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Abstract. We investigate the structures of Hopf ∗-algebra on the Radford algebras over C.
All the ∗-structures on H are explicitly given. Moreover, these Hopf ∗-algebra structures
are classified up to equivalence.
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1. Introduction

Woronowicz studied compact matrix pseudogroup in [14], which is a generalization

of compact matrix group. Using the language of C∗-algebra, Woronowicz described

compact matrix pseudogroups as C∗-algebras endowed with some comultiplications.

This induces the concept of Hopf ∗-algebras. In [14], [15], [16], Woronowicz exhibited

Hopf ∗-algebra structures on quantum groups in the framework of C∗-algebras. It

was shown that GLq(2), SLq(2) and Uq(sl(2)) are Hopf ∗-algebras, see [2], [5]. Van

Deale [13] studied the Harr measure on a compact quantum group. Podleś [8] studied

coquasitriangular Hopf ∗-algebras. Tucker-Simmons [12] studied the ∗-structure of

module algebras over a Hopf ∗-algebra. Recently, we investigated the Hopf ∗-algebra

structures on H(1, q) over C and classified these ∗-structures up to equivalence [6].

Radford [9] constructed for every integer n > 1 a finite dimensional unimodular

Hopf algebra with antipode of order 2n and proved that for every even integer there

is a finite dimensional Hopf algebra H . For more details, the reader is directed

to [3], [9], [10].

This work was supported by the National Natural Science Foundation of China (Grant
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In this paper, we study the structures of Hopf ∗-algebra on the Radford algebra H

over the complex number field C. This paper is organized as follow. In Section 2, we

recall some basic notions about the Hopf ∗-algebra and the Radford algebra H . In

Section 3, we first describe all structures of Hopf ∗-algebra on Radford algebra. It

is shown that when n > 2, a Hopf ∗-algebra structure on H is uniquely determined

by a pair (α, β) of elements in C with |α| = |β| = 1, and that when n = 2, a Hopf

∗-algebra structure on H is uniquely determined by a 2 × 2-matrix A over C with

ĀA = I2. Then we classify the Hopf ∗-algebra structures up to equivalence. It is

shown that any two ∗-structures on H are equivalent when n > 2. When n = 2, the

two ∗-structures determined by two matrices A and B, respectively, are equivalent

if and only if there exists an invertible 2× 2-matrix Λ over C such that AΛ̄ = ΛB.

2. Preliminaries

Throughout, let Z, N, R and C denote all integers, all nonnegative integers, the

field of real numbers, and the field of complex numbers, respectively. Let i ∈ C be the

imaginary unit. For any λ ∈ C let λ̄ denote the conjugate complex number of λ, and

let |λ| denote the norm of λ. For a Hopf algebra H we use △, ε and S, respectively,

to denote the comultiplication, the counit, and the antipode of H as usual. For the

theory of quantum groups and Hopf algebras we refer to [2], [4], [7], [10], [11]. Let

G(H) denote the set of group-like elements in a Hopf algebra H , which is a group.

Let V and W be vector spaces over C. A mapping ψ : V → W is said to be

conjugate-linear (or antilinear) if

ψ(λ1v1 + λ2v2) = λ1ψ(v1) + λ2ψ(v2) ∀ v1, v2 ∈ V, ∀λ1, λ2 ∈ C.

Let A and B be C-algebras. A conjugate-linear map ψ : A→ B (or A) is said to be

a conjugate-linear algebra map (or a conjugate-linear algebra endomorphism) if

ψ(aa′) = ψ(a)ψ(a′), ψ(1) = 1 ∀ a, a′ ∈ A,

and ψ is said to be a conjugate-linear antialgebra map (or a conjugate-linear antial-

gebra endomorphism) if

ψ(aa′) = ψ(a′)ψ(a), ψ(1) = 1 ∀ a, a′ ∈ A.

Let C and D be two coalgebras over C. A conjugate-linear map ψ : C → D

(or C) is said to be a conjugate-linear coalgebra map (or a conjugate-linear coalgebra

endomorphism) if

∑

ψ(c)1 ⊗ ψ(c)2 =
∑

ψ(c1)⊗ ψ(c2), ε(ψ(c)) = ε(c) ∀ c ∈ C,
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and ψ is said to be a conjugate-linear anticoalgebra map (or a conjugate-linear an-

ticoalgebra endomorphism) if

∑

ψ(c)1 ⊗ ψ(c)2 =
∑

ψ(c2)⊗ ψ(c1), ε(ψ(c)) = ε(c) ∀ c ∈ C.

Definition 2.1. Let H be a Hopf algebra over C. A ∗-structure on H is

a conjugate-linear map ∗ : H → H such that the following conditions are satisfied:

(h∗)∗ = h, (hl)∗ = l∗h∗,
∑

(h∗)1 ⊗ (h∗)2 =
∑

(h1)
∗ ⊗ (h2)

∗, S(S(h∗)∗) = h,

where h, l ∈ H . If H is equipped with a ∗-structure, then we call H a Hopf ∗-algebra.

Two ∗-structures ∗′ and ∗′′ on H are said to be equivalent if there exists a Hopf

algebra automorphism ψ of H such that ψ(h∗
′

) = ψ(h)∗
′′

for all h ∈ H .

Let H be a Hopf ∗-algebra. Then it is not difficult to check that

ε(h∗) = ε(h) ∀h∈ H.

Hence, the map ∗ is an antilinear coalgebra endomorphism of H and C = C1H is

a subalgebra of H . In this case, λ∗ = λ̄ for any λ ∈ C ⊆ H .

Fix a positive integer n > 1 and let ω ∈ C be a root of unity of order n. The

Radford algebra H over C is generated, as a C-algebra, by g, x and y subject to the

relations:

gn = 1, xn = yn = 0, xg = ωgx, gy = ωyg, xy = ωyx.

Then H is a Hopf algebra with the coalgebra structure and the antipode given by

△(g) = g ⊗ g, ε(g) = 1, S(g) = gn−1,

△(x) = x⊗ g + 1⊗ x, ε(x) = 0, S(x) = −xgn−1,

△(y) = y ⊗ g + 1⊗ y, ε(y) = 0, S(y) = −ygn−1.

Note that H has a canonical basis {glxrys : 0 6 l, r, s < n} over C. For the details,

the reader is directed to [3], [9], [10].
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3. The structres of Hopf ∗-algebras on H

Throughout this section, let H be the Radford algebra over C described in the

last section. In this section, we study the ∗-structures on the Hopf algebra H . Let

Z(H) denote the center of H . Note that H is generated, as an algebra over R, by

g, x, y, and i subject to the relations given in the last section together with i2 = −1

and i ∈ Z(H). In the following, let Hop denote the opposite algebra of H . For any

h, l ∈ Hop, let h · l denote the product of h and l in Hop, i.e. h · l = lh.

Lemma 3.1. Let α, β ∈ C with |α| = |β| = 1. Then H is a Hopf ∗-algebra with

the ∗-structure given by

g∗ = g, x∗ = αx, y∗ = βy.

P r o o f. We first prove that the relations given in the lemma together with

i∗ = −i give rise to a real antialgebra endomorphism of H , i.e. a real algebra map

from H to Hop. Since |ω|=1, we have ω∗ = ω = ω−1. Hence in Hop we have (g∗)n =

gn = 1, (x∗)n = (αx)n = 0, x∗ · g∗ = αx · g = αgx = αω−1xg = αω−1g ·x = ω∗g∗ ·x∗

and x∗ · y∗ = αβx · y = αβyx = αβω−1xy = αβω−1y · x = ω∗y∗ · x∗. Similarly, one

can check that (y∗)n = 0 and g∗ · y∗ = ω∗y∗ · g∗. We also have i∗ = −i ∈ Z(Hop)

and (i∗)2 = (−i)2 = −1. This shows that the relations given in the lemma together

with i∗ = −i determine a real algebra map ∗ : H → Hop. Then it follows that ∗ is

a conjugate-linear antialgebra endomorphism of H . Hence, the composition ∗ ◦ ∗ is

a complex algebra endomorphism of H . It is not difficult to check that (h∗)∗ = h

for all h ∈ {g, x, y}, and so (h∗)∗ = h for all h ∈ H . Thus, ∗ is an involution of H .

Note that both △◦ ∗ and (∗ ⊗ ∗) ◦ △ are conjugate-linear antialgebra maps from H

to H ⊗H . It is easy check that △(h∗) =
∑

(h1)
∗ ⊗ (h2)

∗ for any h ∈ {g, x, y}. It

follows that △(h∗) =
∑

(h1)
∗ ⊗ (h2)

∗ for all h ∈ H . Similarly, we have ε(h∗) = ε(h)

for all h ∈ H . Finally, since S is a complex antialgebra endomorphism of H and ∗ is

a conjugate-linear antialgebra endomorphism of H , the map H → H , h 7→ S(S(h∗)∗)

is a complex algebra endomorphism of H . Now we have

S(S(g∗)∗) = S(S(g)∗)) = S((g−1)∗) = S((g∗)−1) = S(g−1) = g,

S(S(x∗)∗) = S(S(αx)∗) = S((−αxgn−1)∗) = S(−ᾱ(gn−1)∗x∗)

= S(−ᾱαgn−1x) = −S(x)S(gn−1) = xgn−1g = x,

and similarly S(S(y∗)∗) = y. It follows that S(S(h∗)∗) = h for all h ∈ H . �

Let M2(C) be the matrix algebra of all 2× 2-matrices over C. For a matrix

A =

(

α11 α12

α21 α22

)

∈M2(C),
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let

Ā =

(

α11 α12

α21 α22

)

∈M2(C).

Lemma 3.2. Assume that n = 2 and let A =

(

α11 α12

α21 α22

)

∈ M2(C) with

ĀA = I2, the 2× 2 identity matrix. Then H is a Hopf ∗-algebra with the ∗-structure

given by

g∗ = g, x∗ = α11x+ α12y, y∗ = α21x+ α22y.

P r o o f. Assume that n = 2. Then ω = −1. We first prove that the relations

given in the lemma together with i∗ = −i give rise to a real antialgebra endomorphism

ofH , i.e. a real algebra map fromH to Hop. In Hop we have (g∗)2 = g2 = 1, (x∗)2 =

(α11x+α12y)
2 = α2

11x
2+α11α12xy+α12α11yx+α

2
12y

2 = 0 and x∗ ·g∗ = (α11x+α12y)·

g = α11gx+α12gy = −α11xg−α12yg = −g · (α11x+α12y) = −g∗ ·x∗. We also have

x∗ ·y∗ = (α21x+α22y)(α11x+α12y) = α21α11x
2+α21α12xy+α22α11yx+α22α12y

2 =

(α21α12−α22α11)xy and y
∗·x∗ = (α11x+α12y)(α21x+α22y) = α11α21x

2+α11α22xy+

α12α21yx+ α12α22y
2 = (α11α22 − α12α21)xy, which implies that x

∗ · y∗ = −y∗ · x∗.

Similarly, one can check that (y∗)2 = 0 and g∗ · y∗ = −y∗ · g∗. We also have

i∗ = −i ∈ Z(Hop) and (i∗)2 = (−i)2 = −1. This shows that the relations given in

the lemma together with i∗ = −i determine a real algebra map ∗ : H → Hop. Then

it follows that ∗ is a conjugate-linear antialgebra endomorphism of H . Hence, the

composition ∗◦∗ is a complex algebra endomorphism of H . Clearly, (g∗)∗ = g. Since

ĀA = I2, αi1α1j + αi2α2j = δij for 1 6 i, j 6 2. Hence we have

(x∗)∗ = (α11x+ α12y)
∗ = α11x

∗ + α12y
∗

= α11(α11x+ α12y) + α12(α21x+ α22y)

= (α11α11 + α12α21)x + (α11α12 + α12α22)y = x.

Similarly, we also have (y∗)∗ = y. It follows that (h∗)∗ = h for all h ∈ H . Thus,

∗ is an involution of H . Note that both △ ◦ ∗ and (∗ ⊗ ∗) ◦ △ are conjugate-linear

antialgebra maps from H to H⊗H . It is easy check that△(h∗) =
∑

(h1)
∗⊗(h2)

∗ for

any h ∈ {g, x, y}. It follows that △(h∗) =
∑

(h1)
∗ ⊗ (h2)

∗ for all h ∈ H . Similarly,

we have ε(h∗) = ε(h) for all h ∈ H . Finally, since S is a complex antialgebra

endomorphism of H and ∗ is a conjugate-linear antialgebra endomorphism of H , the

map H → H , h 7→ S(S(h∗)∗) is a complex algebra endomorphism of H . Now we

have

S(S(g∗)∗) = S(S(g)∗)) = S(g∗) = S(g) = g,

S(S(x∗)∗) = S(S(α11x+ α12y)
∗) = S((−α11xg − α12yg)

∗)

= S((α11gx+ α12gy)
∗) = S(α11x

∗g∗ + α12y
∗g∗)
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= S(α11(α11x+ α12y)g + α12(α21x+ α22y)g)

= S(g)S((α11α11 + α12α21)x+ (α11α12 + α12α22)y)

= S(g)S(x) = g(−xg) = x,

and similarly S(S(y∗)∗) = y. It follows that S(S(h∗)∗) = h for all h ∈ H . �

The next proposition follows similarly to [1], Lemma 2.7.

Proposition 3.3. For any r, s ∈ N and l ∈ Z,

△(yrxsgl) =

r
∑

i=0

s
∑

j=0

ω−(r−i)j

(

r

i

)

ω

(

s

j

)

ω−1

yr−ixs−jgl ⊗ yixjgl+s−j+r−i.

P r o o f. Since

(x⊗ g)(1⊗ x) = ω−1(1⊗ x)(x ⊗ g), (y ⊗ g)(1⊗ y) = ω(1⊗ y)(y ⊗ g),

it follows from [2], Proposition IV.2.2 that

△(x)s = (1⊗ x+ x⊗ g)s =

s
∑

j=0

(

s

j

)

ω−1

xs−j ⊗ xjgs−j,

△(y)r = (1⊗ y + y ⊗ g)r =

r
∑

i=0

(

r

i

)

ω

yr−i ⊗ yigr−i.

Now, since △ is an algebra map, we have

△(yrxsgl) = △(y)r△(x)s△(g)l

= (1⊗ y + y ⊗ g)r(1⊗ x+ x⊗ g)s(g ⊗ g)l

=

r
∑

i=0

s
∑

j=0

(

r

i

)

ω

(

s

j

)

ω−1

yr−ixs−jgl ⊗ yigr−ixjgl+s−j

=

r
∑

i=0

s
∑

j=0

ω−(r−i)j

(

r

i

)

ω

(

s

j

)

ω−1

yr−ixs−jgl ⊗ yixjgl+s−j+r−i.

�

Note that {yrxsgl : 0 6 r, s, l < n} is a canonical basis of H over C. Hence,

{yrxsgl ⊗ yr1xs1gl1 : 0 6 r, r1, s, s1, l, l1 < n}
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is a basis of H ⊗H over C. For an element

h =
∑

06r,s,l<n

λr,s,ly
rxsgl

in H , if λr,s,l 6= 0, then we say that yrxsgl is a term of h. Moreover, r or s is called

the degree of y or x, respectively, in the term yrxsgl. Similarly, for an element

h =
∑

06r,s,l,r1,s1,l1<n

λr,s,l,r1,s1,l1y
rxsgl ⊗ yr1xs1gl1

in H ⊗ H , if λr,s,l,r1,s1,l1 6= 0, then we say that yrxsgl ⊗ yr1xs1gl1 is a term of h.

Moreover, r + r1 or s+ s1 is called the total degree of y or x, respectively, in the

term

yrxsgl ⊗ yr1xs1gl1 .

Lemma 3.4. G(H) = {gl : 0 6 l < n}.

P r o o f. Obviously, gl ∈ G(H) for all 0 6 l < n. Conversely, let

h =
∑

06r,s,l<n

λr,s,ly
rxsgl ∈ G(H),

where λr,s,l ∈ C. Assume that r1 is the highest degree of y in the terms of h, that

is, there is a nonzero coefficient λr1,s1,l1 6= 0 in the above expression of h such that

λr,s,l 6= 0 implies r 6 r1. From Proposition 3.3 one knows that the total degree of y

in each term of the expression of △(yrxsgl) is r. Then from

△(h) =
∑

r,s,l

λr,s,l△(yrxsgl)

one gets that the highest total degree of y in the terms of △(h) is r1. However,

yr1xs1gl1 ⊗ yr1xs1gl1

is a term of h⊗ h with the nonzero coefficient λ2r1,s1,l1 6= 0. It follows from △(h) =

h ⊗ h that 0 6 2r1 6 r1, which implies r1 = 0. Thus, if r > 0, then λr,s,l = 0.

Similarly, one can show that λr,s,l = 0 for any s > 0. Therefore h ∈ span{gl : 0 6

l < n}. Since G(H) is linearly independent over C and {gl : 0 6 l < n} ⊆ G(H),

we have h = gl for some 0 6 l < n. Hence G(H) ⊆ {gl : 0 6 l < n}, and so

G(H) = {gl : 0 6 l < n}. �

Lemma 3.5. Let h ∈ H . If △(h) = h⊗ g + 1⊗ h, then h = λ1x+λ2y+λ3(1−g)

for some λ1, λ2, λ3 ∈ C.
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P r o o f. Let h =
∑

06r,s,l<n

λr,s,ly
rxsgl with λr,s,l ∈ C such that

△(h) = h⊗ g + 1⊗ h.

Then ε(h) = 0. For any 0 6 r, s < n let

hr,s =

n−1
∑

l=0

λr,s,ly
rxsgl.

Then by Proposition 3.3 and the proof of Lemma 3.4, one knows that

△(hr,s) = hr,s ⊗ g + 1⊗ hr,s ∀ r, s.

Hence, one may assume that

h = yrxs
n−1
∑

l=0

λlg
l 6= 0

for some λl ∈ C, where r and s are fixed integers with 0 6 r, s < n. Now, by

Proposition 3.3 we have

(3.1) △(h) =

n−1
∑

l=0

r
∑

i=0

s
∑

j=0

λlω
−(r−i)j

(

r

i

)

ω

(

s

j

)

ω−1

yr−ixs−jgl ⊗ yixjgl+s−j+r−i

and

(3.2) △(h) = h⊗ g + 1⊗ h =
n−1
∑

l=0

λl(y
rxsgl ⊗ g + 1⊗ yrxsgl).

By the paragraph before Lemma 3.4, H ⊗H has a canonical basis over C

{yrxsgl ⊗ yr1xs1gl1 : 0 6 r, r1, s, s1, l, l1 < n}.

Now by comparing the coefficients of the basis element gl ⊗ yrxsgl in the two ex-

pressions of △(h) given above, one gets that λl = 0 if l > 1, and that λ1 = 0 if

(r, s) 6= (0, 0). Hence, h = λ0y
rxs when r+ s 6= 0, and h = λ0 +λ1g when r = s = 0.

If h = λ0 + λ1g, then λ0 +λ1 = 0 by ε(h) = 0, and so h = λ0(1− g). Now assume

h = λ0y
rxs with r + s 6= 0. Then (3.1) and (3.2) becomes

(3.3) △(h) =

r
∑

i=0

s
∑

j=0

λ0ω
−(r−i)j

(

r

i

)

ω

(

s

j

)

ω−1

yr−ixs−j ⊗ yixjgs−j+r−i
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and

(3.4) △(h) = h⊗ g + 1⊗ h = λ0(y
rxs ⊗ g + 1⊗ yrxs),

respectively. If both r > 0 and s > 0, then by comparing the coefficients of the basis

element yr ⊗ xsgr in the two expressions of △(h) given above, one gets that λ0 = 0,

and hence h = 0, a contradiction. Hence either r > 0 and s = 0, or r = 0 and s > 0.

If r > 0 and s = 0, then h = λ0y
r, and (3.3) and (3.4) becomes

(3.5) △(h) =
r

∑

i=0

λ0

(

r

i

)

ω

yr−i ⊗ yigr−i

and

(3.6) △(h) = h⊗ g + 1⊗ h = λ0(y
r ⊗ g + 1⊗ yr),

respectively. If r > 1, then by comparing the coefficients of the basis element

yr−1 ⊗ ygr−1 in the two expressions of △(h) given above, one gets that λ0 = 0,

and hence h = 0, a contradiction. Hence r = 1 and so h = λ0y. Similarly, one can

check that if r = 0 and s > 0, then h = λ0x. This completes the proof. �

Lemma 3.6. Let h ∈ H with △(h) = h⊗ gw + 1 ⊗ h for some 1 < w < n. Then

h = λ(1− gw) for some λ ∈ C.

P r o o f. It is similar to the proof of Lemma 3.5. We only need to consider the

case

h = yrxs
n−1
∑

l=0

λlg
l 6= 0

for some λl ∈ C, where r and s are fixed integers with 0 6 r, s < n. Then we have

(3.7) △(h) = h⊗ gw + 1⊗ h =

n−1
∑

l=1

λl(y
rxsgl ⊗ gw + 1⊗ yrxsgl)

and

(3.8) △(h) =

n−1
∑

l=0

r
∑

i=0

s
∑

j=0

λlω
−(r−i)j

(

r

i

)

ω

(

s

j

)

ω−1

yr−ixs−jgl ⊗ yixjgl+s−j+r−i.

If r 6= 0 and s 6= 0, then by comparing the coefficients of the basis element

yrgl ⊗ xsgl+r in the two expressions of △(h) given above, one gets that λl = 0 for

all 0 6 l < n, and hence h = 0, a contradiction. So r = 0 or s = 0. Assume that
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r 6= 0. Then s = 0. In this case, by comparing the coefficients of the basis element

gl ⊗ yrgl in the two expressions of △(h) given above, one gets that λl = 0 if l > 0.

Hence h = λ0y
r and (3.7) and (3.8) become

(3.9) △(h) = h⊗ gw + 1⊗ h = λ0(y
r ⊗ gw + 1⊗ yr)

and

(3.10) △(h) =

r
∑

i=0

λ0

(

r

i

)

ω

yr−i ⊗ yigr−i,

respectively. Then by comparing the coefficients of the basis element yr ⊗ gr in the

both expressions of △(h) given in (3.9) and (3.10) one gets that r = w > 1 since h =

λ0y
r 6= 0. Now by comparing the coefficients of the basis element yr−1⊗ygr−1 in both

expressions of △(h) given in (3.9) and (3.10), one finds that λ0 = 0, a contradiction.

This shows that r = 0. Similarly, one can show that s = 0. Hence h =
∑

l

λlg
l 6= 0.

Then it is easy to see that h = λ(1 − gw) for some λ ∈ C. �

Theorem 3.7. (1) If n > 2, then Lemma 3.1 gives all Hopf ∗-algebra structures

on H .

(2) If n = 2, then Lemma 3.2 gives all Hopf ∗-algebra structures on H .

P r o o f. Assume that H has a Hopf ∗-algebra structure ∗. Then

△(g∗) = (∗ ⊗ ∗)△(g) = g∗ ⊗ g∗ and ε(g∗) = ε(g) = 1.

Hence g∗ ∈ G(H). By Lemma 3.4, g∗ = gw for some 0 6 w < n. Since ∗ is an

involution and 1∗ = 1, g∗ 6= 1. Hence w 6= 0, and so 0 < w < n. We also have

△(x∗) = (∗ ⊗ ∗)△(x) = x∗ ⊗ g∗ + 1∗ ⊗ x∗ = x∗ ⊗ gw + 1⊗ x∗.

If w 6= 1, then it follows from Lemma 3.6 that x∗ = λ(1 − gw) for some λ ∈ C.

Since ∗ is an involution and a conjugate-linear antialgebra endomorphism of H , we

have x = (x∗)∗ = (λ(1−gw))∗ = λ̄(1−gw
2

). This is impossible. Hence w = 1, and so

g∗ = g and△(x∗) = x∗⊗g+1⊗x∗. Then by Lemma 3.5, x∗ = α11x+α12y+α13(1−g)

for some α11, α12, α13 ∈ C. Similarly, one can show that y∗ = α21x+α22y+α23(1−g)

for some α21, α22, α23 ∈ C. Then by xg = ωgx, one gets that (xg)∗ = (ωgx)∗.

However, (xg)∗ = g∗x∗ = g(α11x+α12y+α13(1− g)) = α11gx+α12gy+α13(g− g2)

and (ωgx)∗ = ωx∗g∗ = ω−1(α11x+ α12y + α13(1 − g))g = ω−1α11xg + ω−1α12yg +

ω−1α13(g− g
2) = α11gx+ω

−2α12gy+ω
−1α13(g− g

2). It follows that α12 = ω−2α12
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and α13 = ω−1α13. Hence α12(1 − ω2) = 0 and α13 = 0 by ω 6= 1. Similarly, from

(gy)∗ = (ωyg)∗ one gets that α21(1− ω2) = 0 and α23 = 0.

(1) Assume that n > 2. Then ω2 6= 1, and hence α12 = α21 = 0 by α12(1−ω
2) = 0

and α21(1 − ω2) = 0. Thus, x∗ = α11x and y
∗ = α22y. Then we have x = (x∗)∗ =

(α11x)
∗ = α11x

∗ = α11α11x, which implies that |α11| = 1. Similarly, one can show

that |α22| = 1. This shows Part (1).

(2) Assume that n = 2. Then x∗ = α11x+ α12y and y
∗ = α21x+ α22y. Hence we

have x = (x∗)∗ = (α11x+α12y)
∗ = α11x

∗ +α12y
∗ = α11(α11x+α12y) +α12(α21x+

α22y) = (α11α11+α12α21)x+(α11α12+α12α22)y and y = (y∗)∗ = (α21x+α22y)
∗ =

α21x
∗ + α22y

∗ = α21(α11x + α12y) + α22(α21x + α22y) = (α21α11 + α22α21)x +

(α21α12 + α22α22)y. It follows that

(

α11 α12

α21 α22

)(

α11 α12

α21 α22

)

=

(

1 0

0 1

)

.

This shows Part (2). �

Theorem 3.8. If n > 3, then up to equivalence, there is a unique Hopf ∗-algebra

structure on H given by

g∗ = g, x∗ = x, y∗ = y.

P r o o f. Assume that n > 3. Then by Lemma 3.1, the relations given in the

theorem determine a Hopf ∗-algebra structure on H , denoted by ∗′. Now let ∗ be

any Hopf ∗-algebra structure on H . Then by Lemma 3.1 and Theorem 3.7 (1) there

exist elements α, β ∈ C with |α| = |β| = 1 such that

g∗ = g, x∗ = αx, y∗ = βy.

Pick up two elements λ1, λ2 ∈ C with λ21 = α and λ22 = β. Then |λ1| = |λ2| = 1 by

|α| = |β| = 1, and hence λ−1
1 = λ1 and λ

−1
2 = λ2. It is easy to see that there is a Hopf

algebra automorphism ϕ of H such that ϕ(g) = g, ϕ(x) = λ1x and ϕ(y) = λ2y.

Then ϕ(g∗
′

) = ϕ(g) = g = g∗ = ϕ(g)∗, ϕ(x∗
′

) = ϕ(x) = λ1x = λ−1
1 αx = λ1x

∗ =

(λ1x)
∗ = ϕ(x)∗ and ϕ(y∗

′

) = ϕ(y) = λ2y = λ−1
2 βy = λ2y

∗ = (λ2y)
∗ = ϕ(y)∗. Hence

ϕ(h∗
′

) = ϕ(h)∗ for all h ∈ H , and so ∗ is equivalent to ∗′. �

Throughout the following, assume that n = 2. In this case, ω = −1.

Let A =

(

α11 α12

α21 α22

)

and B =

(

β11 β12

β21 β22

)

be two matrices in M2(C) with

ĀA = B̄B = I2, and let ∗A and ∗B be the corresponding Hopf ∗-algebra structures

on H determined by A and B as in Lemma 3.2, respectively. Then we have the

following proposition.
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Proposition 3.9. ∗A and ∗B are equivalent ∗-structures on H if and only if there

exists an invertible matrix Λ in M2(C) such that AΛ = Λ̄B, i.e. Λ̄−1AΛ = B.

P r o o f. Suppose that ∗A and ∗B are equivalent. Then there exists a Hopf alge-

bra automorphism ϕ of H such that ϕ(h∗A) = ϕ(h)∗B for all h ∈ H . By Lemma 3.4

and n = 2, one can see that ϕ(g) = g. Then by Lemma 3.5, a straightforward

computation shows that there exists a matrix Λ =

(

λ11 λ12

λ21 λ22

)

in M2(C) such that

ϕ(x) = λ11x + λ12y and ϕ(y) = λ21x + λ22y. Since ϕ is an isomorphism, one can

check that Λ is an invertible matrix in M2(C). Now we have

ϕ(x∗A) = ϕ(α11x+ α12y) = α11ϕ(x) + α12ϕ(y)

= α11(λ11x+ λ12y) + α12(λ21x+ λ22y)

= (α11λ11 + α12λ21)x+ (α11λ12 + α12λ22)y

and
ϕ(x)∗B = (λ11x+ λ12y)

∗B = λ11x
∗B + λ12y

∗B

= λ11(β11x+ β12y) + λ12(β21x+ β22y)

= (λ11β11 + λ12β21)x+ (λ11β12 + λ12β22)y.

Hence, it follows from ϕ(x∗A) = ϕ(x)∗B that α11λ11+α12λ21 = λ11β11+λ12β21 and

α11λ12 + α12λ22 = λ11β12 + λ12β22. Similarly, from ϕ(y∗A) = ϕ(y)∗B , one gets that

α21λ11 + α22λ21 = λ21β11 + λ22β21 and α21λ12 + α22λ22 = λ21β12 + λ22β22. Thus,

we have AΛ = Λ̄B.

Conversely, suppose that there exists an invertible matrix Λ =

(

λ11 λ12

λ21 λ22

)

in

M2(C) such that AΛ = Λ̄B. Then it is straightforward to check that there is a Hopf

algebra automorphism ϕ of H uniquely determined by ϕ(g) = g, ϕ(x) = λ11x+λ12y

and ϕ(y) = λ21x + λ22y. Obviously, ϕ(g
∗A) = ϕ(g)∗B = g. From the computation

above, one gets that ϕ(x∗A) = ϕ(x)∗B and ϕ(y∗A) = ϕ(y)∗B . It follows that ϕ(h∗A) =

ϕ(h)∗B for any h ∈ H . This shows that ∗A and ∗B are equivalent. �
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