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Abstract. The dynamics of an activator-inhibitor model with general cubic polynomial
source is investigated. Without diffusion, we consider the existence, stability and bifurca-
tions of equilibria by both eigenvalue analysis and numerical methods. For the reaction-
diffusion system, a Lyapunov functional is proposed to declare the global stability of con-
stant steady states, moreover, the condition related to the activator source leading to Turing
instability is obtained in the paper. In addition, taking the production rate of the activator
as the bifurcation parameter, we show the decisive effect of each part in the source term on
the patterns and the evolutionary process among stripes, spots and mazes. Finally, it is il-
lustrated that weakly linear coupling in the activator-inhibitor model can cause synchronous
and anti-phase patterns.
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1. Introduction

Turing’s reaction-diffusion theory [15] in 1952 pointed out that the morphological

formation of the biological patterns is generally determined by a class of chemical

substances named morphogens. A stably spatial heterogeneity is eventually formed,

because various morphogens are simultaneously reacted and diffused in the organism,

which can lead the undifferentiated cells to be directed to redistribute and differen-

tiate into the corresponding morphological patterns. According to the interaction

The research is supported by National Natural Science Foundation of China (Num-
bers 11301263, 11701306, and 11701275) the China Postdoctoral Science Foundation
(No. 2018M630547), the Natural Science Fund Development Project by Nanjing Univer-
sity of Technology, and the China Scholarship Council.

DOI: 10.21136/AM.2019.0142-18 61

http://dx.doi.org/10.21136/AM.2019.0142-18


of morphogens, Turing proposed and demonstrated that classical reaction-diffusion

models can be used to describe the process of pattern formation.

Reaction-diffusion models have been applied to a variety of specific biological

processes by establishing appropriate reaction items. At present, there are three

kinds of typical reaction-diffusion models related to biological processes, including

autocatalytic [13], activator-inhibitor [8], [12] and substrate consumption models [4].

The activator-inhibitor model is a kind of reaction-diffusion equation which is

widely used to describe the pattern formation of tissue differentiation. It was pro-

posed in 1972 by Gierer and Meinhardt in view of Turing’s reaction-diffusion theory

and is one of the specific models for the differentiation stage of biological develop-

ment. A large number of embryonic biological phenomena indicates that the for-

mation of the biological morphological patterns is mainly related to three crucial

substances: a short-acting activator (with smaller velocity), a long-acting inhibitor

(with larger velocity) and a source material that secures both morphogens above,

which is a specific kind of cells in general. Finally, a pattern formation of the tissue

is caused by the interaction of the three substances.

There are now numerous examples linking Gierer-Meinhardt activator-inhibitor

model. J.Wang et al. [16], [20], [14], [19] gained the existence of stripes and spots in

the model with several sources. In addition, the occurrence of spike clusters has also

attracted some scholars’ vision [17], [18]. Another significant aspect causing lots of

focuses is the property of solutions for this model with different boundary conditions

[9], [2]. Furthermore, regarding the pattern formation of reaction-diffusion equations,

it is of a high value to consider the major effects of the strength or means of diffusion

and reaction on their patterns [1], [22], [3], [21], [6].

As a result, the purpose of this paper is to study an activator-inhibitor model with

the general cubic polynomial reaction term, i.e., activator owning polynomial source.

In fact, the concrete differential equation corresponding with the model is as follows:

(1.1)















∂u

∂t
= d1∇

2u+ a11u− a21v + Cu3 +Qu2,

∂v

∂t
= d2∇

2v + a12u− a22v

with periodic boundary conditions, where u = u(x, y, t), v = v(x, y, t), (x, y) ∈ Ω =

(0, 2π)× (0, 2π), the activator or inhibitor sources are respectively cubic polynomial

a11u + Cu3 + Qu2 or linear term a12u, a12, a21, a22 are production and degrada-

tion rates, and all the parameters are positive except for C. In detail, we discuss

how the activator source affects the stability of the constant steady-state solution,

bifurcations or patterns of system (1.1) or weakly linearly coupled system.
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The rest of the paper is organized as follows. In Section 2, we declare the exis-

tence of constant steady states and different bifurcations for the ordinary differential

equation (ODE). Specially, its bifurcation diagram and some specific solutions are

demonstrated by numerical simulation. For the reaction-diffusion equation, the Lya-

punov functional is constructed to prove the global stability of constant steady-state

solutions in Section 3, while Turing instability will occur if the stability above is not

obeyed. We focus on the interesting patterns of single or coupled activator-inhibitor

systems with a square domain in the final parts (Sections 4 and 5), such as stripes,

mazes as well as spots.

2. Stability and bifurcations of ODE model

In the beginning, it is vital to consider the dynamics of the model without diffusion

(2.1)















du

dt
= a11u− a21v + Cu3 +Qu2,

dv

dt
= a12u− a22v.

Set f(u, v) = a11u− a21v+Cu3+Qu2 and g(u, v) = a12u− a22v and it is obvious

that the equilibria can be determined by f(u, v) = 0, g(u, v) = 0. Thus, the system

has fixed point E(u∗, v∗), where u∗ = v∗ = 0 or u∗ satisfies

Cu2 +Qu+
a11a22 − a12a21

a22
= 0

together with

v∗ =
a12u

∗

a22
.

In fact, f(u, v) = 0 gives an explicit function

v =
C

a21
u3 +

Q

a21
u2 +

a11
a21

u
.
= h(u)

which is a third-order polynomial. On the basis of its properties

h(0) = 0, h′(u) =
1

a21
(3Cu2 + 2Qu+ a11), h′(0) = a11 > 0

and the number of extreme points, the form of function h(u) is as in the three cases

in Figure 1.

63



u

v

(a)
u

v

(b)

u

v

(c)

Figure 1. The possible images of explicit function h(u).

It is well known that the stability of equilibrium E depends on the eigenvalues of

Jaccobi matrix

J =

(

fu fv

gu gv

)

∣

∣

(u∗,v∗)
,

that is, if

trJ = (fu + gv)
∣

∣

(u∗,v∗)
< 0, detJ = (fugv − fvgu)

∣

∣

(u∗,v∗)
> 0,

then E is stable. Certainly, fu(u
∗, v∗) = a21h

′(u∗), fv(u
∗, v∗) = −a21 < 0,

gu(u
∗, v∗) = a12 > 0, gv(u

∗, v∗) = −a22 < 0. Thus, h′(u∗) 6 0 leads to a stable

equilibrium, which numerically implies that E lies at the middle part in Figure 1(a)

or on the left and right in Figure 1(c). On the contrary, if h′(u∗) > 0, that is to say,

E is at other parts, the stability needs to be further judged.

More specifically, trJ = a21h
′(u∗) − a22 < 0, detJ = a12a21 − a22a21h

′(u∗) > 0

claims the stability of E. Similarly, the bifurcations can be discussed by tr J and

detJ . We can get Theorem 2.1 about the stability of equilibria and bifurcations.

Theorem 2.1.

(1) If h′(u∗) < min{a22/a21, a12/a22}, then the equilibrium E(u∗, v∗) is locally

asymptotically stable,

(2) h′(u∗) = a22/a21 > a12/a22 brings about Hopf bifurcation at E(u∗, v∗),

(3) h′(u∗) = a12/a22 6= a22/a21 leads to the bifurcation of the fixed point at

E(u∗, v∗),

(4) Bogdanov-Takens bifurcation at E(u∗, v∗) occurs as h′(u∗) = a22/a21 =

a12/a22.
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Figure 2. The bifurcation diagram for system (2.1) with parameters a21 = 2, a12 = a22 = 1,
C = −0.5, Q = 1.5, where H, LP and BP represent Hopf, fold and branch points,
respectively.

As an example, the bifurcation diagram between u and a11 at a21 = 2, a12 =

a22 = 1, C = −0.5, Q = 1.5 is demonstrated in Figure 2 applying MatCont and

a11 = 0.9 implies the phase plot in Figure 3.

2− 1.5− 1− 0.5− 0 0.5 1 1.5 2 2.5 3 3.5 4
1−

0.5−

0

0.5

1

1.5

2

2.5

u

v

Figure 3. The phase plot at a11 = 0.9 based on parameters in Figure 2. The red and yellow
curves are nullclines whose intersections are the equilibria. The outer limit cycle
is stable, whereas the inner one is unstable.
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3. Dynamics of model with diffusion

In this section, we focus on global stable constant steady states and Turing insta-

bility in reaction-diffusion model.

3.1. Global stability of constant steady states. The Lyapunov functional is

a powerful method to obtain the stability of infinite-dimensional dynamical systems.

Therefore, mentioning the reference [7], the Lyapunov functional is constructed to

prove the stability of system (1.1), which is shown in Theorem 3.1.

Theorem 3.1. If

(S1) a22 > max
{3Ca11 −Q2

3Ca21
, a12

}

is satisfied, then E(u∗, v∗) is globally asymptotically stable to system (1.1).

P r o o f. Construct the Lyapunov functional as follows:

(3.1)

V (u(x, t), v(x, t)) =

∫

Ω

( 1

2a21

(∂u

∂t

)2

+
1

2a12

(∂v

∂t

)2

+
d1a22
2a21

|∇u|2 −
d2a22
2a12

|∇v|2

− a22H(u)− a22uv −
a222
2a12

v2
)

dx,

where H ′(u) = h(u).

It is apparent that V → ∞ as ‖u‖L2(Ω), ‖v‖L2(Ω), ‖∇u‖L2(Ω) or ‖∇v‖L2(Ω) goes

to infinity, that is V (u, v) is radially unbounded.

Next we need to check whether Vt(u, v) 6 0 with Vt(u, v) = 0 only at equilibria.

By calculation,

Vt(u, v) =

∫

Ω

( 1

a21
ututt +

1

a12
vtvtt −

d1a22
a21

∆uut +
d2a22
a12

∆vvt − a22h(u)ut(3.2)

+ a22(uvt + utv)−
a222
a12

vvt

)

dx

=

∫

Ω

(

ut

(

h′(u)ut +
d1
a21

∆ut

)

+ vt

(

−
a22
a12

+
d2
a12

∆vt

)

−
d1a22
a21

∆uut

+
d2a22
a12

∆vvt − a22h(u)ut + a22(uvt + utv)−
a222
a12

vvt

)

dx

=

∫

Ω

(

−
d1
a21

|∇ut|
2 + h′(u)u2

t −
d2
a12

|∇vt|
2 −

a22
a12

v2t

− a22

( d1
a21

∆u+ h(u)− v
)

ut +
a22
a12

(d2∆v + a12u− a22v)vt

)

dx

= −

∫

Ω

( d1
a21

|∇ut|
2 +

d2
a12

|∇vt|
2 + (a22 − h′(u))u2

t +
(a22
a12

− 1
)

v2t

)

dx.
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As a result, a22 > max{supu∈R h′(u), a12}, i.e. max{(3Ca11 −Q2)/3Ca21, a12} im-

plies Vt 6 0 along the orbits of system. And Vt = 0 if and only if u2
t = v2t = |∇ut|

2 =

|∇vt|
2 = 0, i.e. Vt = 0 only at equilibria. Referring to the conclusions in [5], [11],

[10], the global stability of constant steady states follows. �

3.2. Turing instability of reaction-diffusion model. Next, our main objec-

tive is to investigate the variation of dynamics caused by diffusion, so it is essential

to suppose (S1) in Theorem 3.1 is not satisfied.

In order to analyze Turing bifurcation of system (1.1), it is necessary to write its

linearized operator corresponding to E(u∗, v∗)

(3.3) L :=







d1

( ∂2

∂x2
+

∂2

∂y2

)

+ fu(u
∗, v∗) fv(u

∗, v∗)

gu(u
∗, v∗) d2

( ∂2

∂x2
+

∂2

∂y2

)

+ gv(u
∗, v∗)






.

If ν = ϕeµteinxeimy is the eigenvector of L, then we obtain

(3.4) Lq2ϕ = µϕ,

where ϕ is a two-dimensional vector and

(3.5) Lq2 =

(

−d1(n
2 +m2) + fu(u

∗, v∗) fv(u
∗, v∗)

gu(u
∗, v∗) −d2(n

2 +m2) + gv(u
∗, v∗)

)

with q2 = n2 +m2.

It follows that

trLq2 = −(d1 + d2)q
2 + tr J = −(d1 + d2)q

2 + a21h
′(u∗)− a22,(3.6)

detLq2 = d1d2q
4 − (d2fu(u

∗, v∗) + d1gv(u
∗, v∗))q2 + detJ

= d1d2q
4 − (d2a21h

′(u∗)− d1a22)q
2 + a21(a12 − a22h

′(u∗)).

As in the case of stable equilibria in ODE, it must be trLq2 < 0 for all q, therefore

if exists q0 6= 0 makes detLq2
0

6 0, then Turing bifurcation occurs. It leads to the

fact that detLq2 = 0 has at least one positive root about q2, that is

d2a21h
′(u∗)− d1a22 > 0

and

∆ = (d2a21h
′(u∗)− d1a22)

2 − 4d1d2a21(a12 − a22h
′(u∗)) > 0.
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Combining the conditions above gives:

Theorem 3.2. If

(S2) max

{

d1
d2

a22
a21

, 2

√

d1
d2

a12
a21

−
d1
d2

a22
a21

}

< h′(u∗) < min
{a22
a21

,
a12
a22

}

is correct, then system (1.1) undergoes Turing instability.

4. Simulation of patterns in system (1.1)

This part aims at the diversity of patterns in (1.1) at zero equilibrium and a11 is

taken as the bifurcation parameter. The previous discussion tells us that a11 = a22

and

a11 = 2

√

d1
d2

a12
a21

−
d1
d2

a22
a21

are the critical values of Hopf and Turing bifurcations, respectively. For explanation,

at the case of a12 = 2, a21 = 1, d1 = 1.28, d2 = 16, Figure 4 shows the bifurcation

diagram in the a11 − a22 plane.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

a22

0

0.5

1

1.5

2

2.5

a11

D

Figure 4. Bifurcation diagram in the a11 − a22 plane with a12 = 2, a21 = 1, d1 = 1.28,
d2 = 16. The red and blue lines are Turing and Hopf curves, respectively.

For this kind of cubic polynomial source in system (1.1), one can find that C > 0

leads to no patterns and Q = 0 only causes stripes. Thus, in the following, we

demonstrate the pattern formation according to the points in D for C < 0 and
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Q 6= 0. Assume a22 = 1.5, C = −1 and other parameters are the same as in

Figure 4, then we have different patterns—stripes, mazes and spots—in the spatial

square domain [0, 2π]× [0, 2π] for (1.1) alternating to bifurcation parameter a11 and

coefficient Q of the quadratic term (see Figure 5).

(a) (b) (c) (d)

Figure 5. (a) The perfect stripes as a11 = 0.7, Q = 0.08; (b) The maze patterns with
a11 = 1, Q = 0.08; (c) The spots cause by a11 = 0.7, Q = 0.4; (d) The coexistence
of spots and mazes at a11 = 1, Q = 0.4.

5. Effect of weakly linear coupling on patterns

It is the last problem to look into the effect of weakly linear coupling between

two same systems like (1.1) on pattern formation, that is, we need to consider the

following system

(5.1)







































































∂u1

∂t
= a11u1 − a21v1 + Cu3

1 +Qu2
1 + d1∇

2u1 + ε2K11(u2 − u1)

+ε2K12(v2 − v1),

∂v1
∂t

= a12u1 − a22v1 + d2∇
2v1 + ε2K21(u2 − u1) + ε2K22(v2 − v1),

∂u2

∂t
= a11u2 − a21v2 + Cu3

2 +Qu2
2 + d1∇

2u2 + ε2K11(u1 − u2)

+ε2K12(v1 − v2),

∂v2
∂t

= a12u2 − a22v2 + d2∇
2v2 + ε2K21(u1 − u2) + ε2K22(v1 − v2),

where ε ≪ 1.

Next, we complete the simulation of system (5.1) in the square domain (0, 2π) ×

(0, 2π). Referring to parameter sets in previous section, we investigate the influence of

positive and negative weakly linear coupling on patterns, for example, take ε2K11 =

0.01 or −0.01, and K12 = K21 = K22 = 0.
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From Figures 6 and 7, when perfect Turing patterns like stripes and spots appear in

system (1.1), positive and negative weakly linear couplings make them synchronous

and anti-phase, respectively. However, for analogous Turing patterns like mazes and

coexistence of stripes and spots, the rule is violated.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6. (a)–(d) Synchronous and anti-phase stripes with coupled coefficients 0.01 and
−0.01; (e)–(h) Mazes under positive and negative couplings.

6. Conclusion

Our paper focuses on the dynamics of an activator-inhibitor model with general

cubic polynomial source. For this kind of activator source, we study how and which

part in it may have an effect on the kinetic behavior of the model. Our results provide

useful insights into the effect mechanism that morphogen reaction mode works on

pattern formation. Originally, the investigation is started from the ODE by removing

the diffusion in (1.1), and we observe that all the properties, such as the existence

of steady states, their stability and bifurcations, are decided by the relationship

among h′(u∗), a22/a21, and a12/a22. In other words, the derivative at steady states

of activator source term, the production rate of the inhibitor and both degradation

rates are critical factors for the ODE model. Moreover, the bifurcation diagram

in Figure 2 and phase plot in Figure 3 give an intuitive display of the bifurcation
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7. (a)–(d) Synchronous and anti-phase spots with coupled coefficients 0.01 and
−0.01; (e)–(h) Analogous Turing patterns under positive and negative couplings.

cases. After that, in Theorem 3.1, the global stability of steady states in reaction-

diffusion model is demonstrated using the Lyapunov functional. And it is another

time to prove the crucial function of activator source term. In addition, the change

from stable to unstable steady states because of diffusion gives us Turing instability,

whose supposition (S2) involving activator source is shown in Theorem 3.2. As the

last part of the present paper, the numerical simulation is carried out to illustrate

the patterns in a spatially square domain of system (1.1). The results show that in

the activator source, the relation between cubic term C and 1 distinguishes quiet

from patterns, and the appearance of quadratic term Q makes patterns except for

stripes possible. Certainly, since the production rate of activator is also an important

aspect for pattern evolution, we choose it as the bifurcation parameter. Adding

weakly linear coupling, we observe that positive or negative couplings induce Turing

patterns (stripes and spots) to be synchronous or anti-phase. Also, some analogous

patterns (mazes) are found but the function of coupling is not noticeable.
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