Z(G′) for

all x ∈ G. Replacing x by l−1(y), we get [l(l−1(y)2), y] ∈ Z(G′) for all y ∈ G′. This

means that the mapping Tq(y) = l(l−1(y)2) is a centralizing trace of the bilinear map-

ping q : G′ × G′ → G′ defined by q(y, z) = l(l−1(y)l−1(z)). By hypothesis (1), there

exist λ ∈ Z(G′), an R-linear mapping µ1 : G′ → Z(G′) and a trace ν1 : G′ → Z(G′)

of some R-bilinear mapping such that

(5.1) l(l−1(y)2) = λy2 + µ1(y)y + ν1(y)

for all y ∈ G′. Let us set µ = µ1l and ν = ν1l. Then µ and ν are mappings of G

into Z(G′) and µ is R-linear. Hence (5.1) can be rewritten as

(5.2) l(x2) = λl(x)2 + µ(x)l(x) + ν(x)

for all x ∈ G. We conclude that λ 6= 0. Otherwise, we have l(x2)− µ(x)l(x) ∈ Z(G′)

by (5.2) and hence

l([[x2, y], [x, y]]) = [[l(x2), l(y)], l([x, y])] = [[µ(x)l(x), l(y)], l([x, y])]

= µ(x)[[l(x), l(y)], l([x, y])] = µ(x)l([[x, y], [x, y]]) = 0
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for all x, y ∈ G. Consequently, [[x2, y], [x, y]] = 0 for all x, y ∈ G. According to our

assumption this contradicts with Lemma 5.1. Thus λ 6= 0.

Now we define a linear mapping m : G → G
′

by

(5.3) m(x) = λl(x) + 1
2µ(x)

for x ∈ G. Of course, m is an R-linear mapping. Our goal is to show that m is

a Jordan homomorphism. In view of (5.2) and (5.3), we have

m(x2) = λl(x2) + 1
2µ(x) = λ2l(x)2 + λµ(x)l(x) + λν(x) + 1

2µ(x
2),

while

m(x)2 = (λl(x) + 1
2µ(x))

2 = λ2l(x)2 + λµ(x)l(x) + 1
4µ(x)

2.

Comparing the above two identities we get

(5.4) m(x2)−m(x)2 ∈ Z(G′)

for all x ∈ G. Linearizing (5.4) gives

m(x ◦ y)−m(x) ◦m(y) ∈ Z(G′)

for all x, y ∈ G. Define a mapping ε : G × G → Z(G′) by

(5.5) ε(x, y) = m(x ◦ y)−m(x) ◦m(y).

Clearly, ε is a symmetric bilinear mapping. It is clear that [[x, y], z] = x ◦ (y ◦ z) −

y ◦ (x ◦ z) for all x, y, z ∈ G. Thus, we obtain

m([[x, y], z]) = λl([[x, y], z]) + 1
2µ([[x, y], z]) = λl([[l(x), l(y)], l(z)]) + 1

2µ([[x, y], z])

for all x, y, z ∈ G. On the other hand, by invoking (5.5) we get

m(x ◦ (y ◦ z))−m(y ◦ (x ◦ z))

= m(x) ◦m(y ◦ z)−m(y) ◦m(x ◦ z) + ε(x, y ◦ z)− ε(y, x ◦ z)

= m(x) ◦ (m(y) ◦m(z)) + 2ε(y, z)m(x)−m(y) ◦ (m(x) ◦m(z))

− 2ε(x, z)m(y) + ε(x, y ◦ z)− ε(y, x ◦ z)

= [[m(x),m(y)],m(z)] + 2ε(y, z)m(x)− 2ε(x, z)m(y) + ε(x, y ◦ z)− ε(y, x ◦ z)

= λ3([[l(x), l(y)], l(z)]) + 2λε(y, z)l(x) + ε(y, z)µ(x)

− 2λε(x, z)l(y)− ε(x, z)µ(y) + ε(x, y ◦ z)− ε(y, x ◦ z)

for all x, y, z ∈ G. �
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According to the above identities, we see that

(5.6) (λ3 − λ)([[l(x), l(y)], l(z)]) + 2λε(y, z)l(x)− 2λε(x, z)l(y) ∈ Z(G′)

for all x, y, z ∈ G.

Claim. λ3 = λ and λε = 0.

Indeed, we suppose that A′ is noncommutative. Pick any a1, a2 ∈ A′ and m ∈ M ′.

There exist x0, y0, z0 ∈ G such that

l(x0) =

[

a1 0

0 0

]

and l(y0) =

[

a2 0

0 0

]

and l(z0) =

[

0 m

0 0

]

.

Replacing x, y, z by x0, y0, z0 in (5.6), respectively, we get

πA′(λ3 − λ)[a1, a2]m = 0

for some a1, a2 ∈ A′ and an arbitrary m ∈ M ′. Because M ′ is faithful as a left

A-module, we arrive at πA′(λ3−λ)[A′, A′] = 0, hence πA′(λ3−λ) = 0 by Lemma 3.1.

This shows that λ3 = λ.

Thus, relation (5.6) can be changed into

λε(y, z)l(x) − λε(x, z)l(y) ∈ Z(G′)

for all x, y, z ∈ G. This implies that

(5.7) λε(y, z)[l(x), l(y)] = 0

for all x, y, z ∈ G. For any m ∈ M ′, we assume that x0, y0 ∈ G such that

l(x0) =

[

0 m

0 0

]

and l(y0) =

[

0 0

0 1B′

]

for some x0, y0 ∈ G. Replacing x, y by x0, y0 in (5.7), respectively, we assert that

πA′(λε(y0, z))m = 0 for all z ∈ G and m ∈ M ′. Then we obatin λε(y0, z) = 0 for all

z ∈ G. Replacing x, y by x0, y0 + y in (5.7), we arrive at πA′(λε(y, z))m = 0 for all

y, z ∈ G and m ∈ M ′. So we know that λε(y, z) = 0 for all y, z ∈ G.

We further claim that λ2 = 1G′ and ε = 0. Set β = λ2 − 1G′ . Then βλ = 0. It

follows from (5.2) that

(5.8) βl(x2) = βµ(x)l(x) + βν(x)
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for all x ∈ G. Note that l−1 is also a Lie triple isomorphism of G′ onto G. Applying

the identity [[βl(x), l(x)], l(y)] = 0 for all x, y ∈ G yields

[l−1(βl(x)), x] ∈ Z(G)

for all x ∈ G. That is, x 7→ l−1(βl(x)) is a centralizing R-linear mapping on G. Since

every centralizing mapping on G is proper, we conclude that there exist γ ∈ Z(G)

and an additive mapping ω : G → Z(G) such that

l−1(βl(x)) = γx+ ω(x)

for all x ∈ G and hence

(5.9) βl(x) = l(γx) + l(ω(x)).

In view of Lemma 5.3, we see that l(ω(x)) ∈ Z(G′) for all x ∈ G. Combining (5.8)

with (5.9) gives

l([γz1, [z2, [[x
2, y], [x, y]]]]) = [l(γz1), [l(z2), l([[x

2, y], [x, y]])]]

= [βl(z1), [l(z2), l([[l(x
2), l(y)], l([x, y])])]]

= [l(z1), [l(z2), [[βl(x
2), l(y)], l([x, y])]]]

= [l(z1), [l(z2), [[βµ(x)l(x), l(y)], l([x, y])]]]

= βµ(x)[l(z1), [l(z2), [[l(x), l(y)], l([x, y])]]]

= βµ(x)[l(z1), [l(z2), l([[x, y], [x, y]])]] = 0

for all x, y, z1, z2 ∈ G. Since l is one-to-one, we obtain

γ[z1, [z2, [[x
2, y], [x, y]]]] = 0

for all x, y, z1, z2 ∈ G. We may assume that [A,A] 6= 0. Let us set

z1 = z2 =

[

1A 0

0 0

]

, x =

[

a 0

0 0

]

and y =

[

a′ m

0 0

]

,

where a, a′ ∈ A, m ∈ M . Then we obtain πA(γ)a[a, a
′]am = 0 for all a, a′ ∈ A,

m ∈ M . So πA(γ)a[a, a
′]a = 0, which is due to the fact that M is weakly loyal

for all a, a′ ∈ A. Replacing a by a ± 1 and comparing both identities, we have

πA(γ)[a, a
′] = 0 for all a, a′ ∈ A. By Lemma 3.1, we assert that πA(γ) = 0. Hence

γ = 0. Consequently, applying (5.9) yields that βG′ ⊆ Z(G′). Thus, βG′ is a central

ideal of G′. By [62], Lemma 3.3, we known that every generalized matrix algebra
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does not contain nonzero central ideals. We get β = 0. So λ2 = 1G′ and ε = 0. This

shows that m is a Jordan homomorphism. Let us set n = − 1
2λµ. Then we see that

l = λm+ n.

We next prove that m is one-to-one. Suppose that m(w) = 0 for some w ∈ G.

Then l(w) ∈ Z(G′) and hence w ∈ Z(G) by (2) of Lemma 5.3. This implies that

m−1(0) ⊆ Z(G). That is, m−1(0) is a Jordan ideal of Z(G). However, by [43],

Lemma 4.1 it follows that m−1(0) = 0.

It remains to prove that m is onto in the case when G′ is central overR. Let us first

show that m(1G) = 1G′ . Since l is a Lie triple isomorphism, we have l(1G) ∈ Z(G′)

and m(1G) ∈ Z(G′). Note that every m is a Jordan homomorphism. We see that

2m(x) = m(x ◦ 1G) = 2m(x)m(1G).

Since 1
2 ∈ R, (m(1G)−1G′)m(x) = 0. which can be rewritten as (m(1G)−1G′)m(G) ⊆

Z(G′). Note that every generalized matrix algebra does not contain nonzero central

ideal by [62], Lemma 3.3. We get that m(1G) = 1G′ . Obviously, we may write

n(x) = f(x)1G′ for some linear mapping f : G → R. Since m is R-linear, we know

that m(x) = λm(x) + f(x)1G′ = m(λx + f(x)1G) for all x ∈ G. Consequently, m is

onto, which is due to the fact that l is bijective. �

In particular, we have:

Corollary 5.5 ([58], Theorem 5.1). Let T =
[

A M

O B

]

and T ′ =
[

A′ M ′

O B′

]

be

2-torsionfree triangular algebras over a commutative ring R. Let l : T → T ′ be

a Lie triple isomorphism. If

(1) every centralizing trace of an arbitrary bilinear mapping on T ′ is proper,

(2) every centralizing linear mapping on T is proper,

(3) at least one of A, B, and at least one of A′, B′ are noncommutative,

(4) M and M ′ are weakly loyal,

then l = λ̺+τ with λ2 = 1G′ , where ̺ : T → T ′ is a Jordan homomorphism, ̺ is one-

to-one and τ : T → Z(T ′) is a linear mapping vanishing on each second commutator.

Moreover, if T ′ is central over R, then ̺ is onto.

Theorem 5.6. Let G =
[

A M

N B

]

and G′ =
[

A′ M ′

N ′ B′

]

be 2-torsionfree generalized

matrix algebras over a commutative ring R with 1
2 ∈ R. Let l : G → G′ be a Lie

triple isomorphism. If

(1) πA′(Z(G′)) = Z(A′) and πB′(Z(G′)) = Z(B′),

(2) both A′ and B′ are commutative,
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(3) there exist m0 ∈ M ′, n0 ∈ N ′ such that

Z(G) =

{[

a 0

0 b

]

: am0 = m0b, n0a = bn0 ∀ a ∈ Z(A′), b ∈ Z(B′)

}

,

then l = m + n, where m : G → G′ is a Jordan homomorphism, m is injective and

n : G → Z(G′) is a linear mapping vanishing on each second commutator. Moreover,

both A and B are commutative. If G′ is central over R, then m is surjective.

P r o o f. In view of Theorem 4.2, we know that each centralizing trace of a bilinear

map on G′ is proper. Using the same arguments as in the proof of Theorem 5.4 we

get that there exists an R-linear mapping ̺ : G → Z(G′) such that

l(x2)− ̺(x)l(x) ∈ Z(G′)

for all x ∈ G. Since both A′ or B′ are commutative, it follows from Lemma 3.11 that

there exists a linear mapping η : G → Z(G′) such that

l(x)2 − η(x)l(x) ∈ Z(G′)

for all x ∈ G. Let us now define m : G → G′ by

m = l− 1
2 (η − ̺).

It is easy to verify that m(x2)−m(x)2 ∈ Z(G′) for all x ∈ G. This gives

m(x ◦ y)−m(x) ◦m(x) ∈ Z(G′)

for all x ∈ G. Let us define

ε(x, y) = m(x ◦ y)−m(x) ◦m(y)

for all x, y ∈ G. Following the same arguments as in Theorem 5.4, we assert that

(5.10) ε(y, z)[l(x), l(y)] = 0

for all x, y, z ∈ G. Pick any m ∈ M ′, there exist x0, y0 ∈ G such that

l(x0) =

[

0 m

0 0

]

and l(y0) =

[

1A′ 0

0 0

]
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for some y0 ∈ G. Then from (5.10) we get that πA′(ε(y0, z))m = 0 for all m ∈ M ′.

Since M ′ is faithful as a left A′-module, we have πA′(ε(y0, z)) = 0 and ε(y0, z) = 0

for all z ∈ G. Replacing y by y0 + y in (5.10), we arrive at

ε(y,G)[l(y0),G
′] = 0

for all y ∈ G. In a similar manner, we obtain ε = 0. Therefore m is a Jordan

homomorphism. Let us set n = 1
2 (η − ̺). Thus l = m+ n.

In view of Lemma 3.12, it follows that

l([[[x2, y], z], [x, y]]) = [l([x2, y], z]), [l(x), l(y)]] = [[[l(x2), l(y)], l(z)], [l(x), l(y)]]

= [[[m(x2),m(y)],m(z)], [m(x),m(y)]]

= [[[m2(x),m(y)],m(z)], [m(x),m(y)]] = 0

for all x, y, z ∈ G. Hence, [[[x2, y], z], [x, y]] = 0 for all x, y, z ∈ G. Applying

Lemma 3.12 yields that both A and B are commutative. �

In particular, we have:

Corollary 5.7 ([58], Theorem 5.2). Let T =
[

A M

O B

]

and T ′ =
[

A′ M ′

O B′

]

be

2-torsionfree triangular algebras over a commutative ring R. Let l : T → T ′ be

a Lie triple isomorphism. If

(1) πA′(Z(T ′)) = Z(A′) and πB′(Z(T ′)) = Z(B′),

(2) both A
′

and B
′

are commutative,

(3) there exits m0 ∈ M
′

such that

Z(T ) =

{[

a 0

0 b

]

: am0 = m0b ∀ a ∈ Z(A′), b ∈ Z(B′)

}

,

then l = m + n, where m : T → T ′ is a Jordan homomorphism, m is injective and

n : T → Z(T ′) is a linear mapping vanishing on each second commutator. Moreover,

both A and B are commutative. If T ′ is central over R, then m is surjective.

As direct consequences of Theorem 5.6 we have:

Corollary 5.8 ([58], Corollary 5.1). Let n, n′ (n, n′ > 2) be integers and R be

a commutative ring with 1
2 ∈ R. If l : Tn(R) → Tn′(R) is a Lie triple isomorphism,

then l = m+n, where m : Tn(R) → Tn′(R) is a Jordan isomorphism and n : Tn(R) →

R1T
n′(R) is a linear mapping vanishing on each second commutator. Moreover, n = 2

if and only if n′ = 2.
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For the Lie triple isomorphisms on full matrix algebras, we have similar charac-

terizations.

Corollary 5.9. Let n, n′ (n, n′ > 2) be integers and R be a commutative ring

with 1
2 ∈ R. If l : Mn(R) → Mn′(R) is a Lie triple isomorphism, then l = λm+ n,

where λ ∈ R with λ2 = 1, m : Mn(R) → Mn′(R) is a Jordan isomorphism and

n : Mn(R) → R1M
n′ (R) is a linear mapping vanishing on each second commutator.

Moreover, n = 2 if and only if n′ = 2.

P r o o f. Suppose that n, n′ > 2. In view of Example 2.1, Corollary 3.5 and

Theorem 4.2, we see that all assumptions of Theorem 5.4 are satisfied. The result

follows from Theorem 5.4.

Suppose that n′ = 2. The result follows from Theorem 5.6. If n = 2, applying

Theorem 5.6 to l−1, we get that n′ = 2. �

Similarly, we can prove that the following corollary.

Corollary 5.10. Let R be a 2-torsionfree commutative ring, Vi be an R-linear

space and B(R, Vi, γi) be the inflated algebra of R along Vi (i = 1, 2). Suppose

that l : B(R, V1, γ1) → B(R, V2, γ2) is a Lie triple isomorphism. Then l = λm + n,

where λ ∈ R with λ2 = 1, m : B(R, V1, γ1) → B(R, V2, γ2) is a Jordan isomorphism

and n : B(R, V1, γ1) → B(R, V2, γ2) is a linear mapping vanishing on each second

commutator. Moreover, dim(V1) = 2 if and only if dim(V2) = 2.

6. Lie isomorphisms on generalized matrix algebras

It is clear that each Lie isomorphism is a Lie triple isomorphism. Applying Theo-

rem 5.4, we can give a detailed description of Lie isomorphism on generalized matrix

algebras.

The following theorem is a much more common generalization of [58], Theorem 6.1.

For completeness and for reading convenience, we here give its proof which is rather

similar to the proof of [58], Theorem 6.1.

Theorem 6.1. Let G =
[

A M

N B

]

and G′ =
[

A′ M ′

N ′ B′

]

be 2-torsionfree generalized

matrix algebras over a commutative ring R. Let l : G → G′ be a Lie isomorphism. If

(1) every commuting trace of an arbitrary bilinear mapping on G′ is proper,

(2) every commuting linear mapping on G is proper,

(3) at least one of A, B, and at least one of A′, B′ are noncommutative,

(4) both M and M ′ are weakly loyal,
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then l = λm+ n, where λ ∈ Z(G′) with λ2 = 1G′ , m : G → G′ is a sum of homomor-

phism and the negative of an anti-homomorphism, m is injective and n : G → Z(G′)

is a linear mapping vanishing on each commutator. Moreover, if G′ is central over R,

then m is onto.

P r o o f. Let us set 1 = 1G′ . By Theorem 5.4 it follows that

l = λm+ n,

where λ ∈ Z(G′) with λ2 = 1, m : G → G′ is a Jordan homomorphism, m is one-to-

one and n : G → G′ is a linear mapping vanishing on each commutator. Moreover,

if G
′

is central over R, then m is onto. Since l is a Lie isomorphism, one can easily

check that

(6.1) λm([x, y])− [m(x),m(y)] = −n([x, y]) ∈ Z(G′)

for all x, y ∈ G. Since m is a Jordan homomorphism, from (6.1) we get

λm(xy)− 1
2 (λ+ 1)m(x)m(y)− 1

2 (λ− 1)m(y)m(x) ∈ Z(G′)

for all x, y ∈ G. Consequently, the mapping

ε : G × G → Z(G′)

satisfies the relation

ε(x, y) = λm(xy)− 1
2 (λ+ 1)m(x)m(y)− 1

2 (λ− 1)m(y)m(x).

Let us define α = 1
2 (λ+ 1). Thus α2 = α. We therefore have

(6.2) λm(xy) = αm(x)m(y) + (α− 1)m(y)m(x) + ε(x, y)

for all x, y ∈ G. In light of (6.2), we conclude

m(xyz) = m(x(yz)) = αm(x)m(yz) + (α− 1)m(yz)m(x) + ε(x, yz)

= αm(x)(αm(y)m(z) + (α− 1)(m(z)m(y)) + ε(y, z))

+ (α − 1)(αm(y)m(z) + (α− 1)(m(z)m(y)) + ε(y, z))m(x) + ε(x, yz)

= α2m(x)m(y)m(z) + (α− 1)2m(z)m(y)m(x) + ε(x, yz) + ε(y, z)m(x).
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On the other hand, we have

m(xyz) = m((xy)z) = αm(xy)m(z) + (α− 1)m(z)m(xy) + ε(xy, z)

= α(αm(x)m(y) + (α− 1)(m(y)m(x)) + ε(x, y))m(z)

+ (α − 1)m(z)(αm(x)m(y) + (α− 1)m(y)m(x)) + ε(x, y)) + ε(xy, z)

= α2m(x)m(y)m(z) + (α− 1)2m(z)m(y)m(x) + ε(xy, z) + ε(x, y)m(z).

Comparing the two identities above gives

ε(y, z)m(x)− ε(x, y)m(z) ∈ Z(G′)

for all x, y, z ∈ G. Hence

(6.3) ε(y, z)l(x)− ε(x, y)l(z) ∈ Z(G′)

for all x, y, z ∈ G. Following the same argument as in Theorem 5.4, we assert that

ε = 0. This implies that αm is a homomorphism and (1− α)m is the negative of an

antihomomorphism. Hence, m is a sum of a homomorphism and the negative of an

antihomomorphism. �

We immediately get the following corollary:

Corollary 6.2 ([58], Theorem 6.1). Let T =
[

A M

O B

]

and T ′ =
[

A′ M ′

O B′

]

be

2-torsionfree triangular algebras over a commutative ring R. Let l : T → T ′ be

a Lie isomorphism. If

(1) every commuting trace of an arbitrary bilinear mapping on T ′ is proper,

(2) every commuting linear mapping on T is proper,

(3) at least one of A, B, and at least one of A′, B′ are noncommutative,

(4) both M and M ′ are weakly loyal,

then l = λm + n, where λ ∈ Z(T ′) with λ2 = 1T ′ , m : T → T ′ is a sum of

a homomorphism and the negative of an anti-homomorphism, m is one-to-one and

n : T → Z(T ′) is a linear mapping vanishing on each commutator. Moreover, if T ′

is central over R, then m is onto.

Using Theorem 5.6 we can prove the following result.

Theorem 6.3. Let G =
[

A M

N B

]

and G′ =
[

A′ M ′

N ′ B′

]

be 2-torsionfree generalized

matrix algebras over a commutative ring R. Let l : G → G′ be a Lie isomorphism. If

(1) πA′(Z(G′)) = Z(A′) and πB′(Z(G′)) = Z(B′),

(2) both A′ and B′ are commutative,
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(3) there exist m0 ∈ M ′, n0 ∈ N ′ such that

Z(G) =

{[

a 0

0 b

]

: am0 = m0b, n0a = bn0 ∀ a ∈ Z(A′), b ∈ Z(B′)

}

,

then l = m+ n, where m : G → G′ is a homomorphism, m is one-to-one and n : G →

Z(G′) is a linear mapping vanishing on each commutator. Moreover, both A and B

are commutative. If G′ is central over R, then m is onto.

P r o o f. In view of Theorem 5.6, we know that l = m + n, where m : G → G′ is

a Jordan homomorphism, m is one-to-one and n : G → Z(G′) is a linear mapping

vanishing on each commutator. Since l is a Lie isomorphism, we get

m([x, y])− [m(x),m(y)] ∈ Z(G′)

for all x, y ∈ G. Thus, we obtain

m(xy)−m(x)m(y) ∈ Z(G′)

for all x, y ∈ G. Let us set

ε(x, y) = m(xy)−m(x)m(y)

for all x, y ∈ G. Following the same argument as in Theorem 6.1, we assert that

ε(y, z)[l(x), l(y)] = 0 for all x, y, z ∈ G and that m is a homomorphism. �

As a consequence of both Theorem 6.1 and Theorem 6.3 we have:

Corollary 6.4 ([58], Theorem 6.2). Let T =
[

A M

O B

]

and T ′ =
[

A′ M ′

O B′

]

be

2-torsionfree triangular algebras over a commutative ring R. Let l : T → T ′ be

a Lie isomorphism. If

(1) πA′(Z(G′)) = Z(A′) and πB′(Z(G′)) = Z(B′),

(2) both A′ and B′ are commutative,

(3) there exits m0 ∈ M ′ such that

Z(T ) =

{[

a 0

0 b

]

: am0 = m0b ∀ a ∈ Z(A′), b ∈ Z(B′)

}

,

then l = m+ n, where m : T → T ′ is a homomorphism, m is one-to-one and n : T →

Z(T ′) is a linear mapping vanishing on each commutator. Moreover, both A and B

are commutative. If T ′ is central over R, then m is onto.
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In addition, we also get:

Corollary 6.5. Let R be a 2-torsionfree commutative ring. If l : Mn(R) →

Mn′(R) (n, n′ > 2) is a Lie isomorphism, then l = λm + n, where λ ∈ R with

λ2 = 1, m : Mn(R) → Mn′(R) is a sum of an isomorphism and the negative of

an anti-isomorphism and n : Mn(R) → R1M
n′(R) is a linear mapping vanishing on

each commutator. Moreover, n = 2 if and only if n′ = 2.

Corollary 6.6. Let R be a 2-torsionfree commutative ring, Vi be an R-linear

space and B(R, Vi, γi) be the inflated algebra of R along Vi (i = 1, 2). If l :

B(R, V1, γ1) → B(R, V2, γ2) is a Lie isomorphism, then l = λm+n, where λ ∈ R with

λ2 = 1, m : B(R, V1, γ1) → B(R, V2, γ2) is a sum of an isomorphism and the nega-

tive of an anti-isomorphism and n : B(R, V1, γ1) → B(R, V2, γ2) is a linear mapping

vanishing on each commutator. Moreover, dim(V1) = 2 if and only if dim(V2) = 2.

Corollary 6.7 ([58], Corollary 6.1). Let R be a 2-torsionfree commutative ring.

If l : Tn(R) → Tn′(R) (n, n′ > 2) is a Lie isomorphism, then l = λm+n, where λ ∈ R

with λ2 = 1, m : Tn(R) → Tn′(R) is a sum of an isomorphism and the negative of an

anti-isomorphism and n : Tn(R) → R1T
n′(R) is a linear mapping vanishing on each

commutator. Moreover, n = 2 if and only if n′ = 2. In particular, if n = 2, then ϕ

is an isomorphism.

It should be remarked that Corollary 6.5 or Corollary 6.6 removes the assumption

that R is a domain in [62], Corollary 4.7 or Corollary 4.8.
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