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KYBERNETIKA — VOLUME 54 (2018), NUMBER 4, PAGES 815-828

SOME LIMIT THEOREMS FOR M-PAIRWISE NEGATIVE
QUADRANT DEPENDENT RANDOM VARIABLES

YONGFENG WU AND JIANGYAN PENG

The authors first establish the Marcinkiewicz—Zygmund inequalities with exponent p (1 <
p < 2) for m-pairwise negatively quadrant dependent (m-PNQD) random variables. By means
of the inequalities, the authors obtain some limit theorems for arrays of rowwise m-PNQD
random variables, which extend and improve the corresponding results in [Y. Meng and Z. Lin
(2009)] and [H. S. Sung (2013)]. It is worthy to point out that the open problem of [H.S. Sung,
S. Lisawadi, and A. Volodin (2008)] can be solved easily by using the obtained inequality in
this paper.

Keywords: m-pairwise negative quadrant dependent, Marcinkiewicz—Zygmund inequality,
L" convergence, complete convergence

Classification: 60F15, 60F25

1. INTRODUCTION
The concept of negative quadrant dependent (NQD) was introduced by [§].

Definition 1.1. Two random variables X and Y are said to be NQD if
P(X <z Y <y)<P(X <z)P(Y <y) forallzandy.

A sequence of random variables {X,,,n > 1} is said to be pairwise NQD if every pair of
random variables in the sequence are NQD.

Remark 1.2. Tt is important to note that negatively orthant dependent (NOD, [4]),
negatively associated (NA, [7]) or linearly negative quadrant dependent (LNQD, [I4])
implies pairwise NQD.

It is well known that sequences of pairwise NQD random variables are a family of
very wide scope and have been an attractive research topic in the recent papers. We
refer reader to [T}, 2, B, Bl @] @, 10, 111, 12| 15, 16l 18] 191 20} 21].

The literature [I7] introduced a new concept of m-pairwise negative quadrant depen-
dent (m-PNQD), which contains pairwise NQD.
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Definition 1.3. Let m > 1 be a fixed integer. A sequence of random variables {X,,,n >
1} is said to be m-PNQD if for all n > 2 and all choices of i1, . . . , i, such that |iz—i;| > m
forall 1 <k#j<mn, X;,...,X;, are pairwise NQD.

in
It is easily seen that this concept is a natural extension of the concept of pairwise
NQ@D random variables (wherein m = 1). Indeed, if {X,,,n > 1} is m-PNQD for some
m > 1, then {X,,,n > 1} is m'-PNQD for all m' > m.
Clearly the m-PNQD structure is substantially more comprehensive than the pairwise
NQD structure. We can provide the following example to illustrate that this dependence
indeed allows a wide range of dependence structures.

Example 1.4. Let {X3, X,,, n > 3} and {X,,, n > 2} be sequences of pairwise NQD
random variables respectively. Then { X,, n > 1} is a sequences of 2-PNQD random
variables. In fact, there are no dependence restrictions between random variables X
and X5. For instance, we can allow that X; and X, are positively quadrant dependent.
Let X; and X5 be dependent according to the Farlie-Gumbel-Morgenstern copula with
the parameter 6 € [—1, 1] (see Example 3.12 in [13]),

Co(u, v) = uv + duv(l — u)(1 —v), (u, v) € [0, 1),
which is absolutely continuous with density

0%Cy(u, v
@W“:‘ﬁﬁl

If we take 6 € (0, 1], X; and X, are positively quadrant dependent (see Section 5.2 in
I13], p. 188).

=1+6(1—2u)(1 - 2v), (u,v) € [0, 1]*.

For pairwise NQD random variables, the following Marcinkiewicz —Zygmund inequal-
ity with exponent p = 2
n
D> X
k=1

has been proved by [I8] (see Lemma 2.2). However, according to our knowledge, the
above inequality with exponent p (1 < p < 2) has not been discussed in previous liter-
ature. Because of the limitation of the exponent p = 2, many authors could not obtain
desirable results of the convergence properties for pairwise NQD random variables. In
this article, we will prove the above inequality with exponent p (1 < p < 2) remains true
for pairwise NQD random variables.

The literature [I5] obtained the following L" convergence result for weighted sums of
arrays of rowwise pairwise NQD random variables.

E

P n
<CY EIXi (1.1)
k=1

Theorem 1.5. Let {X,,;,u, < i < v,,n > 1} be an array of rowwise pairwise NQD
random variables and 1 < r < 2. Let {apni, un, < i < wv,,n > 1} be an array of constants.
Suppose that

(i) SuPp>1 Z;};un |ani|" E| Xni|" < oo,

(i) Do ani|" B Xni|"I(Jani|"| Xni|" > €) = 0 as n — oo for any € > 0. Then

vzn am(Xm — EXT”) —0

T=Up
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in L™ and, hence, in probability as n — co.

The literature [I2] studied the weak laws of large numbers for the array of rowwise
pairwise NQD random variables and obtained the following theorem.

Theorem 1.6. Let {X,;,1 < i < k, 1 co,n > 1} be a triangular array of random
variables which is pairwise NQD in each row, and FX,,; =0, 1 <i <k, for each n > 1.
Suppose that the uniform Cesaro-type condition

kn
lim sup &, * ZJ:P(|XM-\T >z)=0 (1.2)

T—=00 p>1 —
= =1

for some r € (1,2) holds. Then e /T Zfil X 5 0asn— oo,

In this work, we first establish the Marcinkiewicz—Zygmund inequality for m-PNQD
random variables. Then we obtain two L" convergence results for arrays of rowwise
m-PNQD random variables, which extend and improve Theorem 1.5 and Theorem 1.6
respectively under the same conditions. In addition, we study the complete convergence
for array of rowwise m-PNQD random variables, which was not considered by [15] and
[12).

It is worthy to point out that we can easily solve the open problem of [I6] by using
the obtained inequality (See Remark 2.5). In addition, the method used in this article
is much simpler than those in [I5] and [12].

Throughout this paper, the symbol C' represents positive constants whose values may
change from one place to another. I(A) will indicate the indicator function of A.

2. PRELIMINARIES

To prove our main results, we need some technical lemmas. By Definition 1.2 and
Lemma 1 of [8], we can get the following lemma.

Lemma 2.1. Let {X,,,n > 1} be a sequence of m-PNQD random variables. Let
{fn,n > 1} be a sequence of increasing functions. Then {f,(X,),n > 1} is a sequence
of m-PNQD random variables.

Lemma 2.2. (Wu [18]) Let {X,,n > 1} be a sequence of pairwise NQD random
variable with mean zero and EX? < oo, and Tj(k) = ZZ‘HC Xi, j > 0. Then

=j+1

j+k Jj+n
) 2 < 2 ) 2 « 2 2
E(T;(k)) _C’i;rlEX“ Elgllféin(Tj(k:)) < Clog nigrlEXl

Lemma 2.3. Let {X,,;,1 < i < k, T co,n > 1} be an array of any random variables
satisfying (1.2) for some real number r > 0. Then the following statements hold:

(i) If 0 < n < r, then

kn
i —n/r M T - 0:
lim k, ;E|Xm| I(|X0i|" > kp) = 0; (2.1)
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(ii) If 6 > r, then

lim k;, ‘S/TZE|X,”| I(| Xns|" < k) = (2.2)

n— o0
=1

Proof. Firstly, we prove (2.1). Put A = ey Zf;l B\ X |"I(| Xys|" > ky). Since

X T Xl > ( I

En/m

= / P(| Xpni|" > k) dt +/ P(| X" > t)dt
0 En/r

K/

/ D PUXl Tl > ) 2 1)

= k)TP(| X" >kn)+/ L P(X|" > 1)t
kp'"

n

we have

A § jp (| X ni|" > k) + Ky "/TE :/ L P(Xwl" > 1) dt
T] T
=: A1+A2.

By letting z = k,, in (1.2), we get A; — 0 as n — oo. For Ay, let t = u?/", then

kn o0
Ay = Ck;"/TZ/ " TEP(| X pi|” > ) du

From (1.2), we know that, for any given £ > 0, there exists N such that

krn
k'Y P(1Xp|" > w) < eu! (2.3)

i=1

if u > N. Since k,, T oo, while n is sufficiently large, we can get k, > N. Therefore, by
7n < r, we have

Ay < Cekl=n/r / u""2du < Ce.
k

Since e > 0 is arbitrary, A — 0 as n — oo. The proof of (2.1) is complete.
—d/r n r
Next we prove (2.2). Put B = kn /" S E|X,0i|°I(| Xps|” < kn), we have
k&/r

B = ‘”TZ/ PUX i P I X ] < k) > ) dt

k5/7

‘VTZ/ P(|Xs|® > t) dt.

IA
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Let ¢ = u%/", we have
kn kn
B < ckor Z/ WP Xl > u) du.
i=170
By (2.3), we have

B

IN

kn N kn
Ckom Z/ TP X" > w) du+ Cek}l_‘s/r/ w72 du
i=170 N

=: B+ Bs.

By 6 > r, we have
k"l N
B < Ck;‘s/TZ/ W/ 1duy < C’k}f‘s/r —0 as n — oo.
i=170

Since € > 0 is arbitrary, by 6 > r we have
By < Cskz,ll_‘s/’" [kf/’"_l — N/l < Ce—=0 as n— oo.
The proof of (2.2) is completed. O
Now we present the Marcinkiewicz—Zygmund inequalities with exponent p (1 < p < 2)
for m-PNQD random variables, which is very important in the proofs of our main results.

Lemma 2.4. Let {X,,, n > 1} be a sequence of m-PNQD random variables with mean
zero and E|X, [P < oo for 1 < p < 2. Then there exists a positive constant C' depending
only on p and m, such that

n

S

k=1

P n
< Clog’ny  E|Xy[". (2.4)
k=1

P n
< p
E <CY E|Xil, E max

J
> X

k=1 k=1
Proof. The proofs of the above inequalities are similar. Hence we need only to prove
the former. We will consider the following cases.

(i) We first consider the case p = 2. If n < m, obviously {X,,, n > 1} is a sequence
of pairwise NQD random variables. Therefore, we need only to consider the case n > m.
Given any 1 < k <mn, take 7 = [Z]. Let

m

and Tnj = ZVmH—j (1 <j< m)

=0

v { Xu if1<k<n
FTl 0, ifk>n

Clearly >0 Xp = Y70 Tnj = Y721 >oi—g Vimitj- Therefore, by C;-inequality and
Lemma 2.2, we have '

2
= I

n 2 2

> X

k=1

E

ZTnj <m ZE vaiﬂ‘

=1 =1 lizo

m Y N E[Viigl? = mY_ BIXi*.
k=1

j=1i=0

IN
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(ii) Next we consider the case 1 < p < 2. Let ¢, =Y ;_, E|Xy|P. For all t > ¢,, let

Y, = —go}/ptl/pI(Xk < _(p?ll/ptl/p) + X I (| X5 < go}/ptl/p) + cp}/ptl/pI(Xk > @}L/ptl/p)»
Zy = Xp—-Yr = (Xp+ SZJ711/17751/10)1'()(]{ < 7¢}L/pt1/p) + (Xp — SZJiL/ptl/zo)j(Xk > (p}l/ptl/p).

By Lemma 2.1, it follows that {Yj, k > 1} and {Zx, k > 1} are sequences of m-PNQD
random variables. Then

n p
E’S_lapgl/pZXk
k=1
/ P(ZXk >3<p,1/1’t1/1’)d < 1+/ P(
0 1
1+Z/ (| Xk >g01/”t1/p)dt+/ P<
1

= 1+Il+[2

>
k=1
>

k=1

> 3 ph/P tl/p> dt

IN

> 3pl/P tl/P) dt

Noting that [ P(|Xx| > @},/ptl/p)dt < o LB Xk PI(| Xk| > so}/p). Hence,

n
L < @' Y EIXGPI(Xk > 9)/7) < 1.
k=1

By EX; =0 and p > 1, we have

Z EY,

k=1

Z{ wl/ptl/pp(Xk< (pl/ptl/p)
k=1

sup @, —1/py=1/p
t>1

— supga —1/py=1/p

HEXI(X0] < olP007) 4 PP > gl )

= SUPSQ 1/pt 1/p

Z{ cpl/ptl/pP(Xk< gol/ptl/p)
k=1

_EXkI(|Xk| > %11/17751/17) + sDirll/ptl/pp(Xk > go,l/ptl/p)}‘

< s VTS (PR Xi > QP + LX)
k=1
< sup Z (1 Xl >901/”t1/”)+sup90 't 1ZEIXICI”I(\XICI > or/Pt)
= =1 k=1
< 20,0 ) EIXelPI(1 Xk > 0)/7) < 2.

k=1
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Hence, |ZZ=1 EY,| <2 ga}/ptl/p holds uniformly for ¢ > 1. Then

Igﬁ/P(
1

From the conclusion proved in the case (i), the Markov inequality and C,-inequality, we
have

n

> (Vi — EYy)

k=1

> <p}/Pt1/P) dt.

2
dt

n

> (Vi — EYy)

k=1

m@;2/p2/ t2PE(Y, — EYy)2dt < m¢;2/PZ/ t2/PEY2dt
Pl k=171

I

IN

(pr—LQ/P /0O t=2/P g
1

IN

= mery / t2PEXRI(Xp| <o}/ P87 at+m Y / P(Xk| > p}/78/7)at
k=1 11
n 00 n 00

= m¢;2/PZ/ t*2/pEX§I(|Xk| < (P}L/p)dt + mZ/ P(|Xk| > QO}/ptl/p)dt
k=171 11

tmpp?e Y [T B < X < Pt
k=171
=: I+ 14+ Is.

By a similar argument as in the proof of I; < 1, we can prove Iy < m. By p < 2, we get

m B n
o= P ST EXRI(XA] < 0l/7)
2-p k=1
mp " 1/ mp
< P LAINT BIXGLPI(IXG] < ol/P) < P
< 2_p<P kZ:1 | X" 1(| Xk| < /) 2_p

Finally we consider I5. Noting that >.°°_ m™2/P < 2/(2 — p)s'=2/? and (s +1)/s < 2
for all s > 1. We can get

n m—+1
o= w30 S [ e < 1 < e nar
k=1m=1Y™
n oo
< mey PSP EX (00 < |Xkl? < pu(m o+ 1)
k=1m=1
= me,?PY "N mPN  EXP (o0 s < | Xi|P < on(s + 1))
k=1m=1 s=1

o0

= mw;prZEXgI(gpns < | Xg|P < @n(s+1)) Z m=2/P

k=1s=1 m=s
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2m 7 n o0 B
< SIS X (g < X < puls + 1)
k:ls:l
m B n oo
< 22/pﬂ¢nlzZE|XklpI(<pns<IXk\Pgwn(s+1))
k:ls:l
_ 22/pl907_11 E|X,[PT ka>s0n < 22/:0&'
55 I;I [PI(| Xk | ) 5= p

From I} <1, Is <mp/(2 —p), Iy < m and Is < 22/Pm/(2 — p), we have

2—p 2—p

Let C =3P(2+ % +m +22/P 2%})) Clearly C depends only on p and m. Then we get

>
k=1

The proof is completed. U

p n
E < C ) EIXlP.

k=1

Remark 2.5. The above inequality is new even for the pairwise independent case. Ac-
cording to our knowledge, [3,[I8] proved that the inequality (2.4) with p = 2 for sequence
of pairwise NQD random variables. Because of the limitation of the exponent p = 2,
many authors could not obtain desirable results of the convergence properties for pair-
wise NQD random variables.

We prove that the inequality (2.4) remains true for the case 1 < p < 2, which will
be very useful in establishing the convergence properties for pairwise NQD random
variables. For example, we can easily solve the open problem in [I6] (see Remark 3.1)
by means of Lemma 2.4 and similar arguments as the proof of Theorem 3.3 in [16].

3. MAIN RESULTS AND THE PROOFS

In this section, we shall state some limit theorems for arrays of rowwise m-PNQD random
variables. We first present the following theorem which extends Theorem 1.5.

Theorem 3.1. Let {X,,;,u, < i < wv,,n > 1} be an array of rowwise m-PNQD random
variables and 1 < r < 2. Let {ani,un < i < v,,n > 1} be an array of constants.
Suppose that

() supp>1 Y5ty lani| Bl X" < oo,

i=Unp
(i) D5, lani| Bl Xni " I(|ani|"| Xnil” > €) = 0 as n — oo for any & > 0.
Then

Un,

> ni(Xni = EXpi) = 0 (3.1)

1=Unp

in L" and, hence, in probability as n — co.
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Without loss of generality, we may assume that a,; > 0. For u, < i < v,,

Proof.

n>1, let

Y = 751/7”[(0%an11 < 751/7“) + anz’Xn'LI(am‘Xn” < gl/r) + El/rl(anani > 51/7")’
Zni = anani - Yni~

By Lemma 2.1, {Yy;,u, < i < vp,n > 1} and {Zp;,un < @ < vp,n > 1} are arrays of
rowwise m-PNQD. Given € > 0, by Lemma 2.4, we have

Un r Un r Un r
E| Y ani(Xni — EXyi)| < 2T-1{E > (Zni — EZni)| + E|Y_ (Yni — EYny) }
Un r Vn 2N 7/2
< 2B (Zni—EZu) +2T1{E > (Yni—EYy) }
r/2
< Co2t Z E|Zy|" + 02"~ 1{2 EY, }
=: I6 —|—I7

We first prove I — 0 as n — oco. Noting that |Z,;| < ani| Xni|I(al;|Xni|" > €). By

the condition (ii), we have

Un,
Is < C Y ap, B X" T(ah,| X" > €) =0 as n— oc.
T=Unp

Next we prove I — 0 as n — oo. Without loss of generality, we may assume

0 <e<1. Then

o< ¢ Z a2, EX2 (a0, | X" <€) + Ce¥™ Z P(al,| X pil” > €)
< C Z a2, EX2I(al,| Xpil” < %)+ C Z a2, EX2.1(e? < al;| Xni|" < e)
+CNN " an B X | I (ag, | X il > €)
1=Up
=: Ig+ Iy + 1.

By r < 2 and (ii), we get I;90 — 0 as n — co. For Ig, we have

U,

Iy < Cgt/r2 Z al B X" I(a”, | X | < €2)

T=Unp

Cetlr= 2sup Z ar B X il

—zun

IN
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By r < 2 and (ii), we have

Un

Iy < C" 1N an, BIXnil ' T(e* < al,| X" < e)
T=Unp
Un
< Ce¥rt Z al B X |"I(ah;| X | > €?) =0 as n — oo.
T=Unp
Therefore,

T
Un

i w0 E| 5 a0 - £

T=Up

Un r/2
< O T(sup Z a E|Xm|r> .

n>1
i=Up,

Since 0 < & < 1 is arbitrary, by r < 2 and (i), the proof is completed.

O

Remark 3.2. Since pairwise NQD implies m-PNQD, Theorem 3.1 extends Theorem

1.5. It is important to point out that, by using Lemma 2.4, the proof of Theorem 3.

much simple than that of Theorem 1.5 by [15].

Secondly, we state the following result which extends and improves Theorem
under the same conditions.

1is

1.6

Theorem 3.3. Let {X,;,1 < i < k, 1 oco,n > 1} be a triangular array of rowwise
m-PNQD random variables, and £X,; =0, 1 < i < k, for each n > 1. Suppose that
the uniform Cesaro-type condition (1.2) for some r € (1,2) holds. Then for p € (0,7),

kn
k‘;l/TZXm—>O in LP as n — oo. (3.2)
=1
Proof. Let
Yii = —kYTI(Xps < —kY™) 4+ Xpid (| Xns) < BV 4+ kYT T( X > kLT,
Zni = Xpi—Yni= Xni + kY X < =Y + (X — EY V(X > k7).

By Lemma 2.4, we have

kn p kn p kn j4
kPR Xui| < Okn”/’”{E Y (Zui — EZy)| +E|Y_(Ya }
=1 =1 =1
kn
< Ck"'"E|)Y (Zni—EZy) +Ck P/T{ (Yni—EYy;)
=1
<

Ck= p/TZE|Zm|p+C{ 2/rZE }

=1
=: Iy + Lia.

2};0/2
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By | Zni| < | XnilI(|Xni|"™ > kyn) and Lemma 2.3(i), we have

kn
I < ChyP'™ " B[ X PI( Xpi|” > kn) =0 as n— oo,
=1

By Lemma 2.3(ii) and (1.2) for « = k,,, we have

kn n p/2
Iy, = C {k;% S EXZI(Xnil" < kn) 4+ Y P(1Xp|" > kn)} —0 as n— oo.
i=1 i=1
The proof is completed. O

Remark 3.4. The above theorem shows that, we can improve Theorem 1.6 by consid-
ering LP-convergence instead of convergence in probability under the same conditions.
Since LP-convergence implies convergence in probability, Theorem 3.3 improves Theorem
1.6.

The following theorem shows that, under some stronger conditions, we can obtain
the complete convergence for the array of rowwise m-PNQD random variables.

Theorem 3.5. Let {X,;,1 < i <k, 1 co,n > 1} be an array of rowwise m-PNQD
random variables with EX,,; = 0. k, = O(n). For 1 <p < 2 and § > 2/p — 1, suppose
that

kn
lim supk;* ZxH‘SPﬂXm'\p >z) =0. (3.3)

T—r00 n>1 im1
Then for ap > 1,

i=1

o0
E ESP=2P( max
1<j<kn

n=1

> k,‘fs) < oo, Ve>D0. (3.4)

Proof. For fixedn > 1, let z = kf{(zfp)/zl and

Y. = —:L‘I(Xm < —,T) + anI(|an‘ < {L‘) + LL’I(X,M > .’L‘),

Let Spj =274 Xni, Sty = Y21, Yi and S35 =377, Z,;. For any € > 0, we have

> kf{e)

>koe/2)+ ) kP2 P( max |57 ES)

<j<kn

J
E Xni
i=1

< Y kSPTPP( max |S;—ES;;
n=1

1<j<kn J

o0
g kEoP=2P( max
1<j<kn

n=1

> koe/2)
n=1

= 113 + 114.
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Noting that |Y,,;| < k227P)/4 Then by the Markov inequality and Lemma 2.4, we have

o0 kn

Ly < C Y kP2 log’k, > EY
n=1 i=1

< C Z k172 092 |, < o0

n=1

By a similar argument as in the proof of Lemma 2.3, we have

EX2I(|Xp| >2) = 2?P(| Xl >x)+/ P(| X% > t) dt.

x2

Hence by |Zni| < |XnilI(|Xni] > ), the Markov inequality and Lemma 2.4, we get

Iy

IN

C Z koP=22 Jog? | ZEX (| Xnil > )

= C Z ker=2-20 1og% |, Zﬁp | X il > )

1=1

+C Z keP=2729 oo k) 2/ P(|Xnil?> > t)dt

=: Ii5+ 116-
From (3.3), 3M > 0, when & > M, we have

kn
supk ! ZP | Xnil? > z) < —(1+9), (3.5)
>1

=1

y (3.5), x = ESCP/% and § > 2/p — 1, we have

) krn
Ly = CY kP72 log b kit D 2 P(| X, > )
n=1 i=1
< C Z kgp—l—an—p(l—i-é)-‘rQ 10g2 kn
n=1

Z *1 a(2—p)—ap(2—p)(1+6—2)/4 10g2 k, < oo



Some limit theorems for M-pairwise negative quadrant 827

and
00 00 kn
g = C Y kgp™'72* log’ kn/ k'Y P(IXnil? > t)dt
n=1 @? i=1
oo oo
< O gortitiag an/ =500 qy
< ; " og” kn |
< C Z kyo;p7172ax7p(1+5)+2 1Og2 kn
n=1
- Ci (o lmep)—ap(2-p) (146-2) /4 og? b, < o
a n=1
The proof is completed. O
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