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Abstract. We give a new and elementary proof of Jackson’s terminating q-analogue of
Dixon’s identity by using recurrences and induction.
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1. Introduction

Jackson’s terminating q-analogue of Dixon’s identity [2], [8]:

(1.1)

a
∑

k=−a

(−1)kq(3k
2+k)/2

[

a+ b

a+ k

][

b+ c

b+ k

][

c+ a

c+ k

]

=

[

a+ b+ c

a+ b

][

a+ b

a

]

,

where the q-binomial coefficients are defined by

[

n

k

]

=







(1− q)(1 − q2) . . . (1− qn)

(1− q)(1 − q2) . . . (1− qk)(1− q)(1 − q2) . . . (1− qn−k)
if 0 6 k 6 n,

0 otherwise,

is an important identity in combinatorics and number theory. Note that Dixon’s

identity (see [8], [12], page 43, equation (IV), or [9], page 11, equation (2.6)) is

the q = 1 case of (1.1). Several short proofs of the Dixon or q-Dixon identity can

be found in [4], [5], [6], [7]. The q-Dixon identity can also be deduced from the

q-Pfaff-Saalschütz identity (see [7], [13]).

This work was partially sponsored by the Natural Science Foundation of Jiangsu Province
(grant BK20161304), and the Qing Lan Project of Education Committee of Jiangsu
Province.

DOI: 10.21136/CMJ.2018.0052-17 577

http://dx.doi.org/10.21136/CMJ.2018.0052-17


Recently, Mikić [10], [11] gave an elementary proof of Dixon’s identity and some

other binomial coefficient identities by using recurrences and induction. The aim of

this note is to give a new proof of (1.1) by generalizing the argument of [10], [11].

2. Proof of (1.1)

For any integer n let [n] = (1 − qn)/(1− q). Denote the left-hand side of (1.1) by

S(a, b, c). We introduce two auxiliary sums as follows:

P (a, b, c) :=
a

∑

k=−a

(−1)kq(3k
2+k)/2[a− k][a+ k]

[

a+ b

a+ k

][

b+ c

b+ k

][

c+ a

c+ k

]

,(2.1)

Q(a, b, c) :=

a
∑

k=−a

(−1)kq3(k
2+k)/2[b− k][b+ k]

[

a+ b

a+ k

][

b + c

b+ k

][

c+ a

c+ k

]

.(2.2)

It is easy to see that [k]
[

n
k

]

= [n]
[

n−1
k−1

]

, and so for a, b, c > 1,

(2.3) P (a, b, c) = [a+ b][a+ c]
a−1
∑

k=−a+1

(−1)kq(3k
2+k)/2

[

a− 1 + b

a− 1 + k

][

b+ c

b+ k

][

c+ a− 1

c+ k

]

= [a+ b][a+ c]S(a− 1, b, c).

Similarly, we have

(2.4) Q(a, b, c) = [a+ b][b+ c]S(a, b− 1, c).

It follows from (2.1) and (2.2) that

(2.5) P (a, b, c)−Q(a, b, c)qa−b = [a+ b][a− b]S(a, b, c).

If a 6= b, then from (2.3)–(2.5) we deduce that

(2.6) S(a, b, c) =
1

[a− b]
([a+ c]S(a− 1, b, c)− [b+ c]S(a, b− 1, c)qa−b).

We need to consider the case when a = b = c, separately. Noticing the well known

relations (see, for example [1], equations (3.3.3) and (3.3.4))

[

n

k

]

=

[

n− 1

k

]

qk +

[

n− 1

k − 1

]

=

[

n− 1

k

]

+

[

n− 1

k − 1

]

qn−k,
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we have

(2.7) S(a, a, a) =
a

∑

k=−a

(−1)kq(3k
2+k)/2

([

2a− 1

a+ k

]

qa+k +

[

2a− 1

a+ k − 1

])

×

([

2a− 1

a+ k

]

+

[

2a− 1

a+ k − 1

]

qa−k

)2

=
a

∑

k=−a

(−1)kq(3k
2+k)/2

([

2a− 1

a+ k

]3

qa+k +

[

2a− 1

a+ k − 1

]3

q2a−2k

+

[

2a

a+ k

][

2a− 1

a+ k

][

2a− 1

a+ k − 1

]

(1 + qa−k + q2a)

)

.

By the symmetry of q-binomial coefficients, it is clear that

a
∑

k=−a

(−1)kq(3k
2+k)/2

[

2a− 1

a+ k

]3

qk =

a−1
∑

k=−a

(−1)kq(3k
2+3k)/2

[

2a− 1

a+ k

]3

= 0,

a
∑

k=−a

(−1)kq(3k
2+k)/2

[

2a− 1

a+ k − 1

]3

q−2k =

a
∑

k=−a+1

(−1)kq(3k
2
−3k)/2

[

2a− 1

a+ k − 1

]3

= 0,

and

a
∑

k=−a

(−1)kq(3k
2+k)/2

[

2a

a+ k

][

2a− 1

a+ k

][

2a− 1

a+ k − 1

]

qa−k

=

a−1
∑

k=1−a

(−1)kq3k
2
−k/2

[

2a

a+ k

][

2a− 1

a+ k

][

2a− 1

a+ k − 1

]

qa = qaS(a, a, a− 1).

Therefore the identity (2.7) implies that

(2.8) S(a, a, a) = (1 + qa + q2a)S(a, a, a− 1).

We now give a proof of (1.1) by induction on a+ b+ c. It is clear that (1.1) is true

for a = b = c = 1. Assume that (1.1) holds for all non-negative integers a, b and c

with a+b+c = n. Let a, b and c be non-negative integers satisfying a+b+c = n+1.

We consider three cases:

⊲ If at least one of the numbers a, b and c is equal to 0, then (1.1) is obviously true.

⊲ If a = b = c, then by the induction hypothesis we have

S(a, a, a− 1) =

[

3a− 1

2a

][

2a

a

]

.
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Therefore by (2.8) we obtain

S(a, a, a) = (1 + qa + q2a)

[

3a− 1

2a

][

2a

a

]

=

[

3a

2a

][

2a

a

]

.

⊲ If a 6= b, then by (2.6) and the induction hypothesis we get

S(a, b, c) =
[a+ c]

[a− b]

[

a+ b + c− 1

a+ b− 1

][

a+ b − 1

a− 1

]

−
[b + c]

[a− b]

[

a+ b+ c− 1

a+ b− 1

][

a+ b− 1

a

]

qa−b

=

[

a+ b+ c

a+ b

][

a+ b

a

]

as desired. If a = b, then a 6= c, and we can proceed similarly as before by noticing

the symmetry of a, b and c in S(a, b, c).

Hence, (1.1) holds for a+b+c = n+1, and by induction, it holds for all non-negative

integers a, b and c.
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