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Abstract. A metacyclic group H can be presented as 〈α, β : αn = 1, βm = αt,
βαβ−1 = αr〉 for some n, m, t, r. Each endomorphism σ of H is determined by
σ(α) = αx1βy1 , σ(β) = αx2βy2 for some integers x1, x2, y1, y2. We give sufficient
and necessary conditions on x1, x2, y1, y2 for σ to be an automorphism.
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1. Introduction

A finite group G is metacyclic if it contains a cyclic normal subgroup N such that

G/N is also cyclic. In some sense, metacyclic groups can be regarded as the simplest

ones other than abelian groups.

As a natural object, the automorphism group of a metacyclic group has been

widely studied. In 1970, Davitt in [5] showed that if G is a metacyclic p-group with

p 6= 2, then the order of G divides that of Aut(G). In 2006, Bidwell and Curran in [1]

found the order and the structure of Aut(G) when G is a split metacyclic p-group

with p 6= 2, and in 2007, Curran in [3] obtained similar results for split metacyclic

2-groups. In 2008, Curran in [4] determined Aut(G) when G is a nonsplit metacyclic

p-group with p 6= 2. In 2009, Golasiński and Gonçalves in [6] determined Aut(G)

for any split metacyclic group G. The case of nonsplit metacyclic 2-groups remains

unsolved.

In this paper we aim at writing down all of the automorphisms for a general

metacyclic group. One of our main motivations stems from the study of regular

Cayley maps on metacyclic groups (see [2]), which requires an explicit formula for

a general automorphism.
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It is well-known (see Section 3.7 of [8]) that each metacyclic group can be pre-

sented as

(1.1) 〈α, β : αn = 1, βm = αt, βαβ−1 = αr〉

for some positive integers n, m, r, t satisfying

(1.2) rm − 1 ≡ t(r − 1) ≡ 0 (mod n).

Denote this group by H = H(n,m; t, r). There is an extension

1 → Z/nZ → H → Z/mZ → 1,

where Z/nZ ∼= 〈α〉 ⊳ H and Z/mZ ∼= H/〈α〉. It may happen that two groups

given by different values of n,m, t, r are isomorphic. A complete classification (up

to isomorphism) for finite metacyclic groups was obtained by Hempel in [7] in 2000.

In the presentation (1.1), we may assume t | n which we do from now on. To see

this, choose u, v such that un + vt = (n, t), then (v, n/(n, t)) = 1. Let w be the

product of all prime factors of m that do not divide v and let v′ = v + wn/(n, t),

then (v′,m) = 1. Replacing β by β̌ = βv′

, we get another presentation: H =

〈α, β̌ : αn = 1, β̌m = α(n,t), β̌αβ̌−1 = αrv
′

〉.

Obviously each element can be written as αuβv; note that αuβv = 1 if and only

if m | v and n | u + tv/m. Each endomorphism σ of H is determined by σ(α) =

αx1βy1 , σ(β) = αx2βy2 for some integers x1, x2, y1, y2. The main result of this

paper gives sufficient and necessary conditions on x1, x2, y1, y2 for σ to be an

automorphism. They consist of two parts, ensuring σ to be invertible and well-

defined, respectively. Skillfully using elementary number theoretic techniques, we

manage to reduce the second part to linear congruence equations. It turns out that

the situation concerning the prime 2 is quite subtle, and this reflects the difficulty in

determining the automorphism groups of nonsplit metacyclic 2-groups.

Notation and convention.

⊲ For an integer N > 0, denote Z/NZ by ZN and regard it as a quotient ring of Z.

For u ∈ Z, denote its image under the quotient Z ։ ZN also by u.

⊲ Given integers u, s with u > 0, set [u]s = 1+ s+ . . .+ su−1, so that (s− 1)[u]s =

su − 1; for a prime number p, let degp(u) denote the largest integer s with ps | u.

⊲ Denote αu by expα(u) when the expression for u is too long.

⊲ To avoid subtleties, we assume x1, x2, y1, y2 to be positive, and usually write an

element of H as αuβv with u, v > 0.
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2. Determining all automorphisms

2.1. Preparation.

Lemma 2.1. If s > 1 with degp(s− 1) = l > 1 and x > 0 with degp(x) = u > 0,

then

(I) [x]s ≡

{

x, p 6= 2 or u = 0

(1 + 2l−1)x, p = 2 and u > 0
(mod pl+u);

(II) sx − 1 ≡

{

(s− 1)x, p 6= 2 or u = 0

(s− 1 + 22l−1)x, p = 2 and u > 0
(mod p2l+u).

P r o o f. We only prove (I), then (II) follows from the identity (s−1)[x]s = sx−1.

If u = 0, then s ≡ 1 (mod pl+u), so [x]s ≡ x (mod pl+u).

Let us assume u > 0. Write s = 1 + plh with p ∤ h. Note that

degp

((

pu

j

))

= degp

( (pu)!

j!(pu − j)!

)

=

j−1
∑

i=0

degp(p
u − i)−

j
∑

i=1

degp(i)

= u− degp(j) +

j−1
∑

i=1

(degp(p
u − i)− degp(i))

= u− degp(j).

If p 6= 2, then

[pu]s =

pu
−1

∑

i=0

(1 + plh)i =

pu
−1

∑

i=0

i
∑

j=0

(

i

j

)

(plh)j =

pu

∑

j=1

(

pu

j

)

(plh)j−1 ≡ pu (mod pl+u),

using that for all j > 2,

degp

((

pu

j

))

= u− degp(j) > u− (j − 2)l = (l + u)− (j − 1)l.

Hence sp
u

= (s− 1)[pu]s + 1 ≡ 1 (mod pl+u). Writing x = pux′ with p ∤ x′, we have

[x]s = [pu]s

x′
−1

∑

j=0

(sp
u

)j ≡ x′[pu]s ≡ x (mod pl+u).

If p = 2, then using that for all j > 3,

deg2

((

2u

j

))

= u− deg2(j) > u− (j − 2)l = (l + u)− (j − 1)l,
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we obtain

[2u]s =

2u
∑

j=1

(

2u

j

)

(2lh)j−1 ≡ 2u +

(

2u

2

)

2lh ≡ 2u(1 + 2l−1) (mod 2l+u).

Hence s2
u

= (s− 1)[2u]s + 1 ≡ 1 (mod 2l+u). Writing x = 2ux′ with 2 ∤ x′, we have

[x]s = [2u]s

x′
−1

∑

j=0

(s2
u

)j ≡ x′[2u]s ≡ (1 + 2l−1)x (mod 2l+u).

�

2.2. The method. It follows from (1.1) that for k, u, v, u′, v′ > 0,

βvαu = αurvβv,(2.1)

(αuβv)(αu′

βv′

) = αu+u′rvβv+v′

,(2.2)

(αuβv)k = αu[k]rv βvk,(2.3)

[αuβv, αu′

βv′

] = expα(u
′(rv − 1)− u(rv

′

− 1)),(2.4)

where the notation [θ, η] = θηθ−1η−1 for the commutator is adopted.

In view of (2.4), the commutator subgroup [H,H ] is generated by αr−1. The

abelianization Hab := H/[H,H ] has a presentation

(2.5) 〈α, β : qα = 0, mβ = tα〉 with q = (r − 1, n),

where additive notation is used and α+ β = β + α is implicitly assumed.

Lemma 2.2. There exists a homomorphism σ : H → H with σ(α) = αx1βy1 ,

σ(β) = αx2βy2 if and only if

(r − 1, t)y1 ≡ 0 (mod m),(2.6)

x2[m]ry2 + ty2 − x1[t]ry1 −
ty1
m

t ≡ 0 (mod n),(2.7)

x2(r
y1 − 1) + x1([r]ry1 − ry2) +

(r − 1)y1
m

t ≡ 0 (mod n).(2.8)

P r o o f. Sufficient and necessary conditions for σ to be well-defined are

αx1[n]ry1 βy1n = σ(α)n = 1,

αx2[m]ry2 βy2m = σ(β)m = σ(α)t = αx1[t]ry1 βy1t,

αx2βy2αx1βy1β−y2α−x2 = σ(β)σ(α)σ(β)−1 = σ(α)r = αx1[r]ry1 βy1r;
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equivalently,

ny1 ≡ 0 (mod m), x1[n]ry1 +
ny1
m

t ≡ 0 (mod n),(2.9)

ty1 ≡ 0 (mod m), x2[m]ry2 + y2t ≡ x1[t]ry1 +
ty1
m

t (mod n),(2.10)

(r− 1)y1 ≡ 0 (mod m), x2(1− ry1)+x1r
y2 ≡ x1[r]ry1 +

(r− 1)y1
m

t (mod n).(2.11)

Due to t | n, the first parts of (2.9), (2.10), (2.11) are equivalent to the single

condition (2.6). Then the second part of (2.9) can be omitted: for each prime divisor

p of n, if p | ry1 −1, then by Lemma 2.1 (I), degp([n]ry1 ) > degp(n); if p ∤ ry1 −1, then

since rny1 − 1 is a multiple of rm − 1, we also have degp([n]ry1 ) = degp(r
ny1 − 1) >

degp(r
m − 1) > degp(n). �

Let Λ denote the set of prime divisors of nm, and for each p ∈ Λ, denote

(2.12) ap = degp(n), bp = degp(m), cp = degp(t), dp = degp(q).

Subdivide Λ as Λ = Λ1 ⊔ Λ2 ⊔ Λ′, with

(2.13) Λ1 = {p : dp > 0}, Λ2 = {p : ap > 0, dp = 0}, Λ′ = {p : bp > 0, ap = 0}.

Denote

(2.14) e = deg2(r + 1).

It follows from t | n and t(r − 1) ≡ 0 (mod n) that

(2.15)

{

ap − dp 6 cp 6 ap, p ∈ Λ1,

cp = ap, p ∈ Λ2,

and it follows from rm − 1 ≡ 0 (mod n) and Lemma 2.1 (II) that

(2.16) dp + bp > ap for all p ∈ Λ1 with (p, dp) 6= (2, 1) or (p, dp, bp) = (2, 1, 0);

finally, when d2 = 1 and b2 > 0, Lemma 2.1 (II) applied to rm − 1 = (r2)m/2 − 1

implies

(2.17) e+ b2 > a2.

The condition (2.6) is equivalent to

(2.18) min{dp, cp}+ degp(y1) > bp for all p ∈ Λ.
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Suppose that x1, x2, y1, y2 satisfy the conditions (2.6), (2.7) and (2.8) and let σ

be the endomorphism of H given in Lemma 2.2. Since H is finite, σ is invertible if

and only if it is injective, which is equivalent to the condition that both the induced

homomorphism σ : Hab → Hab and the restriction σ0 := σ|[H,H] are injective.

In the remainder of this subsection, let

(2.19) w =
ty1
m

.

Lemma 2.3. The homomorphism σ is injective if and only if

(2.20)











p ∤ y2, p ∈ Λ′,

p ∤ x1 + w, p ∈ Λ1 with bpcp = 0,

p ∤ x1y2 − x2y1, p ∈ Λ1 with bp, cp > 0.

P r o o f. For each p ∈ Λ′ ⊔ Λ1, let

Hab
p = 〈αp, βp〉, with αp =

tq

pcp+dp
α, βp =

mq

pbp+dp
β;

it is the Sylow p-subgroup of Hab. Then σ is injective if and only if σp := σ|Hab
p
is

injective for all p. Take an integer zp with (t/pcp)zp ≡ 1 (mod pdp). We have

σp(αp) =
tq

pcp+dp
(x1α+ y1β) = x1αp +

pbpty1
pcpm

βp,(2.21)

σp(βp) =
mq

pbp+dp
(x2α+ y2β) =

m

pbp
zpx2αp + y2βp.(2.22)

Let Ȟp = Hab
p /pHab

p , let α̌p, β̌p denote the images of αp, βp under the quotient

homomorphism Hab
p → Ȟp, and let σ̌p denote the endomorphism of Ȟp induced

from σp. Then σp is injective if and only if σ̌p is injective. It follows from (2.21),

(2.22) that

σ̌p(α̌p) = x1α̌p +
pbpty1
pcpm

β̌p,(2.23)

σ̌p(β̌p) =
m

pbp
zpx2α̌p + y2β̌p.(2.24)

⊲ If bp > dp = 0, then α̌p = 0, Ȟp = 〈β̌p〉 ∼= Zp, and by (2.24), σ̌p is injective if and

only if p ∤ y2.

⊲ If dp > bp = 0, then β̌p = pcp α̌p, Ȟp = 〈α̌p〉 ∼= Zp, and by (2.23), σ̌p is injective if

and only if p ∤ x1 + w.
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⊲ If dp > cp = 0, then α̌p = pbp β̌p, Ȟp = 〈β̌p〉, and by (2.24), σ̌p is injective if and

only if p ∤ mzpx2 + y2, which, by (2.7), is equivalent to p ∤ x1 + w.

⊲ If bp, cp, dp > 0, then Ȟp = 〈α̌p, β̌p〉 ∼= Z2
p, and by (2.23), (2.24), σp is invertible if

and only if

0 6≡ x1y2 −
pbpty1
pcpm

m

pbp
zpx2 ≡ x1y2 − x2y1 (mod p).

�

Lemma 2.4. Suppose p ∤ x1y2 − x2y1 for all p ∈ Λ1 with dp < ap. Then the

homomorphism σ0 is injective if and only if

(2.25) ry1 ≡ 1 (mod pap) and p ∤ x1 + w for all p ∈ Λ2.

P r o o f. Note that σ0(α
r−1) = αu, with

(2.26) u = x1[r − 1]ry1 + (r − 1)w.

For each p ∈ Λ1 with dp < ap, by (2.8) we have

u ≡ (1− ry1)x1[r − 1]ry1 + x1(r
y2 − 1)− x2(r

y1 − 1) (mod pap)

≡ (r − 1)(x1y2 − x2y1) (mod pdp+1),

the second line following from ryj − 1 ≡ (r − 1)yj (mod p2dp), j = 1, 2. Hence

(2.27) degp(u) = dp.

Thus σ0 is injective if and only if p ∤ u for all p ∈ Λ2. For p ∈ Λ2, by (2.15), (2.18),

degp(w) = cp + degp(y1)− bp > cp = ap.

Hence, if p ∤ u then p ∤ x1[r − 1]ry1 and this implies that r
y1 ≡ 1 (mod pap) (by

the argument given). On the other hand, if ry1 ≡ 1 (mod p) then [r − 1]ry1 ≡

r − 1 6≡ 0 (mod pap) and hence p | u if and only if p | x1. Therefore, σ0 is injective

if and only if p ∤ u if and only if ry1 ≡ 1 (mod pap) and p ∤ x1; the condition p ∤ x1

is equivalent to p ∤ x1 + w. �

Remark 2.5. In order to obtain neat conditions, we prefer p ∤ x1 + w to p ∤ x1.

Summarizing, sufficient and necessary conditions for σ to be an automorphism

are (2.6), (2.7), (2.8), (2.20) and (2.25). Let (2.7)p denote the condition (2.7) with

mod n replaced by mod pap . Then (2.7) is equivalent to (2.7)p for all p ∈ Λ1 ⊔ Λ2

simultaneously. The same holds when (2.7)p is repleiced by (2.8)p.
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Remark 2.6. If p ∈ Λ2, then p 6= 2: otherwise 2 | n but 2 ∤ r − 1, contradicting

n | rm − 1. Due to (2.15), (2.25), the conditions (2.7)p, (2.8)p are equivalent to

ry2−1 ≡ 1 (mod pap).

If p ∈ Λ1 with dp = ap, then r ≡ 1 (mod pap), hence (2.8)p is trivial, and (2.7)p

becomes t(x1 + w − y2) ≡ mx2 (mod pap).

Suppose p ∈ Λ1 with dp < ap. Note that by (2.16), bp > 0. We will simplify (2.7)p
and (2.8)p, with (2.6) and (2.20) assumed.

By Lemma 2.1 (I), [r − 1]ry1 ≡ r − 1 (mod p2dp) when p 6= 2 or p = 2,

deg2(r
y1 − 1) > 1. Hence by (2.27),

(2.28) p ∤ x1 + w if p 6= 2 or p = 2, d2 + deg2(y1) > 1.

By (2.15), (2.16), (2.18),

degp(y1) > bp − dp > ap − 2dp if (p, dp) 6= (2, 1),(2.29)

degp(w) = degp(y1) + cp − bp > cp − dp > ap − 2dp if (p, dp) 6= (2, 1).(2.30)

We will use (2.28), (2.29), (2.30) repeatedly.

Lemma 2.7. If 2 6= p ∈ Λ1, then the conditions (2.7)p and (2.8)p hold if and

only if

mx2 ≡ t(x1 + w − y2) (mod pap),(2.31)

y2 ≡ 1 + w (mod pap−dp).(2.32)

P r o o f. Abbreviate ap, bp, cp, dp, degp(x) to a, b, c, d, deg(x), respectively.

Applying Lemma 2.1, with (2.15), (2.16), (2.29) recalled, we obtain

ry1 ≡ 1 + (r − 1)y1, [t]ry1 ≡ t, [m]ry2 ≡ m (mod pa),

[r]ry1 = (ry1)r−1 + [r − 1]ry1 ≡ 1 + (r − 1) = r (mod pa).

Hence (2.7)p can be simplified as (2.31) and (2.8)p can be rewritten as

(2.33) (r − 1)y1x2 + (r − 1)w ≡ (ry2 − r)x1 (mod pa).

By (2.29) and (2.30), deg((r − 1)y1x2 + (r − 1)w) > a− d, hence

(2.34) deg(y2 − 1) + deg(x1) = deg((ry2 − r)x1)− d > a− 2d.
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By Lemma 2.1 (II), ry2−1 − 1 ≡ (r − 1)(y2 − 1) (mod pa−deg(x1)), and then

(ry2 − r)x1 = (r − 1)2(y2 − 1)x1 + (r − 1)(y2 − 1)x1 ≡ (r − 1)(y2 − 1)x1 (mod pa).

Thus (2.33) can be converted into (y2 − 1)x1 ≡ y1x2 + w (mod pa−d). Since by

(2.31),

y1x2 ≡
ty1
m

(x1 + w − y2) = w(x1 + w − y2) (mod pa+deg(y1)−b)(2.35)

≡ w(x1 + w − y2) (mod pa−d),

we are led to (y2 − 1)x1 ≡ w(x1 + w − y2 + 1) (mod pa−d), i.e.,

(2.36) (y2 − 1− w)(x1 + w) ≡ 0 (mod pa−d);

due to (2.28), this is equivalent to (2.32). �

Set

(2.37)

f(y1) =

{

2a2−d2−1 if c2 6= b2, min{b2, c2} = a2 − d2 and deg2(y1) = b2 − d2,

0 otherwise.

Lemma 2.8. If 2 ∈ Λ1, then the conditions (2.7)2 and (2.8)2 hold if and only if

(i) if b2 = c2 = d2 = 1 (so that a2 = 2), then no additional condition is required;

(ii) if d2 = 1 and max{b2, c2} > 1, then 2 | y1, deg2(x2) > a2 − b2 − e+ 1 and

(2.38) w ≡ 2e−1(y1 − y2 + 1) (mod 2a2−1);

(iii) if d2 > 1, then

mx2 ≡ t(x1 + w − y2) (mod 2a2),(2.39)

y2 ≡ (1 + w + f(y1)) (mod 2a2−d2).(2.40)

P r o o f. Abbreviate a2, b2, c2, d2, deg2(x) to a, b, c, d, deg(x), respectively.

(i) For any x, u > 0, we have rx ≡ 1 + 2x (mod 4), and

[u]rx =

u−1
∑

i=0

rix ≡

u−1
∑

i=0

(1 + 2ix) ≡ u+ u(u− 1)x (mod 4).
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In particular, [m]ry2 ≡ 2 + 2y2, [t]ry1 ≡ 2 + 2y1, [r]ry1 ≡ 3 + 2y1 (mod 4). The

conditions (2.7)2, (2.8)2 can be converted into, respectively,

(x2 + 1)(y2 + 1)− (x1 + 1)(y1 + 1) ≡ 0 (mod 2),(2.41)

x2y1 + x1(1 + y1 − y2) + y1 ≡ 0 (mod 2).(2.42)

Due to (2.20), x2y1 ≡ x1y2 + 1 (mod 2), hence (2.42) is equivalent to (x1 + 1)×

(y1 + 1) ≡ 0 (mod 2), which is true since by (2.20), at least one of x1, y1 is odd.

Then similarly, (2.41) also holds.

(ii) We first show 2 | y1. Assume on the contrary that 2 ∤ y1. By (2.18), b = 1,

so that c > 1. By (2.7)2, x2[m]ry2 ≡ 0 (mod 4), which forces 2 ∤ y2: if 2 | y2,

then ry2 ≡ 1 (mod 4) so that 4 ∤ [m]ry2 , and we would get 2 | x2, contradict-

ing (2.20). Then ryj ≡ −1 (mod 4), j = 1, 2, and [r]ry1 ≡ 1 (mod 4), so (2.8)2

implies 2(x1 − x2) ≡ 0 (mod 4). But this contradicts (2.20).

Thus 2 | y1. By (2.20), 2 ∤ x1y2; by (2.28), 2 | w. Hence

(2.43) t(x1 + w − y2) ≡ 0 (mod 2a).

By (2.17), (2.18), 1 + deg(y1) + e > b+ e > a, hence

(2.44) deg(ry1 − 1) = deg((r2)y1/2 − 1) = e+ deg(y1) > a− 1.

When c > 1, applying Lemma 2.1 we obtain

[t]ry1 ≡ (1 + 2e+deg(y1)−1)t (mod 2e+deg(y1)+c) ≡ t (mod 2a),

[r]ry1 = (ry1)r−1 + [r − 1]ry1 ≡ 1 + (1 + 2e+deg(y1)−1)(r − 1) (mod 2e+deg(y1)+1)

≡ r + 2ey1 (mod 2a);

when c = 1 so that a = 2, these congruence relations obviously hold.

Due to (2.43), the condition (2.7)2 becomes x2[m]ry2 ≡ 0 (mod 2a). Since

deg(ry2 +1) = deg(r+1) = e and [m]ry2 = (ry2 +1)[m/2]r2y2 , we have deg([m]ry2 ) =

e+ b− 1. Hence

deg(x2) > a− b− e+ 1.

This together with (2.18) implies

deg((ry1 − 1)x2) = deg(y1) + e+ deg(x2) > b− 1 + e+ deg(x2) > a.

Then (2.8)2 becomes

(2.45) x1(r
y2 − r − 2ey1) ≡ (r − 1)w (mod 2a).
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Since deg(ry2−1 − 1) = deg((r2)(y2−1)/2 − 1) = e+deg(y2 − 1), we have ry2−1 − 1 =

2e(y2 − 1)z for some odd z. Using 2e+1y1 ≡ 2(r− 1)w ≡ 0 (mod 2a), we can convert

(2.45) into (2.38).

(iii) Applying Lemma 2.1 (with (2.29) recalled), we obtain

ry1 ≡

{

1 + (r − 1)y1, 2 ∤ y1

1 + (r − 1 + 22d−1)y1, 2 | y1
(mod 2a),

[r]ry1 ≡ (r + 22d−1y1) (mod 2a),

[t]ry1 ≡ (1 + 2d−1y1)t (mod 2a),

[m]ry2 ≡ (1 + 2d−1y2)m (mod 2a).

We deal with the cases 2 | y1 and 2 ∤ y1 separately.

(iii 1) If 2 | y1, then by (2.20), 2 ∤ x1y2, and by (2.28), 2 | w. The condition (2.7)2
becomes

(2.46) (1 + 2d−1y2)mx2 ≡ t(x1 + w − y2) (mod 2a),

which can be converted into (2.39) via multiplying by 1− 2d−1y2. Moreover, (2.46)

implies b+ deg(x2) > min{c+ 1, a}, hence

2d− 1 + deg(x2) + deg(y1) > 2d− 1 + (min{c+ 1, a} − b) + (b− d)

= d− 1 + min{c+ 1, a} > a.

As a result, x2(r
y1 − 1) ≡ (r− 1)x2y1 (mod 2a). Using this and 22d−1(x1 − 1)y1 ≡ 0

(mod 2a), we may convert (2.8)2 into

(2.47) (r − 1)x2y1 + 22d−1y1 + (r − ry2)x1 + (r − 1)w ≡ 0 (mod 2a).

By an argument similar to that used for deducing (2.34) in the proof of Lemma 2.7,

we obtain deg(y2 − 1) > a− 2d, and then by Lemma 2.1 (II),

ry2−1 − 1 ≡ (1 + 2d−1)(r − 1)(y2 − 1) (mod 2a).

Using (r − 1)(ry2−1 − 1) ≡ 0 (mod 2a), we can convert (2.47) further into

(2.48) (y2 − 1)x1 ≡ y1x2 + w + 2d−1(y1 − y2 + 1) (mod 2a−d).

Similarly to (2.35), it follows from (2.39) that y1x2 ≡ w(x1 + w − y2) (mod 2a−d),

and then (2.48) becomes

(2.49) (y2 − 1− w)(x1 + w + 2d−1) ≡ 2d−1(y1 − w) (mod 2a−d).
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From (2.29) and (2.30) we see that deg(y1 − w) > a − 2d, and the equality holds if

and only if one of the following cases occurs:

⊲ deg(w) > deg(y1) = a−2d, which is equivalent to deg(y1) = b−d and c > b = a−d;

⊲ deg(y1) > deg(w) = a−2d, which is equivalent to deg(y1) = b−d and b > c = a−d.

Thus (2.49) becomes

(y2 − 1− w)(x1 + w + 2d−1) ≡ f(y1) ≡ f(y1)(x1 + w + 2d−1) (mod 2a−d),

which is equivalent to (2.40).

(iii 2) If 2 ∤ y1, then d, c > b, and 2d > a. By Lemma 2.1 (II), ry2 ≡ 1 + (r − 1)y2
(mod 2a), hence (2.7)2, (2.8)2 become, respectively,

(1 + 2d−1y2)mx2 + ty2 ≡ (1 + 2d−1)tx1 + tw (mod 2a),(2.50)

(y2 − 1)x1 ≡ y1x2 + w + 2d−1x1 (mod 2a−d).(2.51)

If c = b, then by (2.28), 2 | x1, and by (2.20), 2 ∤ x2. By (2.50), 2 | y2, and then

(2.50) becomes (2.39). We can reduce (2.51) to y2 − 1 ≡ w (mod 2a−d) similarly to

the proof of Lemma 2.7.

Now assume c > b so that 2 | w. By (2.28), 2 ∤ x1. Since c + d − 1 > b + d > a,

we can reduce (2.50) to (2.39) via multiplying by 1 − 2d−1y2. If 2d > a, then still

similarly to the proof of Lemma 2.7, we can reduce (2.51) to y2−1 ≡ w (mod 2a−d);

if 2d = a, then b = a − d = d, then similarly to (iii 1), we can reduce (2.51) to

y2 − 1 ≡ w + 2a−d−1 (mod 2a−d).

Thus in any case, (2.7)2, (2.8)2 are equivalent to (2.39), (2.40). �

2.3. Main result.

Letm0 be the smallest positive integer k such that r
k ≡ 1 (mod pap) for all p ∈ Λ2.

Combining Lemma 2.3, Lemma 2.4, Remark 2.6, Lemma 2.7 and Lemma 2.8, we

establish

Theorem 2.9. Each automorphism of H(n,m; t, r) is given by

αuβv 7→ expα(x1[u]ry1 + ry1ux2[v]ry2 )β
y1u+y2v, u, v > 0,

for a unique quadruple (x1, x2, y1, y2) with 0 < x1, x2 6 n, 0 < y1, y2 6 m and such

that

(i) for all p ∈ Λ,











p ∤ y2, p ∈ Λ′,

p ∤ x1 + ty1/m, p ∈ Λ2 or p ∈ Λ1 with bpcp = 0,

p ∤ x1y2 − x2y1, p ∈ Λ1 with bp, cp > 0;
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(ii) (r − 1, t)y1 ≡ 0 (mod m) and y1 ≡ y2 − 1 ≡ 0 (mod m0);

(iii) for all p ∈ Λ1 with p 6= 2 or p = 2, a2 = d2,

mx2 ≡ t(x1 + ty1/m− y2) (mod pap),

y2 ≡ 1 + ty1/m (mod pap−dp);

(iv) if max{b2, c2} > d2 = 1 and a2 > 1, then 2 | y1, deg2(x2) > a2 − b2 − e+ 1 and

ty1/m ≡ 2e−1(y1 − y2 + 1) (mod 2a2−1);

(v) if d2 > 1, then

mx2 ≡ t(x1 + ty1/m− y2) (mod 2a2),

y2 ≡ 1 + ty1/m+ f(y1) (mod 2a2−d2).
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