
Mathematica Bohemica

Ismael Calomino
Note on α-filters in distributive nearlattices

Mathematica Bohemica, Vol. 144 (2019), No. 3, 241–250

Persistent URL: http://dml.cz/dmlcz/147772

Terms of use:
© Institute of Mathematics AS CR, 2019

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/147772
http://dml.cz


144 (2019) MATHEMATICA BOHEMICA No. 3, 241–250

NOTE ON α-FILTERS IN DISTRIBUTIVE NEARLATTICES

Ismael Calomino, Tandil

Received September 7, 2017. Published online September 25, 2018.
Communicated by Radomír Halaš

Abstract. In this short paper we introduce the notion of α-filter in the class of distributive
nearlattices and we prove that the α-filters of a normal distributive nearlattice are strongly
connected with the filters of the distributive nearlattice of the annihilators.
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1. Introduction and preliminaries

A nearlattice is a join-semilattice with greatest element in which every principal

filter is a bounded lattice. These structures are a natural generalization of the

implication algebras studied by Abbott in [1] and the bounded distributive lattices.

The nearlattices form a variety and has been studied by Cornish and Hickman in

[14] and [16], and by Chajda, Halaš, Kühr and Kolařík in [8], [9], [10] and [11]. A

particular class of nearlattices are the distributive nearlattices. In [6] and [7], a full

duality is developed for distributive nearlattices and some applications are given,

and recently in [15], the author proposes a sentential logic associated with the class

of distributive nearlattices.

On the other hand, Cornish in [13] introduced the notion of α-ideal in the class

of distributive lattices and characterizes Stone lattices in terms of α-ideals. These

results were extended to the Hilbert algebras in [4] and [5]. We can study a dual

notion of α-ideal in the class of distributive nearlattices, i.e. the concept of α-filter.

The main objective of this paper is to introduce the notion of α-filter in the variety

of distributive nearlattices. We see that the α-filters of a normal distributive near-
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lattice A are strongly connected with the filters of the distributive nearlattice R(A)

of the annihilators. This result extends those obtained by Cornish.

Let A = 〈A,∨, 1〉 be a join-semilattice with greatest element. A filter is a subset F

of A such that 1 ∈ F , if a 6 b and a ∈ F , then b ∈ F and if a, b ∈ F , then a ∧ b ∈ F

whenever a∧b exists. If X is a nonempty subset of A, the smallest filter containingX

is called the filter generated by X and will be denoted by F (X). A filter G is said

to be finitely generated if G = F (X) for some finite nonempty subset X of A. If

X = {a}, then F ({a}) = [a) = {x ∈ A : a 6 x}, called the principal filter of a. We

denote by Fi(A) the set of all filters of A. A subset I of A is called an ideal if for

every a, b ∈ A, if a 6 b and b ∈ I, then a ∈ I and for all a, b ∈ I, a ∨ b ∈ I. We say

that a nonempty proper ideal P is prime if for every a, b ∈ A, a∧ b ∈ I implies a ∈ I

or b ∈ I whenever a ∧ b exists. We denote by Id(A) and X(A) the set of all ideals

and prime ideals of A, respectively. Finally, we say that a nonempty ideal I of A is

maximal if it is proper and for every J ∈ Id(A), if I ⊆ J , then J = I or J = A. We

denote by Idm(A) the set of all maximal ideals of A. Note that every maximal ideal

is prime.

Definition 1. Let A be a join-semilattice with greatest element. Then A is a

nearlattice if each principal filter is a bounded lattice with respect to the induced

order.

Note that the operation meet is defined only in a corresponding principal filter.

We indicate this fact by indices, i.e. ∧a denotes the meet in [a). Then the operation

meet is not defined everywhere. However, the nearlattices can be regarded as total

algebras through a ternary operation. This fact was first proved by Hickman in [16]

and independently by Chajda and Kolařík in [11]. Araújo and Kinyon in [2] found a

smaller equational base.

Theorem 2 ([2]). Let A be a nearlattice. Let m : A3 → A be a ternary operation

given by m(x, y, z) = (x ∨ z) ∧z (y ∨ z). The following identities are satisfied:

(1) m(x, y, x) = x,

(2) m(m(x, y, z),m(y,m(u, x, z), z), w) = m(w,w,m(y,m(x, u, z), z)),

(3) m(x, x, 1) = 1.

Conversely, let A = 〈A,m, 1〉 be an algebra of type (3, 0) satisfying the identities

(1)–(3). If we define x ∨ y = m(x, x, y), then A is a join-semilattice with greatest

element. Moreover, for each a ∈ A, [a) is a bounded lattice, where for every x, y ∈ [a)

their infimum is x ∧a y = m(x, y, a). Hence, A is a nearlattice.

Definition 3. Let A be a nearlattice. Then A is distributive if each principal

filter is a bounded distributive lattice with respect to the induced order.
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E x am p l e 4 ([1]). An implication algebra can be defined as a join-semilattice

with greatest element such that each principal filter is a Boolean lattice. If A =

〈A,→, 1〉 is an implication algebra, then the join of two elements x and y is given

by x ∨ y = (x → y) → y and for each a ∈ A, [a) = {x ∈ A : a 6 x} is a Boolean

lattice, where for x, y ∈ [a) the meet is given by x ∧a y = (x → (y → a)) → a and

x→ a is the complement of x in [a). Thus, every implication algebra is a distributive

nearlattice.

From the results given in [14], we have the following characterization of the filter

generated by a nonempty subset X in a distributive nearlattice A:

F (X) = {a ∈ A : ∃x1, . . . , xn ∈ [X), ∃x1 ∧ . . . ∧ xn, a = x1 ∧ . . . ∧ xn}.

In [3] it was shown that if A is a distributive nearlattice, then the set of all filters

Fi(A) = 〈Fi(A),⊻,⊼,→, {1}, A〉 is a Heyting algebra, where the least element is {1},

the greatest element is A, G ⊻H = F (G ∪H), G ⊼H = G ∩H and

(⋆) G→ H = {a ∈ A : [a) ∩G ⊆ H}

for all G,H ∈ Fi(A). So, the pseudocomplement of F ∈ Fi(A) is F ∗ = F → {1}.

Theorem 5 ([9]). Let A be a distributive nearlattice. Let I ∈ Id(A) and let

F ∈ Fi(A) such that I ∩ F = ∅. Then there exists P ∈ X(A) such that I ⊆ P and

P ∩ F = ∅.

The following definition given in [3] is an alternative definition of relative annihi-

lator in distributive nearlattices different from that given in [10].

Definition 6. Let A be a join-semilattice with greatest element and a, b ∈ A.

The annihilators of a relative to b is the set

a ◦ b = {x ∈ A : b 6 x ∨ a}.

In particular, the relative annihilator a⊤ = a ◦ 1 = {x ∈ A : x ∨ a = 1} is called the

annihilator of a.

It follows that a nearlattice A is distributive if and only if a ◦ b ∈ Fi(A) for

all a, b ∈ A. Also note that by (⋆), we have that [a)∗ = {x ∈ A : x ∨ a = 1},

i.e. [a)∗ = a⊤, which is the dual notion of annulet given by Cornish in [13]. The

following result will be useful.

Lemma 7 ([3]). Let A be a distributive nearlattice. Let a, b ∈ A and I ∈ Id(A).

(1) I ∩ a⊤ = ∅ if only if there exists U ∈ Idm(A) such that I ⊆ U and a ∈ U .

(2) U ∈ Idm(A) if only if for every a ∈ A, a /∈ U if only if U ∩ a⊤ 6= ∅.
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We are interested in a particular class of distributive nearlattices which generalize

the normal lattices given in [12].

Definition 8. Let A be a distributive nearlattice. Then A is normal if each

prime ideal is contained in a unique maximal ideal.

Theorem 9 ([3]). Let A be a distributive nearlattice. The following conditions

are equivalent:

(1) A is normal,

(2) (a ∨ b)⊤ = a⊤ ⊻ b⊤ for all a, b ∈ A.

2. α-filters

In this section we study the notion of α-filter in the class of distributive near-

lattices. First, we see some characteristics of annihilators. Let A be a distributive

nearlattice, a ∈ A and we consider the set

a⊤⊤ = {y ∈ A : ∀x ∈ a⊤, y ∨ x = 1}.

Lemma 10. Let A be a distributive nearlattice. The following properties are

satisfied for every a, b ∈ A:

(1) [a) ⊆ a⊤⊤.

(2) a⊤⊤⊤ = a⊤.

(3) a 6 b implies a⊤ ⊆ b⊤.

(4) a⊤ ⊆ b⊤ if only if b⊤⊤ ⊆ a⊤⊤.

(5) (a ∧ b)⊤ = a⊤ ∩ b⊤ whenever a ∧ b exists.

(6) (a ∨ b)⊤⊤ = a⊤⊤ ∩ b⊤⊤.

P r o o f. We prove only the assertions (2), (4) and (6).

(2) Let y ∈ a⊤⊤⊤. Thus, for every x ∈ a⊤⊤ we have y ∨ x = 1. In particular,

a ∈ a⊤⊤ and y ∨ a = 1. Therefore y ∈ a⊤. The reciprocal is similar.

(4) Suppose that a⊤ ⊆ b⊤. Let y ∈ b⊤⊤. If x ∈ a⊤, then x ∈ b⊤ and y ∨ x = 1.

So, y ∈ a⊤⊤ and b⊤⊤ ⊆ a⊤⊤. Conversely, suppose that b⊤⊤ ⊆ a⊤⊤ and let x ∈ a⊤.

Since b ∈ b⊤⊤, b ∈ a⊤⊤ and b ∨ x = 1. Therefore x ∈ b⊤ and a⊤ ⊆ b⊤.

(6) Since a, b 6 a ∨ b, we have (a ∨ b)⊤⊤ ⊆ a⊤⊤, b⊤⊤ and (a ∨ b)⊤⊤ ⊆ a⊤⊤ ∩ b⊤⊤.

Let y ∈ a⊤⊤ ∩ b⊤⊤ and suppose that y /∈ (a ∨ b)⊤⊤. Then there is x ∈ (a ∨ b)⊤

such that y ∨ x < 1 and by Theorem 5, there exists P ∈ X(A) such that y ∨ x ∈ P .

So, x, y ∈ P . Since y ∈ a⊤⊤ ∩ b⊤⊤, we have that for every z ∈ a⊤, y ∨ z = 1 and

for every w ∈ b⊤, y ∨ w = 1. On the other hand, as x ∈ (a ∨ b)⊤, it follows that
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a ∨ b ∨ x = 1 and a ∨ x ∈ b⊤. Consequently, y ∨ a ∨ x = 1. We have two cases: if

P ∩ a⊤ 6= ∅, then there is t ∈ a⊤ such that t ∈ P . Thus, y ∨ t = 1 ∈ P , which is a

contradiction. If P ∩ a⊤ = ∅, then by Lemma 7 there exists U ∈ Idm(A) such that

P ⊆ U and a ∈ U . So, x, y, a ∈ U and y ∨ a ∨ x = 1 ∈ U , which is a contradiction.

Therefore, we conclude that (a ∨ b)⊤⊤ = a⊤⊤ ∩ b⊤⊤. �

If A is a distributive nearlattice, then an element a ∈ A is dense if a⊤ = {1}. We

denote by D(A) the set of all dense elements of A. By Lemma 10, it is easy to prove

that D(A) ∈ Id(A) and a⊤⊤ ∈ Fi(A) for all a ∈ A. The following result gives an

equivalence of the implication algebras in terms of annihilators.

Theorem 11. Let A be a distributive nearlattice. The following conditions are

equivalent:

(1) A is an implication algebra,

(2) [a) ⊻ a⊤ = A for all a ∈ A.

P r o o f. (1) ⇒ (2): Suppose that A is an implication algebra. By the results

developed in [1], we know that X(A) = Idm(A). Let a ∈ A. Obviously [a) ⊻ a⊤ ⊆ A.

We prove the other inclusion. Let c ∈ A and suppose that c /∈ [a) ⊻ a⊤. So, by

Theorem 5 there exists P ∈ X(A) such that c ∈ P and P ∩ ([a) ⊻ a⊤) = ∅. Then

a /∈ P and P ∩ a⊤ = ∅. Thus, P is maximal and by Lemma 7 it follows that

P ∩ a⊤ 6= ∅, which is a contradiction. Therefore [a) ⊻ a⊤ = A.

(1) ⇒ (2): Let a ∈ A and b ∈ [a) such that b 6= a and b 6= 1. Let us prove that b

has a complement in [a). We know that a ∈ [b) ⊻ b⊤ = F ([b) ∪ b⊤). If only there is

x ∈ [b) such that a = x, then b 6 x = a and b = a, which is a contradiction. On the

other hand, if only there is x ∈ b⊤ such that a = x, then x ∨ b = a ∨ b = 1. Since

a 6 b, it follows that a∨ b = b and b = 1, which is a contradiction. Thus, there exists

x ∈ [b) and there exists y ∈ b⊤ such that x ∧ y exists and a = x ∧ y. Then

a = a ∧ b = (x ∧ y) ∧ b = (x ∧ b) ∧ y = b ∧ y,

i.e. a = b∧ y. Moreover, y ∈ b⊤ and b∨ y = 1. As y ∈ [a), then y is the complement

of b in [a) and A is an implication algebra. �

Let A be a normal distributive nearlattice and we consider the family

R(A) = {a⊤ : a ∈ A}.

Let m : R(A)3 → R(A) be a map given by m(a⊤, b⊤, c⊤) = (a⊤ ⊻ c⊤) ⊼ (b⊤ ⊻ c⊤).

By Theorems 9 and 2 and Lemma 10, it follows that the structure

R(A) = 〈R(A),m,A〉

is a distributive nearlattice.

245



Corollary 12. Let A be a normal distributive nearlattice. Then the relation θ⊤

on A defined by

(∗) (a, b) ∈ θ⊤ if only if a⊤ = b⊤

is a congruence on A.

Corollary 13. Let A be a normal distributive nearlattice and θ⊤ be the congru-

ence given by (∗). Then R(A) is isomorphic to A/θ⊤.

P r o o f. Let ̺ : A → R(A) be the map defined by ̺(a) = a⊤. By Theorem 9

and Lemma 10 we have that ̺(m(a, b, c)) = m(̺(a), ̺(b), ̺(c)), where the ternary

operation m(a, b, c) is given by Theorem 2. So, ̺ is an homomorphism onto such

that θ⊤ = Ker(̺). It follows by Isomorphism Theorem. �

E x am p l e 14. LetA be the normal distributive nearlattice from Figure 1. Then

R(A) = {1⊤, a⊤, b⊤, c⊤}. On the other hand, the congruence θ⊤ is given by the

partition {1}, {b}, {a, d} and {c, e}. Hence, R(A) and A/θ⊤ are isomorphic.

d e

a
b

c
a
⊤

b
⊤

c
⊤

1 1⊤

A R(A)

Figure 1.

Definition 15. Let A be a distributive nearlattice and F ∈ Fi(A). We say

that F is an α-filter if a⊤⊤ ⊆ F for all a ∈ F .

We denote by Fiα(A) the set of all α-filters of A.

E x am p l e 16. If A is a normal distributive nearlattice, then Ker(θ⊤) is an

α-filter.

E x am p l e 17. If A is a distributive nearlattice, then a⊤ is an α-filter for all

a ∈ A. Let x ∈ a⊤. We prove that x⊤⊤ ⊆ a⊤. If y ∈ x⊤⊤, then x⊤ ⊆ y⊤ and

since a⊤ is a filter, we have x ∨ y ∈ a⊤ and x ∨ y ∨ a = 1, i.e. y ∨ a ∈ x⊤. So,

y ∨ a ∈ y⊤ and y ∨ a = 1. It follows that y ∈ a⊤ and a⊤ is an α-filter.
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R em a r k 18. Not every filter is an α-filter. In Example 14, we consider the

filter F = {1, a, b}. Thus, a⊤⊤ = {1, a, d} and a⊤⊤ * F .

Theorem 19. Let A be a distributive nearlattice and F ∈ Fi(A). The following

conditions are equivalent:

(1) F is an α-filter.

(2) If a⊤ = b⊤ and a ∈ F , then b ∈ F for all a, b ∈ A.

(3) F =
⋃
{a⊤⊤ : a ∈ F}.

P r o o f. (1)⇒ (2): Let a, b ∈ A such that a⊤ = b⊤ and a ∈ F . Then a⊤⊤ = b⊤⊤

and since F is an α-filter, a⊤⊤ ⊆ F . Then b ∈ b⊤⊤ and b⊤⊤ ⊆ F , i.e. b ∈ F .

(2) ⇒ (3): Since a ∈ a⊤⊤ for all a ∈ A, we have F ⊆
⋃
{a⊤⊤ : a ∈ F}. We see

the other inclusion. If x ∈
⋃
{a⊤⊤ : a ∈ F}, then there is b ∈ F such that x ∈ b⊤⊤.

So, b⊤ ⊆ x⊤ and x⊤⊤ ⊆ b⊤⊤. Then by Lemma 10, x⊤⊤ = x⊤⊤ ∩ b⊤⊤ = (x ∨ b)⊤⊤

and x⊤ = (x ∨ b)⊤. As x ∨ b ∈ F , by hypothesis we have x ∈ F .

(3)⇒ (1): Let b ∈ F . If x ∈ b⊤⊤, then x ∈
⋃
{a⊤⊤ : a ∈ F} and x ∈ F . Therefore

b⊤⊤ ⊆ F and F is an α-filter. �

Theorem 20. Let A be a normal distributive nearlattice and F ∈ Fi(A). Then

α(F ) = {x ∈ A : ∃ a ∈ F, a⊤ ⊆ x⊤}

is the smallest α-filter containing F .

P r o o f. It is clear that F ⊆ α(F ). Let x, y ∈ A such that x 6 y and x ∈ α(F ).

Then by Lemma 10, x⊤ ⊆ y⊤ and there exists a ∈ F such that a⊤ ⊆ x⊤. So,

a⊤ ⊆ y⊤ and y ∈ α(F ). Let x, y ∈ α(F ) and suppose that x ∧ y exists. Then there

exist a, b ∈ F such that a⊤ ⊆ x⊤ and b⊤ ⊆ y⊤. Since F is a filter, m(a, b, x∧y) ∈ F ,

where the ternary operationm(a, b, x∧y) is given by Theorem 2. On the other hand,

a⊤ ⊻ (x ∧ y)⊤ ⊆ x⊤ and b⊤ ⊻ (x ∧ y)⊤ ⊆ y⊤. As A is normal,

m(a, b, x ∧ y)⊤ = m(a⊤, b⊤, (x ∧ y)⊤) ⊆ x⊤ ⊼ y⊤ = (x ∧ y)⊤.

Thus, m(a, b, x ∧ y)⊤ ⊆ (x ∧ y)⊤ and x ∧ y ∈ α(F ). Then α(F ) is a filter. Let

x ∈ α(F ). We see that x⊤⊤ ⊆ α(F ). If y ∈ x⊤⊤, then x⊤ ⊆ y⊤. Since x ∈ α(F ),

there exists a ∈ F such that a⊤ ⊆ x⊤. So, a⊤ ⊆ y⊤ and y ∈ α(F ). Then x⊤⊤ ⊆ α(F )

and α(F ) is an α-filter. Let H ∈ Fiα(A) such that F ⊆ H . If x ∈ α(F ), then there

exists a ∈ F such that a⊤ ⊆ x⊤, i.e. x⊤⊤ ⊆ a⊤⊤. As a ∈ H and H is an α-filter, we

have a⊤⊤ ⊆ H . Consequently, x ∈ H and α(F ) ⊆ H . �
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R em a r k 21. Let A be a normal distributive nearlattice.

(1) Note that the map α : Fi(A) → Fi(A) of Theorem 20 is a closure operator and

the α-filters are closed elements with respect to α.

(2) A proper α-filter contains non-dense elements. Indeed, if F is a proper α-filter

and x ∈ F ∩ D(A), then F = α(F ) and x⊤ = {1}. Thus, there exists a ∈ F

such that a⊤ ⊆ x⊤. So, a⊤ = {1} and a⊤⊤ = A. On the other hand, since F is

an α-filter, a⊤⊤ ⊆ F , i.e. A = F which is a contradiction.

Now, we define the operations of infimum ⊓, supremum ⊔, and implication ⇒ in

Fiα(A) as:

F ⊓G = F ∩G, F ⊔G = α(F ⊻G), F ⇒ G = α(F → G)

for each pair F,G ∈ Fiα(A). By Theorem 20, we have that F ⊓G, F ⊔G, F ⇒ G ∈

Fiα(A) for all F,G ∈ Fiα(A). Consider the structure

Fiα(A) = 〈Fiα(A),⊔,⊓,⇒, {1}, A〉.

Theorem 22. Let A be a normal distributive nearlattice. Then Fiα(A) is a

Heyting algebra.

P r o o f. It is easy to verify that 〈Fiα(A),⊔,⊓, {1}, A〉 is a bounded lattice. Let

F,H,K ∈ Fiα(A). Suppose that F ⊓H ⊆ K. If x ∈ F , then [x) ∩H ⊆ F ⊓H ⊆ K.

Thus, [x) ∩H ⊆ K and x ∈ H → K. Hence, x ∈ H ⇒ K and F ⊆ H ⇒ K.

Reciprocally, we assume that F ⊆ H ⇒ K. Let x ∈ F ⊓H . So, x ∈ F ⊆ H ⇒ K

and there exists a ∈ H → K such that a⊤ ⊆ x⊤. It follows that x∨ a ∈ [a)∩H ⊆ K

and x⊤ = x⊤ ⊻ a⊤ = (x ∨ a)⊤, i.e. x⊤ = (x ∨ a)⊤ and x ∨ a ∈ K. By Theorem 19,

we have x ∈ K. Therefore, F ⊓H ⊆ K and Fiα(A) is a Heyting algebra. �

Let A be a nearlattice. Following the results developed in [15], we introduce

the next notation. For each natural number n we define inductively for every

a1, . . . , an, b ∈ A, the element mn−1(a1, . . . , an, b) as follows:

(1) m0(a1, b) = m(a1, a1, b),

(2) for n > 1, mn−1(a1, . . . , an, b) = m(mn−2(a1, . . . , an−1, b), an, b).

Then mn−1(a1, . . . , an, b) = (a1 ∨ b) ∧b . . . ∧b (an ∨ b) and in particular, m0(a1, b) =

a1 ∨ b and m1(a1, a2, b) = m(a1, a2, b), where the operation m(a1, a2, b) is given by

Theorem 2. We are able to formulate our main result.

Theorem 23. Let A be a normal distributive nearlattice. Then Fiα(A) is iso-

morphic to the Heyting algebra Fi(R(A)).
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P r o o f. We consider the map ψ : Fiα(A) → Fi(R(A)) defined by

ψ(F ) = {a⊤ : a ∈ F}.

We prove that ψ is well-defined. Let F ∈ Fiα(A). It is clear that 1
⊤ ∈ ψ(F ). Let

a⊤, b⊤ ∈ R(A) such that a⊤ ⊆ b⊤ and a⊤ ∈ ψ(F ). Then b⊤⊤ ⊆ a⊤⊤ and a ∈ F .

Thus, b ∈ a⊤⊤ and as F is an α-filter, a⊤⊤ ⊆ F . So, b ∈ F and b⊤ ∈ ψ(F ). Let

a⊤, b⊤ ∈ ψ(F ) and suppose that a⊤ ⊼ b⊤ exists in R(A), i.e. there is c ∈ A such that

a⊤ ⊼ b⊤ = c⊤. Then a, b ∈ F and as F is a filter, m(a, b, c) ∈ F . It follows that

m(a, b, c)⊤ = m(a⊤, b⊤, c⊤) = (a⊤ ⊼ b⊤) ⊻ c⊤ = c⊤

and c⊤ ∈ ψ(F ). Thus, a⊤ ⊼ b⊤ ∈ ψ(F ) and ψ(F ) ∈ Fi(R(A)).

Let F,H ∈ Fiα(A). It is immediate that ψ(F ⊓H) = ψ(F ) ⊼ ψ(H). We see that

ψ(F ⊔ H) = ψ(F ) ⊻ ψ(H). Let x⊤ ∈ ψ(F ⊔ H). Then x ∈ α(F ⊻ H) and there

exists a ∈ F ⊻H such that a⊤ ⊆ x⊤. So, there exist x1, . . . , xn ∈ F ∪ H such that

x1 ∧ . . . ∧ xn exists and a = x1 ∧ . . . ∧ xn. Then x⊤1 , . . . , x
⊤
n ∈ ψ(F ) ∪ ψ(H). On the

other hand, a⊤ = (x1 ∧ . . . ∧ xn)⊤ = x⊤
1
⊼ . . . ⊼ x⊤

n
and a⊤ ∈ ψ(F ) ⊻ ψ(H). Since

ψ(F ) ⊻ ψ(H) is a filter, we have x⊤ ∈ ψ(F ) ⊻ ψ(H) and ψ(F ⊔H) ⊆ ψ(F ) ⊻ ψ(H).

Conversely, if x⊤ ∈ ψ(F ) ⊻ ψ(H), then there exist x⊤
1
, . . . , x⊤

n
∈ ψ(F ) ∪ ψ(H) such

that x⊤
1
⊼ . . . ⊼ x⊤n exists and x

⊤ = x⊤
1
⊼ . . . ⊼ x⊤n . It follows that x1, . . . , xn ∈ F ∪H

and mn−1(x1, . . . , xn, x) ∈ F ⊻H . So,

mn−1(x1, . . . , xn, x)
⊤ = mn−1(x⊤

1
, . . . , x⊤

n
, x⊤) = (x⊤

1
⊼ . . . ⊼ x⊤

n
) ⊻ x⊤ = x⊤

and mn−1(x1, . . . , xn, x)
⊤ ⊆ x⊤. Thus, x ∈ α(F ⊻H) = F ⊔H , i.e. x⊤ ∈ ψ(F ⊔H)

and ψ(F ) ⊻ ψ(H) ⊆ ψ(F ⊔H). Therefore, ψ(F ⊔H) = ψ(F ) ⊻ ψ(H).

Now, we prove that ψ(F ⇒ H) = ψ(F ) → ψ(H). Let x⊤ ∈ ψ(F ⇒ H). Then

x ∈ F ⇒ H = α(F → H) and there exists a ∈ F → H such that a⊤ ⊆ x⊤.

So, [a) ∩ F ⊆ H . We see that x⊤ ∈ ψ(F ) → ψ(H), i.e. [x⊤) ∩ ψ(F ) ⊆ ψ(H). If

y⊤ ∈ [x⊤) ∩ ψ(F ), then x⊤ ⊆ y⊤ and y ∈ F . Thus, a ∨ y ∈ [a) ∩ F and a ∨ y ∈ H .

On the other hand, since a⊤ ⊆ y⊤, we have y⊤ = (a ∨ y)⊤. As a ∨ y ∈ H and H is

an α-filter, by Theorem 19, y ∈ H . Then y⊤ ∈ ψ(H) and x⊤ ∈ ψ(F ) → ψ(H). So,

ψ(F ⇒ H) ⊆ ψ(F ) → ψ(H). We prove the other inclusion. Let x⊤ ∈ ψ(F ) → ψ(H),

i.e. [x⊤) ∩ ψ(F ) ⊆ ψ(H). Then x⊤ ∈ ψ(F ⇒ H) if and only if x ∈ α(F → H) if

and only if there exists a ∈ F → H such that a⊤ ⊆ x⊤. We see that x ∈ F → H .

If y ∈ [x) ∩ F , then by Lemma 10, x⊤ ⊆ y⊤ and y ∈ F , i.e. y⊤ ∈ [x⊤) ∩ ψ(F ).

Since [x⊤) ∩ ψ(F ) ⊆ ψ(H), we have y⊤ ∈ ψ(H) and y ∈ H . Then [x) ∩ F ⊆ H and

x ∈ F → H . Thus, x⊤ ∈ ψ(F ⇒ H) and ψ(F ⇒ H) = ψ(F ) → ψ(H).

Let π : Fi(R(A)) → Fiα(A) be the map given by π(G) = {a : a⊤ ∈ G}. By

Lemma 10, it follows that π(G) ∈ Fiα(A). So, ψ and π are the inverses of each other

and ψ is 1-1 and onto. Therefore ψ is an isomorphism. �
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