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Abstract. The aim of this paper is to extend the study of Riesz transforms associated to
Dunkl Ornstein-Uhlenbeck operator considered by A.Nowak, L. Roncal and K. Stempak to
higher order.
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1. INTRODUCTION AND STATEMENT OF THE RESULTS
Consider the finite reflection group generated by o;, 7 =1,...,d (see [2]),
01, Ty Ta) = (X1, o oy =T, oo Td),

and isomorphic to 74 = {0,1}%.

The reflection o; is in the hyperplane orthogonal to e;, the jth coordinate vector
in R%. Given a root system R by R = {:I:\/ﬁej: j =1,...,d}, and the positive
root system Ry defined by R, = {ﬂej: j =1,...,d}, we recall the nonnegative
multiplicity function k: R — [0, 00) which is Z4-invariant, so only values of k on R
are considered. Hence k = (a7 + %, coag+ %), such that o > —%.

Let T, j=1,....d, a € [—%, o0)?, be the Dunkl differential-difference operators,
(see [11]) defined by
1) fles) ooy

Ti = 0 f(x) + (Oéj +3 . :
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here 0; is the jth partial derivative and o; denotes the reflection in the hyperplane
orthogonal to e;, the jth coordinate vector in R,
In Dunkl’s theory the operator

d
Aoz = Z(Tja)Q

j=1

plays the role of the Euclidean Laplacian. The explicit form is

8ot = 3 (Lo + 2L ) (o, 1y )= S o))

xzj Oz T

We recall the definition of the Dunkl Ornstein-Uhlenbeck operator, given in [10] by
Lo, =—-A,+2x-V.
Note that A, when restricted to the even subspace

(1) {feC'(R): Vi=1,....d, f(x)= f(o;x)}

coincides with the multi-dimensional Bessel differential operator

d

(e =00)

J=1

and consequently L, reduces to the Laguerre-type operator

4 2a;+1 8

2 Ly =—-A+22V — .
(2) + 2z-V P

Jj=1

The corresponding measure i, has the form
d 2
dpe(z) = H lz; P e day, == (x1,...,2q4) € R
j=1

We denote by LP(R%, du,), 1 < p < 0o, the Lebesgue space constituted of measurable

functions on R%. By (f,g)a we mean [, f(z)g(z) dua(z) whenever the integral

makes sense.

Given o € [—%,oo)d, the associated generalized Hermite polynomials (see [1],

[9], [10]) are tensor products

Ho(x) = Hyl x ... x Hyd r=(z1,...,24) ERY n=(ny,...,ng) € N,

Nng’
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where H;* are the one-dimensional generalized Hermite polynomials

a 1 - nz' 1/2La. 2
o (i) = (=1) (F(er—w) xi(x),

o n; ni! V2 ity 2
o) = OO (prarsgy) | @l G,
7 7

here L;¢ denotes the Laguerre polynomial of degree n; and order «a; (see [4]).
The system {H%: n € N?} is an orthonormal basis in L?(R?, dyu,) consisting of
eigenfunctions of L, (see [10]), recall that

LoH® = 2[n|H2,

where we denote |n| =ni + ...+ ng.
We define the jth partial “derivative” d, ;, for 1 < j < d, related to Lq, by

Sag =T

The formal adjoint of &, ; in L2(R%, dpus) is
62,]’ = —T]{l + 2{Ej.
This precisely means that

<5o¢,jfa 9o = ([, 5;,jg>a7 g€ Ccl([Rd)'

A direct computation shows that
1
Lo+ (2la| +2d) = 5 2(534(5@4 + a0 ;)-
=
We recall that for 1 < j < d (see [7])

a _ PR V7
50‘;an = m(njv aj)aneja

where
2n; if n; is even,
m(nja aj) = . .
2n; + 4o +2 if n; is odd,

by convention, Hy_. =0if n; =0.
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Note that for each j the system {0, ;H%: n; > 1} is orthogonal in L?(R%, dji).
The self-adjoint extension of L, initially considered on C°*(R9) is given by the
operator

Lof =" 2inl{f, 1)y,

neNd

and defined on the domain

Dom(Ca) = {1 € P dpa): 3 Rlallf Hal? < o0

neNd

The spectrum of L, is the discrete set {2m: m € N}, and the spectral decomposition
of L, is
oo
Lof =) 2mP%f, f€Dom(La),
m=0

where the spectral projections are

Pof= > (L HD M

In|=m

Observe that since zero is an eigenvalue of L, then denoting by Il the orthogonal
projection operator onto the orthogonal complement of the subspace spanned by the
constant functions, it is also given

of =1 = [ 1) dna(s)

We have for M € N*,

LM f = (2m)MPPR f,

m=1

and this operator is bounded on L?(R%, du,,).

The Riesz transforms related to the Dunkl harmonic oscillator and to the Dunkl
Ornstein-Uhlenbeck operator have been intensively studied in recent years by many
authors, see e.g. [6], [7], [8], and references therein. In [7] Nowak, Roncal and Stem-
pak introduced the Riesz transforms of order one related to the Dunkl Ornstein-
Uhlenbeck operator L, and they proved that these transforms are LP bounded with
1 < p < 00 in the one-dimensional setting. The aim of this paper is to present an
extension of this result to the Riesz-Dunkl transforms of order M with M € N*. We
note that for technical reasons, we have considered the Z¢ group case.
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According to a general principle, see [3], we now define higher order Riesz-Dunkl
transforms in the following way: let 7 = (71,...,74) € N? be a multi-index and
o = (a1,...,aq) € [~3,00)%. Then for M € N*, the family of the Riesz-Dunkl
transforms (R<) of order M such that |7| = 7 + ...+ 74 = M (the length of 7) is
given by

ROM = (R2) | 1=m = (65LM o) (=t

where

T _ ST1 Td
0L =07y .. 8

In the one-dimensional case, to prove our main result Theorem 1, we split a function f
into its even, and odd parts f. and f, and we observe that if the order m is odd then
the Riesz-Dunkl transform of order m € N* R, fe is odd and RS, f, is even, and if
the order m is even then RJ), fe is even and R, fo is odd.

Due to these symmetries we consider the operators R¢,,, and Rg,,, on L3Ry, dpa)
emerging naturally from restrictions of R, to the subspaces of L?(R,dpu,) of even
and odd functions, respectively.

The LP-boundedness of the even and odd Riesz-Dunkl operators follows from the
LP-boundedness of the Riesz-Laguerre-type transforms and of shift and multiplier
operators depending on m.

In the 7% group case we investigate a natural variant of the Dunkl Ornstein-
Uhlenbeck operator by means of the Dunkl gradient rather than the Euclidean one,
then we obtain higher order Riesz-Dunkl transforms which are L2-contractions. The
LP-boundedness of these Riesz-Dunkl transforms is proved in the one-dimensional
case.

The paper is organized as follows. In Section 2 we give the expansions of higher
order Riesz transforms associated with the Dunkl Ornstein-Uhlenbeck operator of
f= 3 (f, HS)YH on L?(RY du,) and we study the L2-boundedness of this trans-

neNd
form.

In Section 3, for the one-dimensional case, we establish LP-boundedness of shift
operators, we define and study the Riesz-Laguerre-type transforms of order m € N*.
After that, we prove our main result.

Finally in Section 4, we discuss higher order Riesz transforms related to the alter-
native Dunkl Ornstein-Uhlenbeck operator by the methods developed in the previous
section.
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2. HIGHER ORDER RIESZ TRANSFORMS ASSOCIATED WITH
THE DUNKL ORNSTEIN-UHLENBECK OPERATOR

Let 7 = (71,...,74) € N? be a multi-index and a = (ay,...,aq) € [-1,00)?, we
denote by J7, the operator
5 = 070

It is natural to define the Riesz transform of order M € N* for the Dunkl Ornstein-
Uhlenbeck operator by

ROM = (R rj=nr = (OLLMPT00) 7121

where |7| = 71 + ...+ 74 is the length of 7.

In order to study the higher order Riesz transforms R*M of order M € N*, we
shall see how ¢7, acts on H.

We begin by observing that

Tj a . .. @
6a,an - m(nj ) O, T])HYL—TJ ej

by the convention that Hy__ . =0 ifn; < 1j, so we take m(n;, oj, ;) = 0if ny; < 75.
Otherwise m(n;, a;, ;) is given by the next lemma.

Lemma 1. (i) If 7; =1, then m(n;,a;,1) = m(n;, o;) given by

2n; if n; is even,
m(n;,a;) = .
V2n; +4a; 4+ 2 if n; is odd.
(if) If 2 < 7; < n; and 7; even, then

V2ini(n; —2) ... (n; — 7 +2)(n; + 2a;)
X\/nj+2aj_2)---(nj+2aj—Tj+2) if n; is even,

V27 (n; —1)(nj —3)...(n; — 7; + 1)(n; +2a; + 1)
X\/nj+2aj_1)~~~(nj+204j_7j+3) if n; is odd.

m(n;, oy, 7j) =

(iii) If 3 < 7 < nj and 7; odd, then

V2ing(ng —2)...(n; — 75 + 1)(n; + 20;)
X\/nj+2aj_2)---(nj+2aj—Tj+3) if n; is even,

\/QTJ i —1D(n; —3)...(nj — 75 +2)(n; + 205 + 1)
X\/nj+2aj_1)~~~(nj+204j_7j+2) if n; is odd.

m(ng, oy, 7j) =

262



Proof. We have in [7] that for 1 < j <d
ba,j My =m(n;, o) Hy .,

where

2n; if n; is even,
2n; + 4o +2 if n; is odd,

m(njaaj) = {

by convention, Hj_. = 0if nj = 0. So we obtain (i).
To prove (i) and (iii) we give some computations of &,/ Hs:
If n; is even we can see that
6(’(ang Y, Z’nngfe]

82 i Hy = \/22n;(n; + 205) M5y,

Go M = \/23nj(nj +205)(nj = 2)Hp e,
On the other hand, if n; is odd we show that

Oa i HE = 4/2(nj + 2a; + DHS
Gt j J

n—ej

62 G = \[22(n; + 20, + )(n; — DHE s,

53 71 = \/23(n; + 205 + 1)(n; — 1)(ny + 205 — DH s, .
Thus, by iteration method, we deduce the results. (I
Lemma 2. For 7 = (71,...,74) € N% and a = (a1,...,aq) € [~ 3, 00)
TIHG = (07107 ST M = Mm@ M gt

where

E&

(n,a,7) m(n;, o, 7).

Jj=1

Also, for T = (11,...,74) € N%, we have

0< M(n,a,7) < (|n|—|—2|0¢|—|—1)|7|/2

d
where |a| = > |o;| and C is a positive constant independent of significant quantities.
j=1
And M(n, o, 7) vanishes if and only if there exists 1 < j < d such that nj—1; < 0.
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Proof. A direct composition gives

d
(5;1,15;2, 5g¢dd JHy = 1_[17” njaajvTJ)Hn Y e
J
where m(n;, a;, 7;) is defined as in the previous lemma.
For 1 < j < d, we see that each factor under the square root in the expression of
m(n;,a;,7;) is bounded by |n| + 2|a| + 1 and there is 7; factors, so

m(nj, aj,7;) < C(In| +2fal +1)772.

We deduce that
M(n,a,7) < (|n|—|—2|0¢|—|—1)|7|/2

The higher order Riesz-Dunkl transform RS of H is defined by

M(naaaT) «

ROMy = = :
T T @ln)Irl2 = e

So the higher order Riesz-Dunkl transform R of f = > (f, H®)oHS in L2(RY, dpuy)
neNd
is given by

o M(n,a, T o
) Ref= 2 W@ Pl st e,

neN? |n|>0

From equality (3) and Lemma 2, the L?-boundedness can easily be seen.

Remark 1. We note that R® is not a contraction on L?(R? du,) if a €

[_%7oo)d'

3. Z5 -HIGHER ORDER RIESZ TRANSFORMS ASSOCIATED WITH THE DUNKL
ORNSTEIN-UHLENBECK OPERATOR

Our main result, Theorem 1 below, is an extension to higher order of Nowak,
Roncal and Stempak’s L? results given in [7] for the Riesz transform RY related to
the Dunkl Ornstein-Uhlenbeck operator in one-dimension setting.

Theorem 1. Let d = 1 and assume that o > —%. Then for each 1 < p < o0
and m € N*, the Riesz-Dunkl transform R, of order m, associated with the Dunkl
Ornstein-Uhlenbeck operator, defined on L?(R,du,) by (3), extends to a bounded
operator on LP(R, dpuy).
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First of all we recall some results in the one-dimensional setting and in the case
when the order of the Riesz-Dunkl transform is one.
By the change of variable x — 22 on R, the authors in [7] translate some results
from the classical Laguerre setting to the so called “squared” Laguerre setting.
For a > —%, the restriction of p, to R4 will be denoted by the same symbol. The
Dunkl Ornstein-Uhlenbeck operator (2) in this case is
d? 200+ 1—222 d

Y G i
dz? T dz

which is positive and symmetric in L?(R,,du, ). The Laguerre polynomials L% (x?),
n € N, are eigenfunctions of [,

H*OéLg(xQ) = 4’1’LL§($2),

and the set {L,L%(2?): n € N} forms an orthogonal basis in L?(R.,du,).
Also the authors in [7] considered the polynomials

n/! 1/2
2n/! ))

on(T) = (m Ly (?)

and

ol N1/
Yn () = (WZ*‘Z)) a Lo (2?),

which form two orthonormal bases in L*(Ry, dug ).
These polynomials ¢ and ¢¢ coincide, up to constant factors independent of n
and «, with the generalized Hermite polynomials H3;,, and H5, , 1, respectively.
The definition of the first order Riesz-Dunkl transform is inherited from the clas-
sical Laguerre setting given by [5], and induced by the mapping

Rg: ng_)_wgfla nEN,

where Y%, = 0.
Muckenhoupt proved in [5] the following:

Theorem 2. Let o > —% and 1 < p < oo. Then
IRGS e (my aua) < CllF e ey apa)s

with a constant C independent of f € L*> N LP (R, duq).
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In [7] the authors give the adjoint operator of RS, taken in L?(Ry,dpus), by the
mapping
z: Yy = —ni1, neN,

they proved by Theorem 2 and duality that for 1 < p < 0o

(4) RGNl ey dua) < CllfllLery dpa)s

with a constant C' independent of f € L? N LP(R, dua).
Also, they translate the multiplier theorem below, given in [3], to the squared
Laguerre setting after restricting it to one dimension and taking 5 =1,

Theorem 3. Let 1 < p < oo and o > —%. Assume that h is an analytic function
in a neighborhood of the origin. Let {{(n)}nen be a sequence of real numbers such
that £(n) = h(n~1) for n > ng > 0. Then the multiplier operator given by

Me: o — E(n)ey

satisfies
IMefllrry dua) < CllfllLr ey dua)s
with a constant C' independent of f € L*> N LP(R, du,).

In our context, in order to prove our Theorem 1 we consider the right and left shift
operators of order m, for m > 1, related to the system {p%}, respectively denoted
by

Sr,m: 502 — ¢g+m
and
Stm® On = Pp—m>

where p&_, =0ifn—m <0.
We establish LP-boundedness of these shift operators, which may be regarded as
an extension of Theorem 6.3 stated in [7].

Theorem 4. Let 1 < p < co and o > —%. Then the shift operators of order
m € N* defined above satisfy

ISt mfllLe ey dpa) < ClfllLr@y dus)

and
ISrmfllLe®y dpa) < ClfllLr@y dua)s
with a constant C independent of f € L*> N LP (R, dus).
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Proof. If m < n, we can see that
Stim® Pn = Pp—m
SO

Stm(#y) = (S)™(#h),
where S is the left shift operator of order 1 given in [7] and verifies that

ISifllLe (s due) < CNFllLery dpa)-

We deduce that
IStmfllLe Ry dpe) < ComllfllLeRy dpa)s

where (), is a positive constant depending on m.
Similarly we have

Sramt On = Poim
SO
Srm($hn) = (Sr)™(#5)
with S, the right shift operator of order 1 which verifies that

IS fllLery dpa) < CllFllLr®y dpa)-
We deduce that
ISrmf ey dpn) < CE)NFllLery dpa)s

where C'(m) is a positive constant depending on m. O

(63

Now we define the operators R ,,

and Ry, ., for m > 1, induced, respectively,
by the mappings
Rg,m: or = (=)™, neN,

where ¥5_,, =0if m > n, and
wm: Yn = (—D)"¢nyms neN.
We establish LP-boundedness of these transforms in the theorem below.

Theorem 5. Let 1 < p < oo, a > —% and m € N*. Then

IRG mfllLery due) < ClfllLr@®y dua)

and
||R%;mf”LP(R+7dll«a) < C||f||Lp(R+,dua)a
with a constant C independent of f € L?> N LP (R, dus).
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Proof. We have, forn >m
REm(en) = (1) RES m—1(¢5)-

We can deduce the LP-boundedness of R, ,, by Theorem 2 and Theorem 4.
On the other hand

im(ﬂ)ﬁ) = (_1)m7187’,m71R$ (d)ﬁ),

so the LP-boundedness of Ry m 1s a consequence of Theorem 4 and inequality (4).
O

We are now in a position to prove Theorem 1.

Proof of Theorem 1. In the one-dimensional setting for o > —% and for the
Riesz-Dunkl transform of order m € N*, defined on L?(R,du,) by

RO™ =R, = 60 L™ T,

and for
f=2 {5 MM,
neN
we have
ap_ N\~ Mn,a,m) ay @
(5) Rof = ; njrz D

Given f € L? N LP(R, dpy ), we decompose it into its even and odd parts,

f="fe+ fo

Then to prove Theorem 1 it is sufficient to show the L? estimates

1Ry fell Lr(®,dua) < Cllfellr®,dua)

and
1R foll Lr®,dpa) < CllfollLrr,dp.)-
Since the generalized Hermite polynomial ¢ is even if n is even and odd for n odd,
expansions of f, and f, are given only by even and odd H, respectively.
In view of (5), we observe that if the order m is odd, then R, f, is odd and R, f,
is even.
And if the order m is even, then R f. is even and R, f, is odd.
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Due to these symmetries we consider the operators R¢',, and Rg,,, on L2 (R, dua)
emerging naturally from restrictions of R, to the subspaces of L?(R,dpu,) of even
and odd functions, respectively.

Observe that by relation (5) we have:

(i) If m is even, then

Re,mi ©n — W@n_mﬂa

and

M@2n+1,a,m)
a .o [ag) o
Rom wn - (4n+2)m/2 n—m/2"

Thus we can see that

Rem(Pn) = Me Simya(#h)

with M )
2n,a,m
i(n) = “an)y?
And
(d)a) = 4;: m/2+1M§sz(¢a)
with

m/Q/\/l(2n+1 a,m)

Consequently, the relevant LP estimate follows by relation (4) accordingly with The-
orems 3, 4 and 5.
(ii) On the other hand, if m is odd, then

M(2n, a,m)
REm: 9% = (= )(MH)/QW — (m1)/2

and
(m— 1)/2M(27L+1 (0% m) o

T/J(y ( ) (4TL+ Q)m/2 Sonf(mfl)/?

Thus we can see that

Ra (‘pn) = Rtp,(erl)/2M53 (502)7

with
M(2n, o, m)

§a(n) = (dn)m/2
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and
Rom(¥n) = Me,Simi1) 2R3 (V7))
with
O S
Thus we see again that the relevant LP estimate follows by relation (4) and Theo-
rems 3, 4 and 5. O

Remark 2. We conjecture in our context that an analogue of Theorem 1 holds

for arbitrary dimension d and a € [—%, o).

4. HIGHER ORDER RIESZ TRANSFORMS ASSOCIATED WITH THE ALTERNATIVE
DUNKL ORNSTEIN-UHLENBECK OPERATOR

In this section we consider the alternative Dunkl Ornstein-Uhlenbeck operator
given in [7] by
L,=—-A,+2x-V,,

where the Dunkl gradient V,, is defined by
Vo=(T7,....,T3).

The authors in [7] define, in the Z¢ group case, the Riesz-Dunkl transforms of order
one associated with L,. These transforms are contractions in L2(R4, dug ), which is
not true in the case of L.

Similarly as L, when restricted to the even subspace (1), Ea coincides with
the Laguerre-type operator (2), and for a = (—1,...,—1) it reduces to the classic

Ornstein-Uhlenbeck operator. We recall that

d
Lo =Y 0% 00,
j=1

It follows that Za is formally symmetric and nonnegative in L?(R?, du,,).
Also, we have

d
Lo = (2|n| P (ot 2>)Hz - (Z[mmj,aj)]?)ﬁz.
{j: n; odd} j=1

Let £, be the self-adjoint extension of L, whose spectral decomposition is given
by H;r.
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Let 7 = (71,...,74) € N? be a multi-index and a = (aq,...,aq) € [-1,00)¢, we
denote by 47 the operator

T __ T1 Td
0L = 671y ... 6T,

It is natural to define the Riesz transform of order M € N* for the alternative Dunkl
Ornstein-Uhlenbeck L, operator by

ROM = (R2)rj=ar = (OLLMPT0) 7=t

where |7| = 7 + ... 4 74 is the length of 7.

So the higher order Riesz-Dunkl transform R® of f = 3 (f,H)aH® on
neNd
L2(R9 dp,,) is given by

0 Rof= Y e
net (S fm(ng, a5))2)

In|>0 \,; =7

(f;Hp)a M,

nfzgzl Tie;”

From formula (6) and Lemma 2, the L?-boundedness can easily be seen directly.

Remark 3. By Plancherel’s theorem the mapping

1/2
;o ( 3 |7€3f|2)

Ir|=M

is a contraction on L2(R%, du,).

We now state an analogue of Theorem 1 in the context of Za.

Theorem 6. Let d = 1 and assume that o > —%. Then for each 1 < p < o©
and m € N*, the Riesz-Dunkl transform R, of order m, associated with the alterna-
tive Dunkl Ornstein-Uhlenbeck operator, defined on L*(R,du,) by (6), extends to

a bounded operator on LP(R,du,,).

Proof. We proceed as in the proof of Theorem 1 and arrive at the opera-
tors ﬁ?m and ﬁgm on L?(Ry,dpq). Then to prove this theorem, it is sufficient to
show the LP estimates for these two operators.

We recall that in one-dimensional setting, for o > —% and for the Riesz-Dunkl
transform of order m € N*, defined on L?(R,,du,) by

RO™ = RS, = 0 L™/ Ty,
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and for

F= (M) oHE,

neN

we have

(7) Ref = 2) ”“mfﬂ%H&W

n>0

Notice that by (7) we have:
(i) If m is even, then
R(ym = M&Sl,m/2

with
_ M(2n,a,m)
8 =T an, ap
And
Rg,m = Rg,m/2+1M§zR$
with

m/zM(Zn—l—l a m)

&(n) = (=1) [m(2n +1,a)]™

(ii) If m is odd, then
Rém = R (m+1)/2Mes

with
_ M(2n,a,m)
50 = Ton,
And
Rom = Me,Sima1) 2Ry
with

(m+1)/2 M@2n+1,a,m)

§4(n) = (_1) [m(2n+ 17a)]m

Consequently, the relevant L? estimate follows by relation (4) accordingly with The-
orems 3, 4 and 5. ([
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272



References

[1] T.S. Chihara: Generalized Hermite Polynomials. Thesis (Ph.D.). Purdue University,
West Lafayette, 1955. MR]
[2] C.D. Dunkl: Differential-difference operators associated to reflection groups. Trans. Am.

Math. Soc. 311 (1989), 167-183. MR

[3] P.Graczyk, J.J. Loeb, I. Lopez, A. Nowak, W. Urbina: Higher order Riesz transforms,
fractional derivatives, and Sobolev spaces for Laguerre expansions. J. Math. Pures Appl.

84 (2005), 375-405. MR]

[4] N. N. Lebedev: Special Functions and Their Applications. Dover Publications, New York,

1972. MR

[5] B. Muckenhoupt: Conjugate functions for Laguerre expansions. Trans. Am. Math. Soc.

147 (1970), 403-418. MR

[6] W. Nefzi: Higher order Riesz transforms for the Dunkl harmonic oscillator. Taiwanese

J. Math. 19 (2015), 567-583. MR

[7] A. Nowak, L. Roncal, K. Stempak: Riesz transforms for the Dunkl Ornstein-Uhlenbeck

operator. Colloq. Math. 118 (2010), 669-684. | zblJMR] doi

[8] A. Nowak, K.Stempak: Riesz transforms for the Dunkl harmonic oscillator. Math. Z.

262 (2009), 539-556. MR

[9] M. Rosenblum: Generalized Hermite polynomials and the Bose-like oscillator calculus.
Nonselfadjoint Operators and Related Topics (A. Feintuch et al., eds.). Operator Theory:
Advances and Applications 73, Birkh#user, Basel, 1994, pp. 369-396. IMR]

[10] M. Résler: Generalized Hermite polynomials and the heat equation for Dunkl operators.

Commun. Math. Phys. 192 (1998), 519-542. zbl [MRIdoi]

[11] M. Résler: Dunkl operators: Theory and applications. Orthogonal Polynomials and Spe-
cial Functions (E.Koelink et al., eds.). Lecture Notes in Mathematics 1817, Springer,

Berlin, 2003, pp. 93-135. MR

Author’s address: Walid Nefzi, University of Tunis El Manar, Faculty of Sciences
of Tunis, LR11ES11 Analyse Mathématiques et Applications, 2092 Tunis, Tunisia, e-mail:
walidahla@yahoo.fr.

273


http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2612324
https://zbmath.org/?q=an:0652.33004
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0951883
http://dx.doi.org/10.2307/2001022
https://zbmath.org/?q=an:1129.42015
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2121578
http://dx.doi.org/10.1016/j.matpur.2004.09.003
https://zbmath.org/?q=an:0271.33001
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0350075
https://zbmath.org/?q=an:0192.46202
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0252945
http://dx.doi.org/10.2307/1995203
https://zbmath.org/?q=an:1357.42006
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3332314
http://dx.doi.org/10.11650/tjm.19.2015.4762
https://zbmath.org/?q=an:1194.42036
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2602173
http://dx.doi.org/10.4064/cm118-2-19
https://zbmath.org/?q=an:1168.44002
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2506306
http://dx.doi.org/10.1007/s00209-008-0388-4
https://zbmath.org/?q=an:0826.33005
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1320555
https://zbmath.org/?q=an:0908.33005
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1620515
http://dx.doi.org/10.1007/s002200050307
https://zbmath.org/?q=an:1029.43001
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2022853
http://dx.doi.org/10.1007/3-540-44945-0_3

		webmaster@dml.cz
	2020-07-03T23:29:16+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




