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Abstract. Let G be a simple graph, let d(v) denote the degree of a vertex v and let g be a
nonnegative integer function on V (G) with 0 6 g(v) 6 d(v) for each vertex v ∈ V (G). A gc-
coloring of G is an edge coloring such that for each vertex v ∈ V (G) and each color c, there
are at least g(v) edges colored c incident with v. The gc-chromatic index of G, denoted
by χ′

gc (G), is the maximum number of colors such that a gc-coloring of G exists. Any
simple graph G has the gc-chromatic index equal to δg(G) or δg(G) − 1, where δg(G) =
min

v∈V (G)
⌊d(v)/g(v)⌋. A graph G is nearly bipartite, if G is not bipartite, but there is a vertex

u ∈ V (G) such that G− u is a bipartite graph. We give some new sufficient conditions for
a nearly bipartite graph G to have χ′

gc(G) = δg(G). Our results generalize some previous
results due to Wang et al. in 2006 and Li and Liu in 2011.

Keywords: edge coloring; nearly bipartite graph; edge covering coloring; gc-coloring; edge
cover decomposition

MSC 2010 : 05C15

1. Introduction

Our terminology and notation will be standard, except where indicated. Readers

are referred to [1] for undefined terms. Throughout this paper, the word graph refers

to simple graph. A multigraph may have multiple edges but no loops. Let G be

a multigraph with a finite nonempty vertex set V (G) and a finite nonempty edge

set E(G). Let NG(v) denote the neighborhood of v and let the degree d(v) be the

number of edges incident with v in the graph G. A multigraph G is nearly bipartite,

if G is not bipartite, but there is a vertex u ∈ V (G) such that G − u is bipartite
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with bipartition (X,Y ); such a nearly bipartite graph is denoted by G(X,Y ;u).

An edge coloring of a multigraph G is an assignment of some colors to the edges

of G. Let iη(v) (or simply i(v)) denote the number of edges of G which are incident

with the vertex v and receive color i in an edge coloring η. Let g be a nonnegative

integer function defined on V (G) such that 0 6 g(v) 6 dG(v) for any v ∈ V (G).

A gc-coloring of G is an edge coloring with the colors in a set C satisfying that, for

each vertex v ∈ V (G) and each color i ∈ C, there are at least g(v) incident edges

colored with color i. Let χ′
gc
(G) denote the maximum number of colors for which

a gc-coloring of G exists. We call χ
′
gc
(G) the gc-chromatic index of G. An edge

coloring η is proper if α(v) 6 1 for each color α ∈ C and each vertex v ∈ V (G). For

a d-regular graph G with g ≡ 1, G has a proper edge coloring with d colors if and

only if G has a gc-coloring with d colors.

Since the proper edge coloring problem is NP-complete even for regular graphs,

see [3], the gc-coloring problem is NP-complete as well. In our daily life many

problems on optimization and network design, for example, coding design, the file

transfer problem on computer networks, schedule problems and so on, see [5], are

related to the gc-coloring which was for the first time presented by Song and Liu

in [6].

Let

δ(G) = min
v∈V (G)

{d(v)}, δg(G) = min
v∈V (G)

⌊d(v)

g(v)

⌋

,

Vδ(G) = {v ∈ V (G) : d(v) = δ(G)},

Vδg (G) = {v ∈ V (G) : d(v) = g(v)δg(G)},

N∗(u) = {v ∈ NG(u) : d(v) = δ(G)},

N∗
g (u) = {v ∈ NG(u) : d(v) = δg(G)g(v)},

d∗(u) = |N∗(u)|, d∗g(u) = |N∗
g (u)| and sur(v) = d(v)− g(v)δg(G),

in which
⌊

d(v)/g(v)
⌋

is the largest integer not larger than d(v)/g(v), and sur(v) is

the surplus of d(v). Clearly, sur(v) > 0 for each v ∈ V (G). Let d(v)/g(v) = ∞ when

g(v) = 0. So 1 6 δg(G) 6 ∞. When δg(G) = ∞, for any given color set C, any edge

coloring with colors in C is a gc-coloring of G. So χ
′
gc
(G) = ∞. When δg(G) = 1, we

have χ′
gc
(G) = 1. In this paper, we just consider the nontrivial cases, i.e. the graphs

with 2 6 δg(G) < ∞. It is easy to verify that d(v) > δg(G)g(v) for each v ∈ V (G)

and χ′
gc
(G) 6 δg(G). The multiplicity µ(u, v) of a pair of distinct vertices u and v

is the number of edges of G joining u and v. Let µ(v) = max{µ(v, u) : u ∈ V (G)}.

Song and Liu studied gc-chromatic indices of multigraphs and obtained the following

result in [7].
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Theorem 1 ([7]). Let G be a multigraph associated with a positive integer func-

tion g : V (G) → Z>0. Then

min
v∈V (G)

⌊d(v)− µ(v)

g(v)

⌋

6 χ′
gc
(G) 6 δg(G).

When G is a graph, we have µ(v) = 1 for each v ∈ V (G). Therefore the following

corollary holds.

Corollary 2. Let G be a graph associated with a positive integer function g :

V (G) → Z>0. Then

δg(G)− 1 6 χ′
gc
(G) 6 δg(G).

We say that a graph G is of gc-class 1 if χ′
gc

= δg(G), and G is of gc-class 2

otherwise. The problem of deciding whether a graph G is of gc-class 1 or gc-class 2

is called the classification problem on gc-colorings.

When g ≡ 1, a gc-coloring of a graph G is exactly an edge covering coloring of G,

and the gc-chromatic index of G is denoted by χ
′
c(G) simply. If g ≡ 1, Corollary 2 is

the famous theorem of Gupta in [2].

Theorem 3 ([2]). Let G be a graph. Then δ(G) − 1 6 χ′
c(G) 6 δ(G).

We say a graph G is of CI class if χ′
c(G) = δ(G), otherwise G is of CII class.

For the gc-chromatic index of bipartite graphs, Song and Liu in [7] obtained the

following result.

Theorem 4 ([7]). Let G be a bipartite multigraph associated with a positive

integer function g : V (G) → Z>0. Then χ′
gc
(G) = δg(G).

Wang, Zhang and Liu in [8] gave some sufficient conditions for a nearly bipartite

graph to be of CI class.

Theorem 5 ([8]). Let G(X,Y ;u) be a nearly bipartite graph with δ(G) > 3.

Then G(X,Y ;u) is of CI class if one of the following conditions is satisfied:

(1) d(u) > 2δ(G)− 1,

(2) d∗(u) 6 1,

(3) N∗(u) ⊆ X (or Y ) and d(u) > δ(G) + d∗(u)− 1.
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Xu and Jia in [9] gave a sufficient condition for a nearly bipartite graph to be of

CI class.

Theorem 6 ([9]). Let G(X,Y ;u) be a nearly bipartite graph with δ(G) > 3. If

there exits a vertex y ∈ NG(u), such that d(u) + d(y) > 3δ− 1, then G(X,Y ;u) is of

CI class.

Li and Liu in [4] gave some sufficient conditions for a nearly bipartite graph to be

of gc-class 1.

Theorem 7 ([4]). Let G(X,Y ;u) be a nearly bipartite graph associated with

a positive integer function g : V (G) → Z>0. Then G(X,Y ;u) is of gc-class 1 if one

of the following conditions is satisfied:

(1) sur(u) > δg(G) − 1,

(2) there exists a vertex y ∈ NG(u) such that

d(u) + d(y) > δg(G)(g(u) + 1) + δg(G)g(y) − 1.

In this paper, we obtain the following main result for a nearly bipartite graph to

be of gc-class 1. Our results generalize Theorems 5 and 7 (1).

Theorem 8. Let G(X,Y ;u) be a nearly bipartite graph associated with a non-

negative integer function g : V (G) → N, g(u) > 1 and δg(G) < ∞. If d∗g(u) 6

d(u)− δg(G) + 1, then G(X,Y ;u) is of gc-class 1.

2. Preliminary results

Theorem 1 and Corollary 2 are based on an integer function g : V (G) → Z>0.

When g : V (G) → N, V0 = {v ∈ V (G) : g(v) = 0} 6= ∅ and 1 6 δg(G) < ∞, Zhang

in [10] constructed an auxiliary graph G′ from G as follows: for each v ∈ V0, stick

a new complete graph Hv = K2δg(G)+2 at v in such a way that v is identified with

an arbitrary vertex of Hv. Define a function h : V (G′) → Z>0 in such a way that

h(v) = g(v), v ∈ V (G) \ V0;

h(v) = 2, otherwise.

Zhang in [10] proved that δg(G) = δh(G
′), Vδg (G) = Vδh(G

′) and χ′
gc
(G) = χ′

hc
(G′).

So Theorem 1 and Corollary 2 are still true for a function g : V (G) → N.
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Theorem 1′. Let G be a multigraph associated with a nonnegative integer func-

tion g : V (G) → N and let δg(G) < ∞. Then

min
v∈V (G)

⌊d(v)− µ(v)

g(v)

⌋

6 χ′
gc
(G) 6 δg(G).

Corollary 2′ ([10]). Let G be a graph associated with a nonnegative integer

function g : V (G) → N and let δg(G) < ∞. Then

δg(G)− 1 6 min
v∈V (G)

⌊d(v)− 1

g(v)

⌋

6 χ′
gc
(G) 6 δg(G).

Next, we prove that the result in Theorem 4 is still true when g is a nonnegative

integer function.

Theorem 4′. Let G be a bipartite multigraph associated with a nonnegative

integer function g : V (G) → N and let δg(G) < ∞. Then χ′
gc
(G) = δg(G).

P r o o f. Let G = G(X,Y ), V0 = {v ∈ V (G) : g(v) = 0}, V1 = V0 ∩ X , V2 =

V0 ∩ Y , T = {x, y}, T ∩ V (G) = ∅. When V0 = ∅, by Theorem 4, we are done.

When V0 6= ∅, we can construct an auxiliary graph G′ from G as follows: add x, y

to G(X,Y ), join δg(G) multiedges between vertices x and v for each v ∈ V2 and

join δg(G) multiedges between vertices y and v for each v ∈ V1. In graph G′, define

a function h : V (G′) → Z>0 in such a way that

h(v) = g(v), v ∈ V (G) \ V0;

h(v) = 1, otherwise.

It is easy to see that G′ is a bipartite multigraph with bipartition (X1, Y1), where

X1 = X ∪ {x}, Y1 = Y ∪ {y}. In the graph G, δg(G) = min
v∈V (G)\V0

⌊d(v)/g(v)⌋. In

the graph G′, dG′(v) = dG(v), h(v) = g(v) for each v ∈ V (G) \ V0, dG′(v) > δg(G)

and h(v) = 1 for each v ∈ V0 ∪ T . Thus δh(G
′) = δg(G). By Theorem 4, we have

χ′
hc
(G′) = δh(G

′) = δg(G). Thus we can find an hc-coloring η of G
′ with δg(G) colors

in C = {1, 2, . . . , δg(G)}. Then α(v) > g(v) for each α ∈ C and each v ∈ V (G′) in η.

Restricting the coloring η of G′ to G, we get a gc-coloring of G with δg(G) colors.

Thus, χ′
gc
(G) = δg(G). �

Corollary 9. Let G be a bipartite graph associated with a nonnegative integer

function g : V (G) → N and let δg(G) < ∞. Then G is of gc-class 1.
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3. Main results

In the remaining part of this paper, we just concentrate on the graphs G with 2 6

δg(G) < ∞. In [11], Zhang defined a class of auxiliary graphs, the splitting graphs,

for investigating f -colorings of graphs, which are edge-colorings of graphs such that

each vertex v has at most f(v) incident edges colored with a same color. Here, we

give a similar definition for investigating gc-colorings of graphs. In a graph G, let

u ∈ V (G), NG(u) = {v1, v2, . . . , vd(u)}. Let T = {u1, u2, . . . , ut}, T ∩ V (G) = ∅.

Let Ni ⊂ NG(u), 1 6 i 6 t,
⋃

16i6t

Ni = NG(u) and Ni ∩ Nj = ∅ for every i, j ∈

{1, 2, . . . , t}, i 6= j. Construct an auxiliary graph G′ from G as follows:

(3.1) V (G′) = V (G) \ {u} ∪ T ;

E(G′) = E(G) \ ({uv : v ∈ NG(u)} ∪ {uiv : v ∈ Ni, 1 6 i 6 t}).

G′ is called a splitting graph of G.

In the graph G, let S = {x1, x2, . . . , xs} ⊂ V (G), Q ⊆ E(G) and Q 6= ∅. We use

G[Q] to denote the subgraph of G induced by Q. A partial edge-coloring of G is

an edge-coloring of a subgraph G[Q] of G. Identifying x1, x2, . . . , xs with x means

removing the vertices in the set S of G, adding a new vertex x to G−S and joining x

to each vertex in NG(S) \ S by an edge. The resulting graph is called an identifying

graph of G.

Theorem 10. Let G(X,Y ;u) be a nearly bipartite graph associated with a non-

negative integer function g : V (G) → N and let δg(G) < ∞. If g(u) = 0, then

G(X,Y ;u) is of gc-class 1.

P r o o f. Let N1 = NG(u)∩Y , N2 = NG(u)∩X , T = {u1, u2} and T ∩V (G) = ∅.

We can construct a splitting graph G′ of G so that it satisfies the conditions in (3.1).

In the graph G′, define a function h : V (G′) → N in such a way that

h(u1) = h(u2) = 0;

h(v) = g(v), v ∈ V (G′) \ T.

It is easy to see that δh(G
′) = min

v∈V (G′)\T
⌊dG′(v)/h(v)⌋ and G′ is a bipartite graph

with bipartition (X1, Y1), where X1 = X ∪ {u1}, Y1 = Y ∪ {u2}. Since dG′(v) =

dG(v), h(v) = g(v) for each v ∈ V (G′) \ T , we have δh(G′) = δg(G). By Corollary 9,

we know that χ′
hc
(G′) = δh(G

′) = δg(G). Thus we can find an hc-coloring η of G
′

with δg(G) colors in C = {1, 2, . . . , δg(G)}. By identifying u1, u2 of G
′ with u, we

get the graph G and an edge-coloring η′ of G with δg(G) colors in C. In η′, we have

α(x) > g(x) for each α ∈ C and each vertex x ∈ V (G). So G is of gc-class 1. �
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Next, we just consider nearly bipartite graphs G(X,Y ;u) with g(u) > 1.

An (α, β) exchange chain L of G is a sequence (v0, e1, v1, e2, . . . , vr−1, er, vr) of

vertices and edges of G in which

(i) for 1 6 i 6 r, the adjacent vertices vi−1 and vi are distinct and ei = vi−1vi;

(ii) all the edges are distinct and are colored alternately by α and β;

(iii) e1 is colored α and α(v0) > β(v0); µ(vr) > µ(vr), where µ denotes the color

of er and µ denotes the other color of {α, β}.

By (iii), L must be a closed chain with odd edges when v0 = vr. So any even

closed chain would not be an exchange chain. If v0 6= vr, then exchanging the colors

on L makes α(v0) decrease by one, β(v0) increase by one while α(v) and β(v) remain

unchanged for each v ∈ {v1, v2, . . . , vr−1}; if v0 = vr, then exchanging the colors

on L makes α(v0) decrease by two, β(v0) increase by two while α(v) and β(v) remain

unchanged for each v ∈ {v1, v2, . . . , vr−1}.

In an edge coloring of a graph G, an edge colored by i is called an i-edge. We now

prove the main result of this paper.

P r o o f of Theorem 8. If δg(G) = 1, then G(X,Y ;u) is of gc-class 1. Next,

consider the cases with δg(G) > 2.

If d∗g(u) = 0, let G′ = G \ u. In the graph G′, define a function h : V (G′) → N in

such a way that h(v) = g(v) for each v ∈ V (G\u). Note thatNG(u)\Vδg (G) = NG(u)

and, for each v ∈ NG(u), dG(v) > δg(G)g(v) + 1. So dG′(v) > δg(G)g(v) for each

v ∈ NG(u). Let V0 =
{

v ∈ V (G) : ⌊dG(v)/g(v)⌋ = δg(G)
}

, it is easy to see that

V0 6= ∅. If V0 = {u}, it may be the case that δh(G
′) > δg(G); otherwise, δh(G

′) =

δg(G). So δh(G
′) > δg(G). By Corollary 9, we have χ′

hc
(G′) = δh(G

′). Thus we

can find an hc-coloring η of G′ with δh(G
′) colors in C′ = {1, 2, 3, . . . , δh(G

′)}. If

δh(G
′) = δg(G), let η′ = η. If δh(G

′) > δg(G), we can find an hc-coloring η
′ of G′

with δg(G) colors in C = {1, 2, 3, . . . , δg(G)} from the coloring η by recoloring the

i-edges, δg(G) + 1 6 i 6 δh(G
′), by the color δg(G). In η′, we have α(v) > g(v), for

each α ∈ C and v ∈ V (G′). Based on the coloring η′ of G′ and dG(u) > g(u)δg(G),

we can color all the uncolored edges incident by u by the colors in C such that every

color at a vertex u appears at least g(u) times. Then we get a gc-coloring of G by

δg(G) colors. Thus G is of gc-class 1.

If 1 6 d∗g(u) 6 d(u)− δg(G) + 1, then equivalently 1 6 d∗g(u) 6 (g(u)− 1)δg(G) +

sur(u) + 1 since d(u) = g(u)δg(G) + sur(u). Let N∗
g (u) = {v1, v2, . . . , vd∗

g(u)
},

N3 = {v1, v2, . . . , vt}, where t = min{sur(u), d∗g(u)}, N1 = (N∗
g (u) \ N3) ∩ Y ,

N2 = (N∗
g (u) \ N3) ∩ X , T = {u1, u2, u3} and T ∩ V (G) = ∅. Construct a new

graph G1 (see Figure 1) from G as follows:

V (G1) = V (G) \ {u} ∪ T ;

E(G1) = E(G) \ ({uv : v ∈ NG(u)} ∪ {uiv : v ∈ Ni, 1 6 i 6 3}).
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It is easy to see that dG1
(u3) 6 sur(u). Let R = NG(u) \ Vδg (G). Note that, for

each v ∈ R, dG(v) > δg(G)g(v) + 1. So dG1
(v) > δg(G)g(v) for each v ∈ R. In the

graph G1, define a function h : V (G1) → N in such a way that

h(u1) =
⌊dG1

(u1)

δg(G)

⌋

; h(u2) =
⌊dG1

(u2)

δg(G)

⌋

;

h(u3) = 0;

h(v) = g(v), v ∈ V (G1) \ T.

It is easy to see that min{h(u1), h(u2)} > 0, δh(G1) = δg(G). When NG1
(u3) ⊆ X or

NG1
(u3) ⊆ Y , G1 is a bipartite graph; when NG1

(u3)∩X 6= ∅ and NG1
(u3)∩Y 6= ∅,

G1 is a nearly bipartite graph with h(u3) = 0. By Corollary 9 or Theorem 10, we

know that χ′
hc
(G1) = δh(G1) = δg(G). Thus we can find an hc-coloring ξ of G1

with δg(G) colors in C = {1, 2, . . . , δg(G)}. Identify u1 and u2 of G1 with u′ in the

coloring ξ. Then we get a graph G2 (see Figure 1) and an edge coloring ξ
′ of G2 with

δg(G) colors in C. In ξ′, c(v) > h(v) = g(v) for each v ∈ V (G1) \ {u′, u3} and each
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c ∈ C. We claim that there exists an edge-coloring of G2 satisfying the condition

above and c(u′) 6 g(u) for each c ∈ C. We know that 0 6 dG2
(u′) = d∗g(u) − t 6

(g(u)− 1)δg(G) + 1. So we have

0 6

⌊dG2
(u′)

δg(G)

⌋

6 g(u)− 1 and
dG2

(u′)− 1

δg(G)
6 g(u)− 1.

If g(u) = 1, then dG2
(u′) 6 1. So ξ′ is a required edge-coloring of G2. Next, consider

the cases with g(u) > 2. In ξ′, if there exists a color α ∈ C with α(u′) > g(u) + 1,

there must be some color β ∈ C with β(u′) 6 g(u)− 2. We can construct an (α, β)

exchange chain L starting at u′. By (iii) of the definition of the exchange chain,

L satisfies one of the following conditions:

(1) L ends at u′ with an edge colored with α;

(2) L doesn’t end at u′.

(According to the definition of an exchange chain and α(u′) > g(u) + 1 > 3, we

can always construct a maximal (α, β) exchange chain L = (u′, e1, v1, e2, . . . , er, vr).)

Let µ denote the color of er and µ the other color of {α, β}. Since L is maximal,

there is µ(vr) > µ(vr). (In fact, we do not need to find a maximal exchange chain.

When constructing an (α, β) exchange chain starting at u′, if entering a vertex w

with an α-edge and α(w) > β(w) or a β-edge and β(w) > α(w), then L ends at w.)

We exchange the two colors on L. If case (1) occurs, then exchanging the colors

on L makes α(u′) decrease by two and β(u′) increase by two; if case (2) occurs, then

exchanging the colors on L makes α(u′) decrease by one and β(u′) increase by one.

In either case, we still have β(u′) 6 g(u) after exchanging the colors on L. Use the

method iteratively until c(u′) 6 g(u) for each c ∈ C. Then we obtain a required

edge-coloring ξ′′. Construct a new graph G3 from G2 (see Figure 1) as follows:

V (G3) = V (G2);

E(G3) = E(G2) ∪ {u′v : v ∈ R}.

So ξ′′ is a partial edge coloring ofG3. Clearly, dG3
(u′) = dG(u)−dG1

(u3) > δg(G)g(u)

and so dG3
(u′)/δg(G) > g(u). Since α(u′) 6 g(u) for each color α ∈ C in ξ′′, we can

color all the uncolored edges incident with the vertex u′ of graph G3 with the colors

in C such that every color at the vertex u′ appears at least g(u) times. By identifying

u′, u3 of G3 with u, we get the graph G (see Figure 1) and an edge-coloring η of G

with δg(G) colors in C. In η, we have α(x) > g(x), for each α ∈ C and each vertex

x ∈ V (G). So G is of gc-class 1. �

Let G(X,Y ;u) be a nearly bipartite graph. We define dX(u) = |X ∩ NG(u)|,

dY (u) = |Y ∩ NG(u)|. Using parameters dX(u) and dY (u), we obtain the following

result.
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Theorem 11. Let G(X,Y ;u) be a nearly bipartite graph associated with a non-

negative integer function g : V (G) → N and let δg(G) < ∞. If ⌊dX(u)/δg(G)⌋ +

⌊dY (u)/δg(G)⌋ > g(u), then G(X,Y ;u) is of gc-class 1.

P r o o f. Let N1 = NG(u)∩Y , N2 = NG(u)∩X , T = {u1, u2} and T ∩V (G) = ∅.

We can construct a splitting graph G′ of G so that it satisfies the conditions in (3.1).

In graph G′, define a function h : V (G′) → N in such a way that

h(u1) =
⌊dY (u)

δg(G)

⌋

; h(u2) =
⌊dX(u)

δg(G)

⌋

;

h(v) = g(v), v ∈ V (G′) \ T.

It is easy to see that G′ is a bipartite graph with δh(G
′) = δg(G). By Corollary 9,

we have χ′
hc
(G′) = δh(G

′) = δg(G). So we can find an hc-coloring η of G
′ with δg(G)

colors in C = {1, 2, 3, . . . , δg(G)}. In η, we have α(u1)+α(u2) > h(u1)+h(u2) > g(u)

for each α ∈ C, α(v) > g(v) for each v ∈ V (G′) \ {u1, u2} and each α ∈ C. By

identifying u1, u2 of G
′ with u, we get the graph G and an edge-coloring η′ of G

with δg(G) colors in C. In η′, we have α(x) > g(x) for each α ∈ C and each vertex

x ∈ V (G). So G is of gc-class 1. �

Similarly, we can get the following result.

Corollary 12. Let G(X,Y ;u) be a nearly bipartite graph associated with a non-

negative integer function g : V (G) → N and let δg(G) < ∞. Let i, j ∈ Z>0. If

dX(u) = iδg(G) or dY (u) = jδg(G), then G(X,Y ;u) is of gc-class 1.

P r o o f. If g(u) = 0, by Theorem 10 we know that G is of gc-class 1. So let

us consider the case g(u) > 1. Without loss of generality, we can suppose dX(u) =

iδg(G). Clearly d(u) > δg(G)g(u) by the definition of δg(G). It is easy to see that

dY (u) = d(u) − dX(u) > (g(u)− i)δg(G). Thus, ⌊dX(u)/δg(G)⌋+ ⌊dY (u)/δg(G)⌋ >

g(u). By Theorem 11, G is of gc-class 1. �

4. Concluding remarks

In Theorem 8, the condition d∗g(u) 6 d(u) − δg(G) + 1 is sharp. Consider the

nearly bipartite graph G(X,Y ;u) in Figure 2. It is easy to see that δg(G) = 2,

Vδg (G) = V (G) and d∗g(u) = d(u)− δg(G) + 2. Suppose that G is of gc-class 1, then

G has a gc-coloring η with two colors in C = {α, β}. In η, the number of edges

colored with α is (1× 6 + 3)/2 = 9/2, which is not an integer. This contradicts our

assumption. So G is of gc-class 2. Thus, the condition d∗g(u) 6 d(u) − δg(G) + 1 in

Theorem 8 is sharp.
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Figure 2. A nearly bipartite graph G(X,Y ;u), where X = {v1, v3, v5}, Y = {v2, v4, v6},
g(u) = 3 and g(vi) = 1, 1 6 i 6 6.

LetG(X,Y ;u) be a nearly bipartite graph. Theorem 7 (1) says that, when δg(G) 6

sur(u) + 1, G is of gc-class 1. Theorem 8 implies that, when δg(G) 6 sur(u) + 1 +

g(u)δg(G) − d∗g(u), G is of gc-class 1. So when g(u)δg(G) > d∗g(u), Theorem 8 is

stronger than Theorem 7 (1).

When g(v) = 1 for all v ∈ V (G), we can get the following result by Theorem 8.

Corollary 13. Let G(X,Y ;u) be a nearly bipartite graph. If d∗(u) 6 d(u) −

δ(G) + 1, then G(X,Y ;u) is of CI class.

It is easy to see that Corollary 13 strictly generalizes Theorem 5 (2) when u /∈

Vδ(G) and it generalizes Theorem 5 (3). (Corollary 13 removed the restrictions that

N∗(u) ⊆ X or N∗(u) ⊆ Y ).

When g(v) = 1 for all v ∈ V (G), we can get the following result by Theorem 11.

Corollary 14. Let G(X,Y ;u) be a nearly bipartite graph. If dX(u) > δ(G) or

dY (u) > δ(G), then G(X,Y ;u) is of CI class.

If d(u) > 2δ(G) − 1, we must have dX(u) > δ(G) or dY (u) > δ(G), but not vice

versa. So, Corollary 14 generalizes Theorem 5 (1).
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