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Abstract. Let H8 be the unique noncommutative and noncocommutative eight dimen-

sional semi-simple Hopf algebra. We first construct a weak Hopf algebra H̃8 based on H8,

then we investigate the structure of the representation ring of H̃8. Finally, we prove that

the automorphism group of r(H̃8) is just isomorphic to D6, where D6 is the dihedral group
with order 12.
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1. Introduction

As is well known, many researches have focused on studying automorphisms of

algebras. For examples, van der Kulk in [17], Zhao in [21], Yu in [20], Vesselin and Yu

in [8] have made some significant contributions to the automorphisms of polynomial

algebras. Alperin in [2] gave the homology of the group of automorphisms of k[x, y]

over a field k. Furthermore, Dicks in [7] researched automorphisms of polynomial

ring in two variables. Chen in [3] consider the coalgebra automorphism group of

Hopf algebra kq[x;x
−1; y]. Han and Su in [9] studied the automorphism group of

Witt algebras. Jia et al. in [10] proved that the automorphism group of the Green

ring of the Sweedler Hopf algebra over the field F is isomorphic to the Klein group,

and the automorphism group of the Green algebra of the Sweedler Hopf algebra

is just the semidirect product of Z2 and G, where the group G = F \ {1/2} with

multiplication given by a · b = 1− a− b+ 2ab.
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Recently, Chen, Van Oystaeyen and Zhang in [4] described the structure of the

Green rings of the Taft algebra Hn(q). Li and Zhang in [12] extended these results to

the case of the generalized Taft Hopf algebras Hn,d(q) and determined all nilpotent

elements in the Green ring of Hn,d(q). It is noted that for generalized Taft Hopf

algebras Yang in [18] classified their indecomposable modules and gave the multi-

plication of their representation rings. In this paper, we first construct the weak

Hopf algebra H̃8 corresponding to the unique 8-dimensional noncommutative and

noncocommutative semi-simple Hopf algebra H8. Then we describe the structure

of the representation ring r(H̃8) of H̃8 by the generators and relations. Finally, we

investigate the automorphism group of the representation ring r(H̃8).

The paper is organized as follows. We first introduce some notation and the

concept of the 8-dimensional semi-simple Hopf algebraH8. Then we introduce a class

of weak Hopf algebras H̃8 based onH8. The structure of its representation ring r(H̃8)

is investigated. Finally we show that the automorphism group of r(H̃8) is isomorphic

to D6, where D6 is the dihedral group with order 12. It is interesting to describe

the corresponding results for restricted forms of general quantum groups. It is noted

that our approach is very straightforward.

2. Preliminaries

Throughout, we work over the complex field C unless otherwise stated. All alge-

bras, Hopf algebras and modules are defined over C; all modules are left modules

and finite dimensional; all maps are C-linear; dim, ⊗ and hom stand for dimC, ⊗C

and homC, respectively. For the theory of Hopf algebras, we refer to [14], [16].

All 8-dimensional Hopf algebras are described in [13], [15]. One of them contains

a unique neither commutative nor cocommutative semisimple Hopf algebra H8. In

detail, as an algebra over C, H8 is generated by g, h and x subject to the relations

g2 = 1, h2 = 1, gh = hg, xg = hx, gx = xh, x2 = 1
2 (1 + g + h− gh).

The coalgebra structure ∆, ε and the antipode S are given by

∆(g) = g ⊗ g, ∆(h) = h⊗ h, ε(g) = 1, ε(h) = 1,

∆(x) = 1
2 (1⊗ 1 + 1⊗ g + h⊗ 1− h⊗ g)(x⊗ x), ε(x) = 1,

S(g) = g−1, S(h) = h−1, S(x) = x.

Note that the set

{1, g, h, x, gh, gx, xg, xgh}

1132



forms a basis of H8 and

(2.1) H8
∼= C⊕ C⊕ C⊕ C⊕M2(C).

Definition 2.1. The C-algebra H̃8 is the associative algebra generated by g, h

and x subject to the relations

g3 = g, h3 = h, g2 = h2, gh = hg, x = hxg,

x = gxh, x2 = 1
2 (g

2 + g + h− gh).

We set J = g2 = h2, it is easy to see that J and 1 − J are a pair of orthogonal

central idempotents in H̃8. Let W1 = H̃8J , W2 = H̃8(1 − J); we have

Proposition 2.2. H̃8 = W1 ⊕W2, as two-sided ideals. Moreover, W1
∼= H8 and

W2
∼= C as algebras.

P r o o f. The first statement is easy to see. Let us prove the second statement.

Note that W1 is generated by g, h and x and subject to the relations

g2 = h2 = J, gh = hg, gx = xh, xg = hx, x2 = 1
2 (g

2 + g + h− gh).

Let ϕ : W1 → H8 be the map defined by

ϕ(J) = 1, ϕ(x) = x, ϕ(g) = g, ϕ(h) = h.

It is easy to see that ϕ is an algebraic isomorphism.

W2 is generated by (1 − J)g, (1 − J)h and (1− J)x. Note that

Jg = gJ = g, Jh = hJ = h,

moreover, x = hxg or x = gxh. It follows that

Jx = Jhxg = hxg = x = xJ, or Jx = Jgxh = gxh = x = xJ.

Hence g(1− J) = 0, h(1− J) = 0, x(1 − J) = 0 and W2
∼= C. �

By Proposition 2.2, it is easy to see that H̃8 is semi-simple, and the set

{1, g, h, x, gh, gx, xg, J, xgh}

forms a basis of H̃8.
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The definition of the weak Hopf algebra was introduced by Li (see [11]). Many

examples of weak Hopf algebras can be found in [1], [19], [6], [5]. Recall that a k-

bialgebra (H,µ, η,∆, ε) is called a weak Hopf algebra if there exists a map T ∈

hom(H,H) such that T ∗ id ∗ T = T and id ∗ T ∗ id = id, where ∗ is the convolution

map in hom(H,H). Now, we introduce the coalgebra structure maps on H̃8 as

follows.

The comultiplication ∆: H̃8 → H̃8 ⊗ H̃8 and the counit ε : H̃8 → k are given by

∆(g) = g ⊗ g, ∆(h) = h⊗ h, ε(1) = ε(g) = ε(h) = 1,

∆(x) = 1
2 (g

2 ⊗ g2 + g2 ⊗ g + h⊗ g2 − h⊗ g)(x⊗ x), ε(x) = 1.

It is obvious that H̃8 is indeed a coalgebra by the definition of ∆ and ε.

The C-map T : H̃8 → H̃8 is given by

T (1) = 1, T (g) = g, T (h) = h, T (x) = x.

Theorem 2.3. H̃8 is a noncommutative and noncocommutative weak Hopf alge-

bra with the weak antipode T .

P r o o f. (1) It is straightforward to check that H̃8 is a bialgebra.

(2) The map T can define a weak antipode in H̃8 naturally. First, the map

T : H̃8 → H̃8

op
keeps the defining relations. Indeed,

(T (g))3 = T (g), (T (h))3 = T (h), (T (g))2 = (T (h))2, T (g)T (h) = T (h)T (g).

When x = hxg, we have

T (g)T (x)T (h) = gxh = x = T (x),

when x = gxh, we have

T (h)T (x)T (g) = hxg = x = T (x).

Therefore the map T can define an anti-algebra homomorphism T : H̃8 → H̃8.

Secondly, it is easy to see that in H̃8 we have

T ∗ id ∗ T (g) = m(T ⊗ id⊗ T )(g ⊗ g ⊗ g) = g3 = g = T (g),

id ∗ T ∗ id(g) = m(id⊗ T ⊗ id)(g ⊗ g ⊗ g) = g3 = g = id(g),

T ∗ id ∗ T (h) = m(T ⊗ id⊗ T )(h⊗ h⊗ h) = h3 = h = T (h),

id ∗ T ∗ id(h) = m(id⊗ T ⊗ id)(h⊗ h⊗ h) = h3 = h = id(h),
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T ∗ id ∗ T (x) = m(T ⊗ id⊗ T )((g2x+ hx)⊗ (g2x+ hx)

⊗ g2x+ (g2x+ hx)⊗ (g2x− hx)⊗ gx+ (g2x− hx)

⊗ (gx+ ghx)⊗ gx+ (g2x− hx)⊗ (gx− ghx)⊗ g2x)

= 1
2 (g

2 + g + h− gh)x3 = x5 = x = T (x),

id ∗ T ∗ id(x) = m(id⊗ T ⊗ id)((g2x+ hx)⊗ (g2x+ hx)

⊗ g2x+ (g2x+ hx)⊗ (g2x− hx)⊗ gx+ (g2x− hx)

⊗ (gx+ ghx)⊗ gx+ (g2x− hx)⊗ (gx− ghx)⊗ g2x)

= 1
2 (g

2 + g + h− gh)x3 = x5 = x = id(x).

On the other hand, we have

id ∗ T (g) = J = T ∗ id(g), id ∗ T (h) = J = T ∗ id(h),

id ∗ T (x) = 1
2x(g

2 + g + h− gh)x = x4 = J = T ∗ id(x).

These arguments show that for any z ∈ H̃8 that we have id ∗ T (z) and T ∗ id(z) are

the elements of the center of H̃8. Now, if a, b ∈ H̃8 and

T ∗ id ∗ T (a) = T (a), T ∗ id ∗ T (b) = T (b),

id ∗ T ∗ id(a) = a, id ∗ T ∗ id(b) = b,

it is easy to see that

T ∗ id ∗ T (ab) = T (ab), id ∗ T ∗ id(ab) = ab.

Hence T is indeed a weak antipode of H̃8 and H̃8 is a weak Hopf algebra, which is

noncommutative and noncocommutative. �

3. The representation ring r(H̃8) of H̃8

Assume that A is an algebra, and let irr-A denote the set of finite dimensional

irreducible A-modules.

One sees that H̃8 is semisimple. By Proposition 2.2 we have H̃8 = W1 ⊕W2 as al-

gebras, where W1
∼= H8 and W2

∼= C. Finite dimensional irreducible representations

of H̃8 are described as follows.
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Lemma 3.1. There are six classes of non-isomorphic irreducible H̃8-modules Sn,

n ∈ Z5, and S, the actions of H̃8 on them are defined as follows:

Sm : g · v(m) = (−1)mv(m), h · v(m) = (−1)mv(m),

x · v(m) = imv(m), v(m) ∈ Sm, m ∈ Z4,

S4 : g · v(4) = 0, h · v(4) = 0,

x · v(4) = 0, v(4) ∈ S4,

S : g · vj = (−1)jvj , h · vj = (−1)j+1vj ,

x · vj = v3−j , vj ∈ S, j = 1, 2,

where v(n) is the basis of Sn and v1, v2 is the basis of S.

P r o o f. It is obvious by (2.1) and Proposition 2.2. In fact, Sn, n ∈ Z4, S and S4

are just irreducible H̃8-modules lifting by those of H8-modules and C-modules. �

Let H be a finite dimensional semisimple bialgebra and M and N two finite

dimensional H-modules. Then M ⊗N is also an H-module defined by

h · (m⊗ n) =
∑

(h)

h(1) ·m⊗ h(2) · n

for all h ∈ H and m ∈ M , n ∈ N , where ∆(h) =
∑
(h)

h(1)⊗h(2). By the Krull-Schmidt

theorem, M ⊗N can be decomposed into the direct sum of irreducible H-modules.

The decomposition formulas of the tensor product of two irreducible H̃8-modules are

as follows.

Lemma 3.2. Let n ∈ Z5, then as H̃8-modules we have

(1) provided that m,m′ ∈ Z4,

(a) if m+m′ is odd, then Sm ⊗ Sm′
∼= Sm+m′ (mod 4);

if m+m′ is even, then Sm ⊗ Sm′
∼= Sm−m′ (mod 4);

(b) S ⊗ Sm
∼= Sm ⊗ S ∼= S;

(2) S ⊗ S ∼=
3⊕

i=0

Si;

(3) Sn ⊗ S4
∼= S4 ⊗ Sn

∼= S4;

(4) S ⊗ S4
∼= S4 ⊗ S ∼= S4 ⊕ S4.

P r o o f. (1) (a) Considering the tensor product Sm ⊗ Sm′ , where m,m′ ∈ Z4, we

have

g · (v(m) ⊗ v(m
′)) = (−1)m+m′

(v(m) ⊗ v(m
′)) = (−1)m−m′

(v(m) ⊗ v(m
′)),

h · (v(m) ⊗ v(m
′)) = (−1)m+m′

(v(m) ⊗ v(m
′)) = (−1)m−m′

(v(m) ⊗ v(m
′));
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if m+m′ is odd, then

x · (v(m) ⊗ v(m
′)) = im+m′

(v(m) ⊗ v(m
′)),

if m+m′ is even, then

x · (v(m) ⊗ v(m
′)) = im−m′

(v(m) ⊗ v(m
′)).

It follows that if m+m′ is odd, then Sm ⊗ Sm′
∼= Sm+m′ (mod 4); if m+m′ is even,

then Sm ⊗ Sm′
∼= Sm−m′ (mod 4).

(1) (b) Considering the tensor products Sm ⊗ S and S ⊗ Sm, where m ∈ Z4, we

have for given j = 1, 2

g · (v(m) ⊗ vj) = (−1)m+j(v(m) ⊗ vj),

h · (v(m) ⊗ vj) = (−1)m+1+j(v(m) ⊗ vj);

if m− j is odd, then

x · (v(m) ⊗ vj) = i−m(v(m) ⊗ v3−j),

if m− j is even, then

x · (v(m) ⊗ vj) = im(v(m) ⊗ v3−j).

Further,
g · (vj ⊗ v(m)) = (−1)m+j(vj ⊗ v(m)),

h · (vj ⊗ v(m)) = (−1)m+1+j(vj ⊗ v(m));

if m− j is odd, then

x · (vj ⊗ v(m)) = im(v3−j ⊗ v(m)),

if m− j is even, then

x · (vj ⊗ v(m)) = i−m(v3−j ⊗ v(m)).

Obviously, if m = 0, then

S0 ⊗ S ∼= S ⊗ S0
∼= S.

If m = 1, we set

w1 = iv(1) ⊗ v2, w2 = v(1) ⊗ v1.
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It is easy to check that {w1, w2} is also a basis of the H̃8-module S1 ⊗ S, and

g · wk = (−1)kwk, h · wk = (−1)k+1wk, x · wk = w3−k, k = 1, 2.

Hence S1 ⊗ S ∼= S. We set

w′

1 = v2 ⊗ v(1), w′

2 = iv1 ⊗ v(1).

It is easy to check that {w′

1, w
′

2} is also a basis of the H̃8-module S ⊗ S1, and

g · w′

k = (−1)kw′

k, h · w′

k = (−1)k+1w′

k, x · w′

k = w′

3−k, k = 1, 2.

Then S ⊗ S1
∼= S. The same arguments are applied to the case m = 2 and m = 3,

we show that S ⊗ Sm
∼= Sm ⊗ S ∼= S.

(2) Considering the tensor product S ⊗ S, we have for given j, j′ = 1, 2

g · (vj ⊗ vj′) = (−1)j+j′ (vj ⊗ vj′ ),

h · (vj ⊗ vj′ ) = (−1)j+j′ (vj ⊗ vj′);

if j + j′ is odd, then

x · (vj ⊗ vj′ ) = i2j(v3−j ⊗ v3−j′ ),

if j + j′ is even, then

x · (vj ⊗ vj′ ) = v3−j ⊗ v3−j′ .

Set

u0 = v1 ⊗ v1 + v2 ⊗ v2, u1 = −iv1 ⊗ v2 + v2 ⊗ v1,

u2 = v1 ⊗ v1 − v2 ⊗ v2, u3 = iv1 ⊗ v2 + v2 ⊗ v1.

It is easy to check that {uk}, k ∈ Z4, is also a basis of the H̃8-module S ⊗ S, and

g · uk = (−1)kuk, h · uk = (−1)kuk, x · uk = ikuk.

Hence S ⊗ S ∼=
3⊕

i=0

Si.

(3) Considering the tensor products Sn ⊗ S4 and S4 ⊗ Sn, where n ∈ Z5, we have

g · (v(n) ⊗ v(4)) = 0, h · (v(n) ⊗ v(4)) = 0, x · (v(n) ⊗ v(4)) = 0,

and

g · (v(4) ⊗ v(n)) = 0, h · (v(4) ⊗ v(n)) = 0, x · (v(4) ⊗ v(n)) = 0.

Hence S4 ⊗ Sn
∼= Sn ⊗ S4

∼= S4.
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(4) Considering the tensor products S⊗ S4 and S4 ⊗S, we have for given j = 1, 2

g · (vj ⊗ v(4)) = 0, h · (vj ⊗ v(4)) = 0, x · (vj ⊗ v(4)) = 0,

and

g · (v(4) ⊗ vj) = 0, h · (v(4) ⊗ vj) = 0, x · (v(4) ⊗ vj) = 0.

Hence S ⊗ S4
∼= S4 ⊗ S ∼= S4 ⊕ S4. �

Corollary 3.3. For any H̃8-modules M and N , we have the isomorphism

M ⊗N ∼= N ⊗M

as H̃8-modules.

Let H be a semisimple bialgebra; the representation ring r(H) of H is defined as

follows. As a group r(H) is the free abelian group generated by the isomorphism

classes [V ] of finite dimensional H-modules V modulo the relations

[M ⊕ V ] = [M ] + [V ].

The multiplication of r(H) is given by the tensor product of H-modules, that is,

[M ][V ] = [M ⊗ V ].

Note that the representation ring r(H) is an associative ring with a Z-basis {[V ] :

V ∈ irr-H}.

Theorem 3.4. The representation ring r(H̃8) of H̃8 is isomorphic to the quotient

ring of the polynomial ring Z[x1, x2, x3, x4] modules the ideal I generated by the

elements

x2
1−1, x2

2−1, x1x3−x3, x2x3−x3, 1+x1+x2+x1x2−x2
3, x2

4−x4, x3x4−2x4.

P r o o f. Let π : Z[x1, x2, x3, x4] → Z[x1, x2, x3, x4]/I be the natural epimor-

phism and v = π(v) for any v ∈ Z[x1, x2, x3, x4]. In Z[x1, x2, x3, x4]/I, we have

x1
2 = x2

2 = 1, x1x3 = x2x3 = x3,

x3
2 = 1 + x1 + x2 + x1x2, x4

2 = x4, x3x4 = 2x4.
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It is straightforward to check that the ring Z[x1, x2, x3, x4]/I is Z-spanned by

{1, x1, x2, x3, x4, x1x2}.

This also means that the rank of Z[x1, x2, x3, x4]/I is at most 6.

Let a1 = [S1], a2 = [S2], a3 = [S], a4 = [S4]. Since [S0] is the identity element in

r(H̃8), the ring r(H̃8) is generated by a1, a2, a3, a4 by Lemma 3.2. Therefore there

is a unique ring epimorphism

ϕ : Z[x1, x2, x3, x4] → r(H̃8)

such that

ϕ(xi) = ai, i = 1, 2, 3, 4.

On the other hand, from Lemma 3.2 we have

a21 = a22 = 1, a1a3 = a2a3 = a3,

1 + a1 + a2 + a1a2 = a23, a24 = a4, a3a4 = 2a4.

It follows that

ϕ(x2
1 − 1) = 0, ϕ(x2

2 − 1) = 0, ϕ(x3x1 − x3) = 0, ϕ(x3x2 − x3) = 0,

ϕ(1 + x1 + x2 + x1x2 − x2
3) = 0, ϕ(x2

4 − x4) = 0, ϕ(x3x4 − 2x4) = 0.

Hence, ϕ(I) = 0 and ϕ induces a ring epimorphism

ϕ : Z[x1, x2, x3, x4]/I → r(H̃8),

such that ϕ(v) = ϕ(v) for all v ∈ Z[x1, x2, x3, x4]. Noting that the Z-rank of r(H̃8)

is 6, we get that ϕ is in fact a ring isomorphism. �

Remark 3.5. Argument similar to the proof of Theorem 3.4 shows that

r(H8) ∼= Z[x1, x2, x3]/I,

where I is the ideal generated by the elements

x2
1 − 1, x2

2 − 1, x1x3 − x3, x2x3 − x3, 1 + x1 + x2 + x1x2 − x2
3.
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4. Automorphism group of representation ring r(H̃8)

In this section, let Ag denote the corresponding coefficient matrix of a Z-linear

map g : r(H̃8) → r(H̃8), and let |Ag| denote the determinant of Ag.

Let gi, i ∈ Z12 be Z-linear maps of r(H̃8) determined by the following relations:

g0 : 1 → 1 x1 → x1, x2 → x2, x3 → x3, x1x2 → x1x2, x4 → x4,

g1 : 1 → 1 x1 → x1x2, x2 → x1, x3 → x3, x1x2 → x2, x4 → x4,

g2 : 1 → 1 x1 → x1x2, x2 → x1, x3 → −x3 + 4x4, x1x2 → x2, x4 → x4,

g3 : 1 → 1 x1 → x1x2, x2 → x2, x3 → x3, x1x2 → x1, x4 → x4,

g4 : 1 → 1 x1 → x1x2, x2 → x2, x3 → −x3 + 4x4, x1x2 → x1, x4 → x4,

g5 : 1 → 1 x1 → x1, x2 → x1x2, x3 → x3, x1x2 → x2, x4 → x4,

g6 : 1 → 1 x1 → x1, x2 → x1x2, x3 → −x3 + 4x4, x1x2 → x2, x4 → x4,

g7 : 1 → 1 x1 → x1, x2 → x2, x3 → −x3 + 4x4, x1x2 → x1x2, x4 → x4,

g8 : 1 → 1 x1 → x2, x2 → x1x2, x3 → x3, x1x2 → x1, x4 → x4,

g9 : 1 → 1 x1 → x2, x2 → x1x2, x3 → −x3 + 4x4, x1x2 → x1, x4 → x4,

g10 : 1 → 1 x1 → x2, x2 → x1, x3 → x3, x1x2 → x1x2, x4 → x4,

g11 : 1 → 1 x1 → x2, x2 → x1, x3 → −x3 + 4x4, x1x2 → x1x2, x4 → x4.

It is easy to check that gi, i ∈ Z12, are automorphisms of r(H̃8) and g0 is the

identity map. The set {gi : i ∈ Z12} is a group under the composition of functions.

The multiplication is described as follows:

◦ g0 g1 g2 g3 g4 g5 g6 g7 g8 g9 g10 g11
g0 g0 g1 g2 g3 g4 g5 g6 g7 g8 g9 g10 g11
g1 g1 g8 g9 g10 g11 g3 g4 g2 g0 g7 g5 g6
g2 g2 g9 g8 g11 g10 g4 g3 g1 g7 g0 g6 g5
g3 g3 g5 g6 g0 g7 g1 g2 g4 g10 g11 g8 g9
g4 g4 g6 g5 g7 g0 g2 g1 g3 g11 g10 g9 g8
g5 g5 g10 g11 g8 g9 g0 g7 g6 g3 g4 g1 g2
g6 g6 g11 g10 g9 g8 g7 g0 g5 g4 g3 g2 g1
g7 g7 g2 g1 g4 g3 g6 g5 g0 g9 g8 g11 g10
g8 g8 g0 g7 g5 g6 g10 g11 g9 g1 g2 g3 g4
g9 g9 g7 g0 g6 g5 g11 g10 g8 g2 g1 g4 g3
g10 g10 g3 g4 g1 g2 g8 g9 g11 g5 g6 g0 g7
g11 g11 g4 g3 g2 g1 g9 g8 g10 g6 g5 g7 g0

It follows that {gi : i ∈ Z12} is a subgroup of Aut(r(H̃8)). Also we have

g22 = g8, g32 = g7, g42 = g1, g52 = g9, g62 = g0, g23 = g0,

g2g3 = g11, g3g2 = g6, g22g3 = g5, g32g3 = g4, g42g3 = g10.
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Hence, {gi : i ∈ Z12} ∼= D6 as groups, where

D6 = 〈u, v : u6 = 1, v2 = 1, v−1uv = u−1〉

is the dihedral group with order 12.

In the sequel, we will show the automorphism group Aut(r(H̃8)) is just the group

{gi : i ∈ Z12}.

Lemma 4.1. Let g be an automorphism of r(H̃8). Then

(1) g(x1) = ±x1 or g(x1) = ±x2 or g(x1) = ±x1x2 or g(x1) = ±1 ∓ 2x4 or

g(x1) = ±x1 ∓ 2x4 or g(x1) = ±x2 ∓ 2x4 or g(x1) = ±x1x2 ∓ 2x4;

(2) g(x2) = ±x1 or g(x2) = ±x2 or g(x2) = ±x1x2 or g(x2) = ±1 ∓ 2x4 or

g(x2) = ±x1 ∓ 2x4 or g(x2) = ±x2 ∓ 2x4 or g(x2) = ±x1x2 ∓ 2x4;

(3) g(x4) = x4 or g(x4) = 1− x4.

P r o o f. (1) Indeed, we have (g(x1))
2 = 1 since g is an automorphism of r(H̃8)

and x2
1 = 1. Assume that

g(x1) = α0 + α1x1 + α2x2 + α3x3 + α4x1x2 + α5x4, αi ∈ Z, i = 0, 1, 2, 3, 4, 5.

Then we get

(α0 + α1x1 + α2x2 + α3x3 + α4x1x2 + α5x4)
2 = 1,

and we have

α2
0 + α2

1 + α2
2 + α2

3 + α2
4 + (2α0α1 + 2α2α4 + α2

3)x1 + (2α0α2 + 2α1α4 + α2
3)x2

+ 2(α0α3 + α1α3 + α2α3 + α3α4)x3 + (2α0α4 + 2α1α2 + α2
3)x1x2

+ (2α0α5 + 2α1α5 + 2α2α5 + 4α3α5 + 2α4α5 + α2
5)x4 = 1.

Hence we get





α2
0 + α2

1 + α2
2 + α2

3 + α2
4 = 1,

2α0α1 + 2α2α4 + α2
3 = 0,

2α0α2 + 2α1α4 + α2
3 = 0,

2(α0α3 + α1α3 + α2α3 + α3α4) = 0,

2α0α4 + 2α1α2 + α2
3 = 0,

2α0α5 + 2α1α5 + 2α2α5 + 4α3α5 + 2α4α5 + α2
5 = 0.
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Thanks to α0, α1, α2, α3, α4, α5 ∈ Z, we obtain that (α0, α1, α2, α3, α4, α5) is one of

the solutions

(0,±1, 0, 0, 0, 0), (0, 0,±1, 0, 0, 0), (0, 0, 0, 0,±1, 0),

(±1, 0, 0, 0, 0,∓2), (0,±1, 0, 0, 0,∓2), (0, 0,±1, 0, 0,∓2), (0, 0, 0, 0,±1,∓2).

Therefore, g(x1) = ±x1 or g(x1) = ±x2 or g(x1) = ±x1x2 or g(x1) = ±1 ∓ 2x4

or g(x1) = ±x1 ∓ 2x4 or g(x1) = ±x2 ∓ 2x4 or g(x1) = ±x1x2 ∓ 2x4. By similar

arguments for g(x2) we can deduce the relation (2).

(3) Notice that x2
4 = x4, hence we have (g(x4))

2 = g(x4).

Assume

g(x4) = γ0 + γ1x1 + γ2x2 + γ3x3 + γ4x1x2 + γ5x4, γi ∈ Z, i = 0, 1, 2, 3, 4, 5.

Then we have

(g(x4))
2 = γ2

0 + γ2
1 + γ2

2 + γ2
3 + γ2

4 + (2γ0γ1 + 2γ2γ4 + γ2
3)x1 + (2γ0γ2 + 2γ1γ4 + γ2

3)x2

+ 2(γ0γ3 + γ1γ3 + γ2γ3 + γ3γ4)x3 + (2γ0γ4 + 2γ1γ2 + γ2
3)x1x2

+ (2γ0γ5 + 2γ1γ5 + 2γ2γ5 + 4γ3γ5 + 2γ4γ5 + γ2
5)x4.

We get 



γ2
0 + γ2

1 + γ2
2 + γ2

3 + γ2
4 = γ0,

2γ0γ1 + 2γ2γ4 + γ2
3 = γ1,

2γ0γ2 + 2γ1γ4 + γ2
3 = γ2,

2(γ0γ3 + γ1γ3 + γ2γ3 + γ3γ4) = γ3,

2γ0γ4 + 2γ1γ2 + γ2
3 = γ4,

2γ0γ5 + 2γ1γ5 + 2γ2γ5 + 4γ3γ5 + 2γ4γ5 + γ2
5 = γ5.

Thanks to γ0, γ1, γ2, γ3, γ4, γ5 ∈ Z, we obtain that

(γ0, γ1, γ2, γ3, γ4, γ5) = (0, 0, 0, 0, 0, 1) or (1, 0, 0, 0, 0,−1).

Therefore g(x4) = x4 or g(x4) = 1− x4. �

Lemma 4.2. Let g be an automorphism of r(H̃8) and g(x4) = x4. Then

(1) g(x1) = x1 or g(x1) = x2 or g(x1) = x1x2 or g(x1) = −1 + 2x4 or g(x1) =

−x1 + 2x4 or g(x1) = −x2 + 2x4 or g(x1) = −x1x2 + 2x4;

(2) g(x2) = x1 or g(x2) = x2 or g(x2) = x1x2 or g(x2) = −1 + 2x4 or g(x2) =

−x1 + 2x4 or g(x2) = −x2 + 2x4 or g(x2) = −x1x2 + 2x4.
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P r o o f. (1) Noticing that x1x3 = x3 and x3x4 = 2x4, we have x1x4 = x4 and

g(x1)g(x4) = g(x4).

Under the condition that g(x4) = x4 and by Lemma 4.1, we obtain that g(x1) can

only belong to one of the following 7 cases:

g(x1) = x1, g(x1) = x2, g(x1) = x1x2, g(x1) = −1 + 2x4,

g(x1) = −x1 + 2x4, g(x1) = −x2 + 2x4, g(x1) = −x1x2 + 2x4.

(2) Similar to the proof of (1). �

Remark 4.3. If we assume that g is an automorphism of r(H̃8) and g(x4) = x4

(see Lemma 4.2), we can exclude the following cases:

(1) g(x1) = x1, g(x2) = x1;

(2) g(x1) = x2, g(x2) = x2;

(3) g(x1) = x1x2, g(x2) = x1x2;

(4) g(x1) = −1 + 2x4, g(x2) = −1 + 2x4;

(5) g(x1) = −x1 + 2x4, g(x2) = −x1 + 2x4;

(6) g(x1) = −x2 + 2x4, g(x2) = −x2 + 2x4;

(7) g(x1) = −x1x2 + 2x4, g(x2) = −x1x2 + 2x4, since x1 6= x2.

Lemma 4.4. Let g be an automorphism of r(H̃8) and g(x4) = x4. Then g ∈

{gi : i ∈ Z12}.

P r o o f. Since g is an automorphism of r(H̃8) and





x1x3 = x3,

x2x3 = x3,

x3x4 = 2x4,

x2
3 = 1 + x1 + x2 + x1x2

we have

(4.1)





g(x1x3) = g(x1)g(x3) = g(x3),

g(x2x3) = g(x2)g(x3) = g(x3),

g(x3x4) = g(x3)g(x4) = 2g(x4),

g(x2
3) = (g(x3))

2 = 1 + g(x1) + g(x2) + g(x1)g(x2).

Assume

g(x3) = β0 + β1x1 + β2x2 + β3x3 + β4x1x2 + β5x4, βj ∈ Z, j = 0, 1, 2, 3, 4, 5.
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Then we have

(g(x3))
2 = β2

0 +β2
1 +β2

2 +β2
3 +β2

4 +(2β0β1+2β2β4+β2
3)x1+(2β0β2+2β1β4+β2

3)x2

+2(β0β3+β1β3+β2β3+β3β4)x3+(2β0β4+2β1β2+β2
3)x1x2+(2β0β5

+2β1β5+2β2β5+4β3β5+2β4β5+β2
5)x4.

If g(x1) = x1, g(x2) = x2, then




β0x1 + β1 + β2x1x2 + β3x3 + β4x2 + β5x4 = β0 + β1x1 + β2x2 + β3x3

+β4x1x2 + β5x4,

β0x2 + β1x1x2 + β2 + β3x3 + β4x1 + β5x4 = β0 + β1x1 + β2x2 + β3x3

+β4x1x2 + β5x4,

(β0 + β1 + β2 + 2β3 + β4 + β5)x4 = 2x4,

β2
0 + β2

1 + β2
2 + β2

3 + β2
4 + (2β0β1 + 2β2β4 + β2

3)x1 + (2β0β2 + 2β1β4 + β2
3)x2

+2(β0β3 + β1β3 + β2β3 + β3β4)x3 + (2β0β4 + 2β1β2 + β2
3)x1x2

+(2β0β5 + 2β1β5 + 2β2β5 + 4β3β5 + 2β4β5 + β2
5)x4 = 1 + x1 + x2 + x1x2.

We get 



β0 = β1 = β2 = β4,

β0 + β1 + β2 + 2β3 + β4 + β5 = 2,

β2
0 + β2

1 + β2
2 + β2

3 + β2
4 = 1,

2β0β1 + 2β2β4 + β2
3 = 1,

2β0β2 + 2β1β4 + β2
3 = 1,

2(β0β3 + β1β3 + β2β3 + β3β4) = 0,

2β0β4 + 2β1β2 + β2
3 = 1,

2β0β5 + 2β1β5 + 2β2β5 + 4β3β5 + 2β4β5 + β2
5 = 0.

Thanks to β0, β1, β2, β3, β4, β5 ∈ Z, we obtain that

(β0, β1, β2, β3, β4, β5) = (0, 0, 0, 1, 0, 0) or (0, 0, 0,−1, 0, 4).

If (β0, β1, β2, β3, β4, β5) = (0, 0, 0, 1, 0, 0), then g(1) = 1, g(x1) = x1, g(x2) = x2,

g(x1x2) = x1x2, g(x3) = x3, g(x4) = x4, and

Ag =




1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1




= A
−1
g ;

it follows that g = g0.
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If (β0, β1, β2, β3, β4, β5) = (0, 0, 0,−1, 0, 4), then g(1) = 1, g(x1) = x1, g(x2) = x2,

g(x1x2) = x1x2, g(x3) = −x3 + 4x4, g(x4) = x4, and

Ag =




1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 −1 0 0

0 0 0 0 1 0

0 0 0 4 0 1




= A
−1
g ;

it follows that g = g7.

Similar arguments are applied to the remaining possibilities one by one. We get

that there are only 10 possibilities such that g are automorphisms:

(1) if g(x1) = x1x2, g(x2) = x1, then g = g1 or g2;

(2) if g(x1) = x1x2, g(x2) = x2, then g = g3 or g = g4;

(3) if g(x1) = x1, g(x2) = x1x2, then g = g5 or g = g6;

(4) if g(x1) = x2, g(x2) = x1x2, then g = g8 or g = g9;

(5) if g(x1) = x2, g(x2) = x1, then g = g10 or g = g11.

Moreover, if g(x1) = −1 + 2x4 or g(x2) = −1 + 2x4 or g(x1x2) = −1 + 2x4, then

we obtain that g(x3) = 2x4 with |Ag| = 0. It follows that g is not an automorphism

of r(H̃8).

Finally, the 18 possible cases left are

(1) g(x1) = x1, g(x2) = −x2 + 2x4;

(2) g(x1) = x1, g(x2) = −x1x2 + 2x4;

(3) g(x1) = x2, g(x2) = −x1 + 2x4;

(4) g(x1) = x2, g(x2) = −x1x2 + 2x4;

(5) g(x1) = x1x2, g(x2) = −x1 + 2x4;

(6) g(x1) = x1x2, g(x2) = −x2 + 2x4;

(7) g(x1) = −x1 + 2x4, g(x2) = x2;

(8) g(x1) = −x1 + 2x4, g(x2) = x1x2;

(9) g(x1) = −x1 + 2x4, g(x2) = −x2 + 2x4;

(10) g(x1) = −x1 + 2x4, g(x2) = −x1x2 + 2x4;

(11) g(x1) = −x2 + 2x4, g(x2) = x1;

(12) g(x1) = −x2 + 2x4, g(x2) = x1x2;

(13) g(x1) = −x2 + 2x4, g(x2) = −x1 + 2x4;

(14) g(x1) = −x2 + 2x4, g(x2) = −x1x2 + 2x4;

(15) g(x1) = −x1x2 + 2x4, g(x2) = x1;

(16) g(x1) = −x1x2 + 2x4, g(x2) = x2;

(17) g(x1) = −x1x2 + 2x4, g(x2) = −x1 + 2x4;
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(18) g(x1) = −x1x2 + 2x4, g(x2) = −x2 + 2x4.

It is easy to deduce that g(x3) has no reasonable solutions. Hence in these cases,

g are not automorphisms of r(H̃8).

Consequently, g ∈ {gi : i ∈ Z12}. �

Theorem 4.5. Let Aut(r(H̃8)) denote the automorphism group of r(H̃8). Then

Aut(r(H̃8)) = {gi : i ∈ Z12} ∼= D6,

where D6 is the dihedral group with order 12.

P r o o f. If g is an automorphism of r(H̃8) then g(x4) = x4 or g(x4) = 1 − x4

by Lemma 4.1. Let g be an automorphism of r(H̃8) and g(x4) = 1 − x4. By

x1x4 = x2x4 = x4, we have

g(x1)g(x4) = g(x4) and g(x2)g(x4) = g(x4).

It follows that g(x1) = 1 − 2x4 and g(x2) = 1 − 2x4 by Lemma 4.1. Thus, g(x1) =

g(x2), which is impossible. Therefore, we have g(x4) = x4 and g ∈ {gi : i ∈ Z12} by

Lemma 4.4. It follows that

Aut(r(H̃8)) = {gi : i ∈ Z12} ∼= D6.

The proof is completed. �

Remark 4.6. Arguments similar to the proof of Theorem 4.5 show that the

automorphism group of r(H8) is also isomorphic to D6.
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