
Czechoslovak Mathematical Journal

Jian Hua Yin; Jia-Yun Li; Jin-Zhi Du; Hai-Yan Li
Bigraphic pairs with a realization containing a split bipartite-graph

Czechoslovak Mathematical Journal, Vol. 69 (2019), No. 3, 609–619

Persistent URL: http://dml.cz/dmlcz/147780

Terms of use:
© Institute of Mathematics AS CR, 2019

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/147780
http://dml.cz


Czechoslovak Mathematical Journal, 69 (144) (2019), 609–619

BIGRAPHIC PAIRS WITH A REALIZATION CONTAINING

A SPLIT BIPARTITE-GRAPH

Jian-Hua Yin, Jia-Yun Li, Jin-Zhi Du, Hai-Yan Li, Haikou

Received February 23, 2017. Published online May 7, 2019.

Abstract. Let Ks,t be the complete bipartite graph with partite sets {x1, . . . , xs} and
{y1, . . . , yt}. A split bipartite-graph on (s+s′)+(t+ t′) vertices, denoted by SBs+s′,t+t′ , is

the graph obtained from Ks,t by adding s
′+ t′ new vertices xs+1, . . . , xs+s′ , yt+1, . . . , yt+t′

such that each of xs+1, . . . , xs+s′ is adjacent to each of y1, . . . , yt and each of yt+1, . . . , yt+t′

is adjacent to each of x1, . . . , xs. Let A and B be nonincreasing lists of nonnegative integers,
having lengths m and n, respectively. The pair (A;B) is potentially SBs+s′,t+t′ -bigraphic if

there is a simple bipartite graph containing SBs+s′,t+t′ (with s+s′ vertices x1, . . . , xs+s′ in

the part of size m and t+ t′ vertices y1, . . . , yt+t′ in the part of size n) such that the lists of
vertex degrees in the two partite sets are A and B. In this paper, we give a characterization
for (A;B) to be potentially SBs+s′,t+t′ -bigraphic. A simplification of this characterization
is also presented.
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1. Introduction

All graphs considered here are simple, that is, contain neither loops nor multiple

edges. A sequence π = (d1, d2, . . . , dn) of nonnegative integers is said to be graphic

if it is the degree sequence of a simple graph G on n vertices, and such a graph G is

referred to as a realization of π. The following well-known result due to Erdős and

Gallai in [1] gives a characterization for π to be graphic.
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Theorem 1.1 ([1]). Let π = (d1, d2, . . . , dn) be a nonincreasing sequence of non-

negative integers, where
n∑

i=1

di is even. Then π is graphic if and only if

(1)
t∑

i=1

di 6 t(t− 1) +
n∑

i=t+1

min{t, di}

for all t with 1 6 t 6 n.

Nash-Williams in [6] further showed that Theorem 1.1 remains valid if condi-

tion (1) is assumed only for those t for which dt > dt+1. Recently, Tripathi et al.

in [9] gave a short constructive proof of Theorem 1.1.

For a given graph H , a graphic sequence π = (d1, d2, . . . , dn) is said to be poten-

tially H-graphic if there is a realization of π containing H as a subgraph. Rao in [7]

gave a characterization of π that is potentially Kr+1-graphic. This is an extension

of Theorem 1.1 (r = 0).

Theorem 1.2 ([7]). Let n > r + 1 and π = (d1, d2, . . . , dn) be a nonincreasing

sequence of nonnegative integers, where dr+1 > r and
n∑

i=1

di is even. Then π is

potentially Kr+1-graphic if and only if

(2)

p∑

i=1

(di − r) +

r+1+q∑

i=r+2

di 6 (p+ q)(p+ q − 1)− p(p− 1)

+
r+1∑

i=p+1

min{q, di − r}+
n∑

i=r+q+2

min{p+ q, di}

for all p and q with 0 6 p 6 r + 1 and 0 6 q 6 n− r − 1.

Rao in [7] also further showed that Theorem 1.2 remains valid if condition (2) is

assumed only for those p and q for which dp > dp+1 or p = 0 or p = r + 1 and

dr+1+q > dr+2+q or q = 0 or q = n −m − 1. In [7], Rao gave a lengthy induction

proof of Theorem 1.2 via linear algebraic techniques that remains unpublished, but

Kézdy and Lehel in [5] have given another proof using network flows. Recently, Yin

in [11] obtained a short constructive proof of Theorem 1.2.

Let Kr be the complete graph with vertex set {v1, . . . , vr}. A complete split

graph on r + s vertices, denoted by Sr,s, is the graph obtained from Kr by adding s

new vertices vr+1, . . . , vr+s such that each of vr+1, . . . , vr+s is adjacent to each of

v1, . . . , vr. Clearly, Sr,1 = Kr+1. Therefore, Sr,s is an extension of Kr+1. Yin in [10]

established a Rao-type characterization of π that is potentially Sr,s-graphic. This is

an extension of Theorem 1.2 (s = 1).
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Theorem 1.3 ([10]). Let n > r + s and π = (d1, d2, . . . , dn) be a nonincreasing

sequence of nonnegative integers, where dr > r + s− 1, dr+s > r and
n∑

i=1

di is even.

Then π is potentially Sr,s-graphic if and only if

(3)

p∑

i=1

(di − r − s+ 1) +

r+p′∑

i=r+1

(di − r) +

r+s+q∑

i=r+s+1

di

6 (p+ p′ + q)(p+ p′ + q − 1)− p(p− 1)− 2pp′

+
r∑

i=p+1

min{q, di − r − s+ 1}+
r+s∑

i=r+p′+1

min{p′ + q, di − r}

+

n∑

i=r+s+q+1

min{p+ p′ + q, di}

for all p, p′ and q with 0 6 p 6 r, 0 6 p′ 6 s and 0 6 q 6 n− r − s.

Yin in [10] also further showed that Theorem 1.3 remains valid if condition (3)

is assumed only for those p, p′ and q for which dp > dp+1 or p = 0 or p = r,

dr+p′ > dr+p′+1 or p
′ = 0 or p′ = s and dr+s+q > dr+s+q+1 or q = 0 or q = n− r− s.

Let A be an m-tuple and B an n-tuple of nonnegative integers; we take A =

(a1, . . . , am) and B = (b1, . . . , bn), indexed so that each list is nonincreasing. If there

is a simple bipartite graph G such that A and B are the lists of vertex degrees for

the two partite sets, then the pair (A;B) is bigraphic and G is a realization of the

pair (A;B). Let Ks,t be the complete bipartite graph with partite sets {x1, . . . , xs}

and {y1, . . . , yt}. We say that the pair (A;B) is potentially Ks,t-bigraphic if some

realization of (A;B) contains Ks,t (with s vertices x1, . . . , xs in the part of size m

and t vertices y1, . . . , yt in the part of size n). The following Theorem 1.4 is the

well-known Gale-Ryser characterization of bigraphic pairs.

Theorem 1.4 ([3], [8]). The pair (A;B) is bigraphic if and only if
m∑
i=1

ai =
n∑

i=1

bi
and

(4)

k∑

i=1

ai 6

n∑

j=1

min{k, bj}

for all k with 1 6 k 6 m− 1.

Recently, Garg et al. in [4] presented a short constructive proof of Theorem 1.4.

Yin and Huang in [13] gave a Gale-Ryser type characterization of potentially Ks,t-

bigraphic pairs.
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Theorem 1.5 ([13]). The pair (A;B) is potentially Ks,t-bigraphic if and only if

as > t, bt > s,
m∑
i=1

ai =
n∑

i=1

bi and

(5)

p∑

i=1

ai +

q∑

i=1

as+i 6 pt+

t∑

j=1

min{q, bj − s}+

n∑

j=t+1

min{p+ q, bj}

for all p and q with 0 6 p 6 s and 0 6 q 6 m− s.

Theorem 1.5 reduces to Theorem 1.4 when s = t = 0. Recently, Yin in [12]

presented a simplification of Theorem 1.5, that is, Theorem 1.5 remains valid if

condition (5) is assumed only for those p and q for which ap > ap+1 or p = 0 or p = s

and as+q > as+q+1 or q = 0 or q = m− s.

A split bipartite-graph on (s + s′) + (t + t′) vertices, denoted by SBs+s′,t+t′ ,

is the graph obtained from Ks,t by adding s′ + t′ new vertices xs+1, . . . , xs+s′ ,

yt+1, . . . , yt+t′ such that each of xs+1, . . . , xs+s′ is adjacent to each of y1, . . . , yt and

each of yt+1, . . . , yt+t′ is adjacent to each of x1, . . . , xs. The pair (A;B) is potentially

SBs+s′,t+t′-bigraphic if some realization of (A;B) contains SBs+s′,t+t′ (with s + s′

vertices x1, . . . , xs+s′ in the part of size m and t + t′ vertices y1, . . . , yt+t′ in the

part of size n). Clearly, if s′ = t′ = 0, then SBs,t = Ks,t. Therefore SBs+s′,t+t′ is

an extension of Ks,t. The purpose of this paper is to establish a characterization

of the pairs (A;B) that are potentially SBs+s′,t+t′ -bigraphic. That is the following

Theorem 1.6.

Theorem 1.6. The pair (A;B) is potentially SBs+s′,t+t′-bigraphic if and only if

as > t+ t′, bt > s+ s′, as+s′ > t, bt+t′ > s,
m∑
i=1

ai =
n∑

i=1

bi and

(6)

p∑

i=1

ai +

q∑

i=1

as+i +

r∑

i=1

as+s′+i

6 (p+ q)t+ pt′ +

t∑

j=1

min{r, bj − s− s′}+

t+t′∑

j=t+1

min{q + r, bj − s}

+
n∑

j=t+t′+1

min{p+ q + r, bj}

for all p, q and r with 0 6 p 6 s, 0 6 q 6 s′ and 0 6 r 6 m− s− s′.

Theorem 1.6 reduces to Theorem 1.5 when s′ = t′ = 0. We also present a simpli-

fication of Theorem 1.6.

Theorem 1.7. Theorem 1.6 remains valid if condition (6) is assumed only for

those p, q and r for which ap > ap+1 or p = 0 or p = s, as+q > as+q+1 or q = 0 or

q = s′ and as+s′+r > as+s′+r+1 or r = 0 or r = m− s− s′.
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2. Proofs of theorems 1.6–1.7

The following useful lemma is due to Ferrara et al. in [2].

Lemma 2.1 ([2]). Let G be a realization of the pair (A;B) with partite sets X

and Y . If H is a subgraph of G whose vertex set consists of X ′ in X and Y ′ in Y ,

then (A;B) has a realization G′ containing H such that the vertices of H are the

highest-degree vertices both in X and in Y .

The necessity of Theorem 1.6 relies on the following lemma. For a graph G and

a vertex u in G, NG(u) denotes the set of neighbors of u in G.

Lemma 2.2. If (A;B) is potentially SBs+s′,t+t′ -bigraphic, then (A;B) has a re-

alization G with partite sets {x1, . . . , xm} and {y1, . . . , yn} such that dG(xi) = ai

for 1 6 i 6 m, dG(yi) = bi for 1 6 i 6 n, each of x1, . . . , xs is adjacent to each of

y1, . . . , yt+t′ and each of y1, . . . , yt is adjacent to each of x1, . . . , xs+s′ .

P r o o f. By Lemma 2.1, we may assume that G is a realization of (A;B) with

partite sets {x1, . . . , xm} and {y1, . . . , yn} such that dG(xi) = ai for 1 6 i 6 m,

dG(yi) = bi for 1 6 i 6 n and G contains SBs+s′,t+t′ on x1, . . . , xs+s′ , y1, . . . , yt+t′ .

If there is a u ∈ {x1, . . . , xs} such that u is not adjacent to each of y1, . . . , yt+t′ ,

then there is a u′ ∈ {xs+1, . . . , xs+s′} such that u
′ is adjacent to each of y1, . . . , yt+t′ .

Denote A1 = {y1, . . . , yt+t′} \NG(u), B1 = NG(u) \ {y1, . . . , yt+t′}, B2 = NG(u
′) \

{y1, . . . , yt+t′} and C = B1 \B2. Since dG(u) > dG(u
′), we have t+ t′−|A1|+ |B1| >

t + t′ + |B2|, i.e., |B1| > |A1| + |B2|, implying that |C| = |B1| − |B1 ∩ B2| >

|B1| − |B2| > |A1|. Choose any subset C
′ ⊆ C having |C′| = |A1|. Now form a new

realization G′ of (A;B) by interchanging the edges of the star centered at u with

endvertices in C′ with the non-edges of the star centered at u with endvertices in A1,

and interchanging the edges of the star centered at u′ with endvertices in A1 with

the non-edges of the star centered at u′ with endvertices in C′. Then u is adjacent

to each of y1, . . . , yt+t′ in G
′. Repeat this process until each of x1, . . . , xs is adjacent

to each of y1, . . . , yt+t′ . In a similar way we can achieve that each of y1, . . . , yt is

adjacent to each of x1, . . . , xs+s′ . �

P r o o f of Theorem 1.6. To prove the necessity, by Lemma 2.2, we may let G be

a realization of (A;B) with partite sets {x1, . . . , xm} and {y1, . . . , yn} such that

dG(xi) = ai for 1 6 i 6 m, dG(yi) = bi for 1 6 i 6 n, each of x1, . . . , xs

is adjacent to each of y1, . . . , yt+t′ and each of y1, . . . , yt is adjacent to each of

x1, . . . , xs+s′ . This requires as > t + t′, bt > s + s′, as+s′ > t and bt+t′ > s.

Moreover,
p∑

i=1

ai+
q∑

i=1

as+i+
r∑

i=1

as+s′+i is the sum of the number of edges from yh to
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{x1, . . . , xp, xs+1, . . . , xs+q, xs+s′+1, . . . , xs+s′+r}, the summation being taken over

h = 1, 2, . . . , n. Now the contribution of yh to this sum is at most min{p + q + r,

bj − (s − p) − (s′ − q)} if h ∈ {1, . . . , t}, at most min{p + q + r, bj − (s − p)} if

h ∈ {t+ 1, . . . , t+ t′} and at most min{p+ q + r, bj} if h ∈ {t+ t′ + 1, . . . , n}. This

gives, after easy algebraic manipulations, the right side and the necessity is proved.

For the sufficiency, we let a subrealization of (A;B) be a bipartite graph with

partite sets {x1, . . . , xm} and {y1, . . . , yn} such that d(xi) 6 ai for each i and

d(yj) 6 bj for each j. We will construct a realization of (A;B) through succes-

sive subrealizations. In the initial subrealization, each of x1, . . . , xs is adjacent to

each of y1, . . . , yt+t′ and each of y1, . . . , yt is adjacent to each of x1, . . . , xs+s′ . This

subrealization contains SBs+s′,t+t′ in the desired location and has no other edges.

A subrealization has three critical indices. Let p be the largest index such that

d(xi) = ai for 1 6 i < p 6 s, let q be the largest index such that d(xs+i) = as+i

for 1 6 i < q 6 s′ and let r be the largest index such that d(xs+s′+i) = as+s′+i for

1 6 i < r 6 m− s− s′. The critical deficiency is (ap − d(xp)) + (as+q − d(xs+q)) +

(as+s′+r − d(xs+s′+r)). While p 6 s or q 6 s′ or r 6 m − s − s′, we obtain

a new subrealization having the same degrees of x1, . . . , xp−1, xs+1, . . . , xs+q−1 and

xs+s′+1, . . . , xs+s′+q−1 but smaller critical deficiency or larger critical indices. The

new subrealization need not contain the previous subrealization, but it contains the

initial subrealization and hence contains SBs+s′,t+t′ . The process can only stop when

the subrealization is a realization of (A;B) containing SBs+s′,t+t′ .

Let X1={xp+1, . . . , xs}, X2={xs+q+1, . . . , xs+s′} and X3={xs+s′+r+1, . . . , xm}.

We maintain the conditions that each of x1, . . . , xs is adjacent to each of y1, . . . , yt+t′

and each of y1, . . . , yt is adjacent to each of x1, . . . , xs+s′ , there is no edge joining

{y1, . . . , yt} and X3, there is no edge joining {yt+1, . . . , yt+t′} and X2∪X3, and there

is no edge joining {yt+t′+1, . . . , yn} and X1 ∪X2 ∪X3, which certainly hold initially.

Case 0 : xpyi /∈ E(G) for some vertex yi such that d(yi) < bi. Add the edge xpyi.

Case 1 : xs+qyj /∈ E(G) for some vertex yj such that d(yj) < bj. Add the edge

xs+qyj .

Case 2 : xs+s′+ryj /∈ E(G) for some vertex yj such that d(yj) < bj. Add the edge

xs+s′+ryj .

Case 3 : d(yk) 6= min{p+ q+ r, bk} for a k with k > t+ t′ +1. In a subrealization,

d(yk) 6 bk. Since there is no edge joining {yt+t′+1, . . . , yn} and X1 ∪ X2 ∪ X2,

d(yk) 6 p+ q+ r. Hence d(yk) < min{p+ q+ r, bk}. Case 0, Case 1 and Case 2 apply

unless xpyk, xs+qyk, xs+s′+ryk ∈ E(G). Since d(yk) < p + q + r, there exists i with

i ∈ {1, . . . , p−1, s+1, . . . , s+q−1, s+s′+1, . . . , s+s′+r−1} such that xiyk /∈ E(G).

If i ∈ {1, . . . , p− 1}, then since p 6 s and d(xi) = ai > ap > d(xp), there exists u ∈

N(xi)\N(xp); in this case, replace uxi with {xiyk, uxp}. If i ∈ {s+1, . . . , s+ q−1},

then since d(xi) > d(xs+q), there exists u ∈ N(xi)\N(xs+q); in this case, replace uxi
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with {xiyk, uxs+q}. If i ∈ {s+s′+1, . . . , s+s′+r−1}, then since d(xi) > d(xs+s′+r),

there exists u ∈ N(xi) \N(xs+s′+r); in this case, replace uxi with {xiyk, uxs+s′+r}.

Case 4 : d(yk)−s 6= min{q+r, bk−s} for a k with t < k 6 t+t′. In a subrealization,

d(yk) − s 6 bk − s. Since there is no edge joining {yt+1, . . . , yt+t′} and X2 ∪ X3,

d(yk)−s 6 q+r. Hence d(yk)−s < min{q+r, bk−s}. Case 1 and Case 2 apply unless

xs+qyk, xs+s′+ryk ∈ E(G). Since d(yk)− s < q+ r and x1yk, . . . , xsyk ∈ E(G), there

exists i with i ∈ {s+1, . . . , s+q−1, s+s′+1, . . . , s+s′+r−1} such that xiyk /∈ E(G).

If i ∈ {s+1, . . . , s+q−1}, then by d(xi) > d(xs+q), there exists u ∈ N(xi)\N(xs+q);

replace uxi with {xiyk, uxs+q}. If i ∈ {s+ s′+1, . . . , s+ s′+ r− 1}, then by d(xi) >

d(xs+s′+r), there exists u ∈ N(xi) \N(xs+s′+r); replace uxi with {xiyk, uxs+s′+r}.

Case 5 : d(yk)−s−s′ 6= min{r, bk−s−s′} for a k with 1 6 k 6 t. In a subrealiza-

tion, d(yk)− s− s′ 6 bk − s− s′. Since there is no edge joining {y1, . . . , yt} and X3,

d(yk)− s− s′ 6 r. Hence d(yk)− s− s′ < min{r, bk − s− s′}. Case 2 applies unless

xs+s′+ryk ∈ E(G). Since d(yk) − s − s′ < r and x1yk, . . . , xs+s′yk ∈ E(G), there

exists i with i ∈ {s+ s′ + 1, . . . , s+ s′ + r − 1} such that xiyk /∈ E(G). By d(xi) >

d(xs+s′+r), there exists u ∈ N(xi) \N(xs+s′+r); replace uxi with {xiyk, uxs+s′+r}.

It is easy to check that the above conditions are preserved by the replacements of

edges in all Cases 0–5. If none of these cases applies, then d(yk) = min{p+ q+ r, bk}

for k > t+ t′+1, d(yk)− s = min{q+ r, bk− s} for t < k 6 t+ t′ and d(yk)− s− s′ =

min{r, bk − s − s′} for 1 6 k 6 t. Since each of x1, . . . , xs is adjacent to each

of y1, . . . , yt+t′ and each of y1, . . . , yt is adjacent to each of x1, . . . , xs+s′ , there is

no edge joining {y1, . . . , yt} and X3, there is no edge joining {yt+1, . . . , yt+t′} and

X2∪X3 and there is no edge joining {yt+t′+1, . . . , yn} and X1∪X2∪X3, we have that

p∑

i=1

d(xi) +

q∑

i=1

d(xs+i) +

r∑

i=1

d(xs+s′+i)

= p(t+ t′) + qt+

t∑

j=1

(d(yj)− s− s′) +

t+t′∑

j=t+1

(d(yj)− s) +

n∑

j=t+t′+1

d(yj)

= (p+ q)t+ pt′ +

t∑

j=1

min{r, bj − s− s′}+

t+t′∑

j=t+1

min{q + r, bj − s}

+

n∑

j=t+t′+1

min{p+ q + r, bj}.

By (6) and since d(xi) 6 ai, we get that

p∑

i=1

ai +

q∑

i=1

as+i +

r∑

i=1

as+s′+i =

p∑

i=1

d(xi) +

q∑

i=1

d(xs+i) +

r∑

i=1

d(xs+s′+i),
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implying that d(xp) = ap, d(xs+q) = as+q and d(xs+s′+r) = as+s′+r. Increase p

by 1, q by 1 and r by 1, and continue.

Finally, a subrealization containing SBs+s′,t+t′ is obtained so that d(xi) = ai for

1 6 i 6 m. By d(yi) 6 bi for 1 6 i 6 n and
n∑

i=1

d(yi) =
m∑
i=1

ai =
n∑

i=1

bi, we have that

d(yi) = bi for 1 6 i 6 n. Hence we have constructed a realization of (A;B). �

P r o o f of Theorem 1.7. We only need to show that if condition (6) holds for

those p, q and r for which ap > ap+1 or p = 0 or p = s, as+q > as+q+1 or q = 0 or

q = s′ and as+s′+r > as+s′+r+1 or r = 0 or r = m− s− s′, then (6) holds for all p, q

and r with 0 6 p 6 s, 0 6 q 6 s′ and 0 6 r 6 m− s− s′. Suppose not. Let p, q, r

be such that

(7)

p∑

i=1

ai +

q∑

i=1

as+i +

r∑

i=1

as+s′+i

> (p+ q)t+ pt′ +

t∑

j=1

min{r, bj − s− s′}

+
t+t′∑

j=t+1

min{q + r, bj − s}+
n∑

j=t+t′+1

min{p+ q + r, bj}

and p+ q + r is as small as possible. Let

u = max{i : ai = ap and i 6 s}, v = max{i : as+i = as+q and i 6 s′}

and

w = max{i : as+s′+i = as+s′+r and i 6 m− s− s′}.

If p = 0, we define u to be 0; if q = 0, then v = 0; if r = 0, then w = 0. By the

hypothesis, we have that

(8)
u∑

i=1

ai +
v∑

i=1

as+i +
w∑

i=1

as+s′+i

6 (u+ v)t+ ut′ +

t∑

j=1

min{w, bj − s− s′}

+

t+t′∑

j=t+1

min{v + w, bj − s}+

n∑

j=t+t′+1

min{u+ v + w, bj}.
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By the choice of p, q and r, we also have that if p > 1 then

(9)

p−1∑

i=1

ai +

q∑

i=1

as+i +
r∑

i=1

as+s′+i

6 (p+ q − 1)t+ (p− 1)t′ +

t∑

j=1

min{r, bj − s− s′}

+

t+t′∑

j=t+1

min{q + r, bj − s}+

n∑

j=t+t′+1

min{p+ q + r − 1, bj};

if q > 1 then

(10)

p∑

i=1

ai +

q−1∑

i=1

as+i +

r∑

i=1

as+s′+i

6 (p+ q − 1)t+ pt′ +
t∑

j=1

min{r, bj − s− s′}

+

t+t′∑

j=t+1

min{q + r − 1, bj − s}+

n∑

j=t+t′+1

min{p+ q + r − 1, bj};

if r > 1 then

(11)

p∑

i=1

ai +

q∑

i=1

as+i +

r−1∑

i=1

as+s′+i

6 (p+ q)t+ pt′ +

t∑

j=1

min{r − 1, bj − s− s′}

+

t+t′∑

j=t+1

min{q + r − 1, bj − s}+

n∑

j=t+t′+1

min{p+ q + r − 1, bj}.

Let α be the number of values of j for which bj > s+ s′ + r and 1 6 j 6 t, let β be

the number of values of j for which bj > s+ q+ r and t+1 6 j 6 t+ t′, and let γ be

the number of values of j for which bj > p+ q + r and t+ t′ + 1 6 j 6 n. From (7)

and (9)–(11) we get that

ap > t+ t′ + γ if p > 1,(12)

as+q > t+ β + γ if q > 1,(13)

as+s′+r > α+ β + γ if r > 1.(14)
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Now from (7), (8) and (12)–(14) we get that

(u − p)(t+ t′ + γ) + (v − q)(t+ β + γ) + (w − r)(α + β + γ)

< (u− p)ap + (v − q)as+q + (w − r)as+s′+r

< (u− p+ v − q)t+ (u− p)t′ +

t∑

j=1

(min{w, bj − s− s′} −min{r, bj − s− s′})

+

t+t′∑

j=t+1

(min{v + w, bj − s} −min{q + r, bj − s})

+

n∑

j=t+t′+1

(min{u+ v + w, bj} −min{p+ q + r, bj})

6 (u− p+ v − q)t+ (u− p)t′ + (w − r)α + (v + w − q − r)β

+ (u + v + w − p− q − r)γ

= (u− p)(t+ t′ + γ) + (v − q)(t+ β + γ) + (w − r)(α + β + γ),

a contradiction. �
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