Czechoslovak Mathematical Journal

Fuyuan Chen
Order of the smallest counterexample to Gallai’s conjecture
Czechoslovak Mathematical Journal, Vol. 68 (2018), No. 2, 341-369

Persistent URL: http://dml.cz/dmlcz/147223

Terms of use:

© Institute of Mathematics AS CR, 2018

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized

documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This document has been digitized, optimized for electronic delivery and
O stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz


http://dml.cz/dmlcz/147223
http://dml.cz

Czechoslovak Mathematical Journal, 68 (143) (2018), 341-369

ORDER OF THE SMALLEST COUNTEREXAMPLE TO
GALLAT'S CONJECTURE

FuyuaAN CHEN, Anhui

Received August 7, 2016. First published February 7, 2018.

Abstract. In 1966, Gallai conjectured that all the longest paths of a connected graph
have a common vertex. Zamfirescu conjectured that the smallest counterexample to Gallai’s
conjecture is a graph on 12 vertices. We prove that Gallai’s conjecture is true for every
connected graph G with o/(G) < 5, which implies that Zamfirescu’s conjecture is true.
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1. INTRODUCTION

Graphs in this paper are simple (without loops or parallel edges), finite and undi-
rected. Let G be a graph with the vertex set V(G) and edge set F(G). Let v be a
vertex of V(G). The neighborhood of v in G, denoted by N¢(v), is the set of vertices
in V(@) which are adjacent to v. The degree of v in G, denoted by dg(v), equals to
|Ng(v)|. A matching in a graph is a set of pairwise nonadjacent edges. A mazimum
matching is a matching with the largest number of edges. The matching number
of G, denoted by o/(G), is the number of edges in the maximum matching of G.

The research on the intersection of longest paths in a graph has a long history. In
particular, Gallai in [6] proposed the following conjecture in 1966.

Conjecture 1.1 (Gallai [6]). If G is a connected graph, then all the longest
paths of G have a common vertex.

Three years later, Walther in [9] disproved Gallai’s conjecture by exhibiting a
counterexample on 25 vertices. Up to now, the smallest counterexample to Gallai’s
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conjecture is a graph on 12 vertices (see Figure 1), which was found by Walther in [10]
and Zamfirescu in [12], independently. One may find that this graph is somewhat
interesting: for each vertex v of it there is a longest path not containing v. Therefore,
all the longest paths share no common vertex.

AN

Figure 1. A counterexample to Gallai’s conjecture on 12 vertices.

Although Gallai’s conjecture has been disproved, finding classes of graphs that sup-
port this conjecture is also very meaningful. An obvious such example is the class of
trees. In 1990, Klavzar and Petkovsek in [7] proved that Conjecture 1.1 holds on split
graphs, and every connected graph such that each block is Hamiltonian-connected,
almost Hamiltonian-connected or a cycle. As a corollary, Gallai’s conjecture is true
for the class of cacti. In 2004, Balister, Gyori, Lehel, and Schelp in [1] showed that
circular arc graphs support Conjecture 1.1. In 2013, Rezende, Fernandes, Martin and
Wakabayashi in [5] proved that Conjecture 1.1 also holds on outer-planar graphs and
2-trees. In 2015, Chen in [3] proved that Gallai’s conjecture is true for graphs with
small matching number. In 2017, Chen et al. in [4] proved that Gallai’s conjecture
is true for all series-Parallel graphs (K4-minor-free graphs).

In this paper, we prove the following statement:
Theorem 1.1. If G is a connected graph with o'(G) < 5, then all the longest
paths of G have a common vertex.

Theorem 1.1 implies that the following conjecture is true, which was verified by
Brinkmann and Van Cleemput, see [2], by using computers.

Conjecture 1.2 (Zamfirescu [11]). A smallest counterexample to Gallai’s con-
jecture is a graph on 12 vertices.
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2. PROOF OF THEOREM 1.1

We prove by contradiction. Let G be a counterexample. Since G is connected,
if G has no cycle, then G is a tree, and therefore all the longest paths of G have
a common vertex (a center vertex of G). So G has a cycle. Let C' = viva...v01,
r > 3 be a longest cycle of G, and P = xox; . ..xs be a longest path of G. We write
Clv;,vj] for the longer subpath of C' between v; and v; (if there are two different
longest paths between v; and v; in C, we choose one for C[v;,v;| arbitrarily), and
P[zm, xy,] for the subpath of P between x,, and z,, 1 <4,j < r and 0 < m,n < s.
Since o/ (G) < 5, we have that » < 11 and s < 10. If C is a Hamilton cycle, then
every longest path of G is a Hamilton path, therefore all the longest paths of G have
a common vertex. Thus, C is not a Hamilton cycle. Let R = G — C and u € V(R).

Claim 2.1. s > r.

Proof. Since G is connected and C is not a Hamilton cycle, there is a vertex
y € V(R) such that yv; € E(G), where v; € V(C). Then yv;v;11 ...v;—1 is a path of
length r. Since P is a longest path of G, s > r. O

Claim 2.2. If there is a vertex v € V(G) such that Ng(v) = {v1,v2}, then every
longest path of G containing v must also contain v and vs.

Proof. Let Q be a longest path of G such that v € V(Q). If v; ¢ V(Q) or
vy ¢ V(Q), then v is an end-vertex of @, since Ng(v) = {v1,v2}. But now Q Uww;
or (Q Uvvy is a path longer than ), a contradiction. O

Claim 2.3. If there is a vertex v € V(G) \ V(P) such that vz; € E(G), 1 < i <
s —1, then vz;_1, va;y1 ¢ E(G).

Proof. If vz;_y € E(G) or vz;11 € E(G), then (P — z;x;—1) U x,_yvx; or
(P — 2;x541) Ux;p1vz; is a path longer than P, a contradiction. |

Claim 2.4. If Q1 = yoy1 ---Ys and Q2 = 2921 ...zs are two longest paths of G,
then Q1 N Q2 # 0.

Proof. If Q1 NQ2 = 0, then since G is connected, there is a path W connect-
ing @1 and Q2. Suppose that W connects y; € Q1 and z; € @2, 1 < j,1 < s —1,
and Q1[yo,y;] is a longer part of Q1, and Q2[z0, 7] is a longer part of Q2. Now
Q1[y0, y;] U Wy;, z1] U Q2z1, 20] is a path longer than ()1, a contradiction. O

By Claim 2.1 and s < 10 we have r < 10. Now we distinguish several cases in the
following subsections.
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2.1. Proof of the case r = 3. If r = 3, then by Claim 2.1 we have s > 3.

Claim 2.5. [V(P)nV(C)| > 1.

Proof. If |[V(P)NV(C)| = 0, then since G is connected, there is a path W
connecting P and C. Suppose that W connects v; and x;. We assume that s > 6, for
otherwise either v;41v;—1v;Wa; Pxs or vip1vi—1v;Wa; Pxg is a path longer than P,
a contradiction. If s > 9, then xgx1, X223, T4T5, TeT7, TeXg, V1V2 are 6 independent
edges, a contradiction. Thus s < 8. If x; ¢ {z3, xs_3} or v;z; ¢ E(G), then s = 8
and z; = x4, for otherwise either v;1vi—1v;Wa; Pxs or vi11vi—10;Wx; Pz is a path
longer than P, a contradiction. But now zgx1, 2223, 526, 728, v;—1V;4+1 and an
edge in z4,Wwv; are 6 independent edges, a contradiction. Thus x; € {z3, zs_3} and
ViTj; € E(G)

Now we can check that for each v € {v;_1,v;41}, the followings hold:

(i) v is not adjacent to any vertex in V(P) (since r = 3);
(ii) v is not adjacent to any vertex in V(G) \ (V(P) U V(C)) (since if there is a
vertex z € V(G) \ (V(P)UV(C)) such that zv € E(G), then zv;41v;—1v;2,; Pxs
Or ZVi41V;—10;%; Pxg or 2v;_1v;41v;2; Pxs or 2v;_1v41v;2; Pxg is a path longer
than P, a contradiction);
(i) dg(v) =2 (since (i) and (ii)).

By Claim 2.2, every longest path containing v;11(v;—1) must also contain v;. Now
we prove that if a longest path @ contains v;, then @ contains z;. By Claim 2.4,
PNQ # 0. If Q does not contain z;, then there exists a vertex z; # z; such that
v;Qx¢ is a segment of @ and v;Q N P = 0. By Claim 2.3, 2, ¢ {x;_1, zj+1}. But
now v;Qz; Px;v; is a cycle of length at least 4, a contradiction. Thus, every longest
path of G containing v; must also contain x;. Therefore all the longest paths of G
contain z;. Since G is a counterexample, |V (P)NV(C)| > 1. O

Claim 2.6. For any longest path Q of G, |V(Q)NV (C)| =1 or|V(Q) NV (C)| = 3.

Proof. By Claim 2.5, |[V(Q)NV(C)| > 1. If [V(Q) N V(C)| = 2, then without
loss of generality, suppose that v1,v2 € V(Q). Now vive € E(Q), since if vive ¢
E(Q), then vivzvaQuz,v1]vr is a cycle longer than C, a contradiction. But now
(Q — v1v2) Uwyvsvg is a path longer than @, a contradiction. O

Claim 2.7. If there is a longest path @ = yoy1...ys of G such that |[V(Q) N
V(C)| =1, then all the longest paths of G share a common vertex.

Proof. Suppose that V(Q)NV(C) = {y;}. Without loss of generality, suppose
that v1 = y;. Let Q1 be a longest path of G containing v; (i € {2,3}). By Claim 2.4,
QNQ1 #0. If Q1 does not contain y;, then there exists a vertex y; # y; such that
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v;Q1y is a segment of Q1 and v;Q1 N Q = 0. By Claim 2.3, y; ¢ {y;j—1, y;+1}. But
now v;Q1y:Qy;v; is a cycle of length at least 4, a contradiction. Thus, every longest
path of G containing ve (vs) must also contain v; = y;. Therefore all the longest
paths of G contain y;. O

Since G is a counterexample, by Claims 2.6 and 2.7, for every longest path @ of G,
V(C) Cc V(Q). But now all the longest paths of G contain V(C'), a contradiction.

2.2. Proof of the case r = 4. If r = 4, then by Claim 2.1, s > 4.

Claim 2.8. For any longest path Q of G, |[V(Q) NV (C)| = 2.

Proof. Let Q =yoy1...ys be a longest path of G. If |V(Q) NV (C)| = 0, then
s < 6, for otherwise yoy1, Y293, Y4¥s, Yey7 and v1ve, v3vy are 6 independent edges, a
contradiction. But now we could find a path longer than @, a contradiction.

If [V(Q)NV(C)| = 1, then s > 6, for otherwise we could find a path longer than Q,
a contradiction. Suppose that V(Q) N V(C) = {y,;}. Without loss of generality,
assume y; = v1. If s > 9, then yoy1, y2y3, Yays, Ysy7, Ysyo, v2v3 are 6 independent
edges, a contradiction. Thus 6 < s < 8.

We can check that for each vertex v € {va, vs, v4} the following holds:

(i) v is not adjacent to y,;_1,y;j+1 (since otherwise (Q — v1y;—1) Uv1Clvr, v]vy,—1
or (@ —vnyj+1) Uv1Clvr, v]vyj+ is a path longer than Q);
(if) v is not adjacent to any vertex in Q[yo, yj—2] U Q[y;+2, ys] (since r = 4).

Let @1 be a longest path of G containing v;, i € {2,3,4}. By Claim 2.4,
QNQ1 #0. If Q, does not contain vy, then there exists a vertex y; # y;(v1) such
that v;Q1y: is a segment of @ and v;Q1 NQ = 0. By (i) and (ii) we could obtain a
cycle of length at least 5, a contradiction.

Thus, every longest path of G containing v;, i € {2,3,4} must also contain v;.
Therefore all the longest paths of G contain v;. Since G is a counterexample, |V (Q)N
V(C)| = 2. O

Claim 2.9. For any longest path Q of G, if v; € V(C)\ V(Q), then v;_1,v;41 €
V(Q).

Proof. If not, then there exists a longest path @1 and v; € V(C) \ V(Q1)
such that v;_1 ¢ V(Q1) or viy1 ¢ V(Q1). Without loss of generality, suppose
that v;_1 ¢ V(Ql) By Claim 2.8, Vit1,Vi—2 € V(Ql) If Vi4+1Vi—2 € E(Ql), then
(Q1 — vit1vi—2) U v;110;v;—10;—2 is a path longer than @, a contradiction. Thus
Vig1Vi—2 & E(Q1). But now Q1[vit1, vi—2]vi—2v;—10;v;41 is a cycle longer than C, a
contradiction. O
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Claim 2.10. If there is a vertex v; € V(C') such that dg(v;) = 2, then all the
longest paths of G contain v;—1 and v;41.

Proof. If not, then there is a longest path @ such that v;—; ¢ V(Q1) or
vit1 ¢ V(Q1). By Claim 2.9, v; € V(Q1). We assume that v; is not the end-
vertex of @Q1, since otherwise adding v;_1 or v;41 to @1 results in a longer path, a
contradiction. But now dg(v;) > 3, a contradiction. |

Claim 2.11. If there is a longest path Q = yoy1 ...ys of G such that |V (Q) N
V(C)| < 3, then for each vertex v; € V(C)\ V(Q), dgo(vi) = 2, and all the longest
paths of G share a common vertex.

Proof. Without loss of generality, suppose that v; ¢ V(Q). By Claim 2.9, vg,
vg € V(Q). Since r = 4, vawyv4 is a subpath of Q in G (w; may be a vertex of V/(C)).
Now vy and vy are not end-vertices of (), since otherwise adding v; to @ results in a
longer path, a contradiction. Suppose va = yp,va =y;, 1 <k <j<s—1

We can check that for each vertex v € {vy,w;} the following assertions hold:

(i) v1 is not adjacent to wy (by Claim 2.3);
(ii) v is not adjacent to any vertex in Q[yo, yx—1] U Qyj+1,ys| (since r = 4);
(iii) dg(v) =2 (since (i) and (ii)).

If dg(v) = 2 (v € {v1,w1}), then by Claim 2.10, all the longest paths of G
contain vy and vy. Since G is a counterexample, dg(v) = 3. Thus, there is a vertex
v € V(GQ) \ V(Q) such that vv' € E(G). If there is a vertex v € V(G) \ V(Q)
such that v'v"” € F(G), then both Q[yo,v2] and Q[vs,ys] have lengths at least 3, for
otherwise either v"v'v1v2Qys (Vv w1v2v1V4Qys) or v/ v v1v4Qyo (Vv w1v4v1v2QY0)
is a path longer than @, a contradiction. But now yoy1, vayk—1, W1W}, VayYjt+1, Ys—1Ys,
vjvY are 6 independent edges, a contradiction. Thus Ng(v') = Ng(v') U {v}.

Since Ng(v) C {va,v4}, No(v') C {v2,v4} U{v € Q}. By Claim 2.3, v've,v'vy ¢
E(G). Thus dg(v') = 1.

Now if there is a longest path @1 not containing vs, then by Claim 2.9, vy, w; €
V(Q1). Since dg(v1) = dg(w1) = 2, there are two vertices ui,us € V(G) \ V(Q)
such that ujvijvs and uswivy are two subpaths of Q. Since dg(u1) = dg(uz) = 1,
Q1 = uwrvivawiug. But now uyvyvowiv4Qys is a path longer than (1, a contradiction.
Thus, all the longest paths of G contain vs. ]

Since G is a counterexample, by Claim 2.11, for every longest path Q of G, V(C) C
V(Q). But now all the longest paths of G contain V(C'), a contradiction.

2.3. Proof of the case r = 5. If r = 5, then by Claim 2.1 we have that s > 5.

Claim 2.12. For any longest path Q of G, |[V(Q) NV (C)| = 3.
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Proof. Let Q= yoy1...ys be alongest path of G. If |V (Q)NV(C)| < 1, then
s < 6, for otherwise yoy1, y2ys, Ya¥s, yeyr and two independent edges in C'\ V(Q)
are 6 independent edges, a contradiction. But now, we could find a path longer
than @, a contradiction. If |V(Q) NV (C)| = 2, then at least two vertices of V(C) \
V(Q) are consecutive in C. Suppose v;Wv; is a maximum consecutive segment in
C\V(Q), and Ncng(vi) = {u:}, Neng(v;) = {T;}. Since @ is a longest path of G,
the length of Q[7;,7;] is at least 3. But now v;Wv,;T,;Q[v;,7;]T;v; is a cycle of length
at least 6, a contradiction. Thus |V(Q) NV (C)| = 3. O

Claim 2.13. For any longest path Q of G, if v; € V(C)\ V(Q), then v;_1,v;41 €
V(Q).

Proof. We could obtain this result by the proof of Claim 2.12. O

Claim 2.14. If there is a vertex v; € V(C') such that dg(v;) = 2, then all the
longest paths of G contain v;—1 and v;41.

Proof. Similar to the proof of Claim 2.10, we could obtain this result. O

Claim 2.15. If there is a longest path Q@ = yoy1...ys of G such that |V (Q) N
V(C)| < 4, then for each vertex v; € V(C)\ V(Q), dgo(vi) = 2, and all the longest
paths of G share a common vertex.

Proof. Without loss of generality, suppose that v; ¢ V(Q). By Claim 2.13,
v,v5 € V(Q). Since r = 5, vowqvs or vawiwavs is a subpath of @ (wr,ws may
be vertices of V(C)). Now ve and vs are not end-vertices of ), since otherwise
adding v; to @ results in a longer path, a contradiction. Suppose that ve = yy,
vs =y, 1<k <j<s—1

We can check that for the vertex v; € V(C) \ V(Q), the following assertions hold:

(i) v1 is not adjacent to w1, Yk—1, yj+1 (if vowivs is a segment of Q) and w1, wo,
Yk—1, Yj+1 (if vawrwavs is a segment of @) (by Claim 2.3);
(if) v1 is not adjacent to any vertex in Q[yo, yr—2] U Q[yj+2,ys| (since r = 5);
(iii) dg(vi) =2 (since (i) and (ii)).

If dg(v1) = 2, then by Claim 2.14, all the longest paths of G' contain vs and vs.
If dg(v1) = 3, then there exists a vertex v € V(G) \ V(Q) such that v1v] € E(G).
If there exists a vertex v{ € V(G) \ V(Q) such that vjv) € E(G), then s = 8 and
Q = Yoy1Y2v2w1V5YsY7Ys, for otherwise the 5 independent edges in ) together with
v1v] are 6 independent edges, a contradiction.

We can check that for the vertex wi, the following assertions hold:

(i) wy is not adjacent to {v{,v{} (by Claim 2.3);
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(ii) wq is not adjacent to any vertex in Qyo,yr—1] U Q[y;+1,ys] (since if there
exists a vertex z € Q[yo,yr—1] U Qlyj+1,ys] such that wiz € E(G), then
YsQuw1zQuav1v]vY or yoQuwizQusv1vivy is a path of length at least 9, a contra-
diction);

(iii) w; is not adjacent to any vertex in V(G) \ V(Q) (since if there exists a vertex
z € V(G) \ V(Q) such that zwy € E(G), then yoy1, y2v2, w12, UsYs, Y7Ys, Viv)
are 6 independent edges);

(iv) dg(wy) = 2 (since (i), (ii) and (iii)).

If there is a longest path (1 not containing ve, then by Claim 2.13, v; € V(Q1).
By Claim 2.2, wq ¢ V(Q1). If vs € V(Q1), then C1 = v1Q1[v1, vs]vswivavy is a cycle
of length at least 6, a contradiction. Thus vs ¢ V(Q1). By Claim 2.13, vs € V(Q1).
But now Cy = v1Q1[v1, va]uavswivavy is a cycle of length at least 8, a contradiction.
Thus, all the longest paths of G contain vs,.

Since G is a counterexample, for each vertex w € V(G) \ V(Q) such that vyw €
E(G) we must have Ng(w) N (V(G) \ V(Q)) = {v1}.

Now we prove that all the longest paths of G contain v,. If there exists a longest
path @2 not containing ve, then by Claim 2.13, v; € V(Q2). If w; ¢ V(Q2),
then there exists a vertex u € Q[wi,vs] such that V(Qwi,u]) N V(Q2) = {u},
for otherwise by Claim 2.13, vy € V(Q2) and C3 = v1Q2[v1, v4]vavsQuivevy is a
cycle of length at least 8, a contradiction. But now Cy = v1Q2[v1, ujuQwivavy is
a cycle of length at least 6, a contradiction. Thus w; € V(Q2). By the above,
Y—1 ¢ V(Q2) and Ng(yr—1) N (V(G) \ V(Q2)) = {v2}. Thus yr_2 € V(Q2). But

now Cs = v1Q2[v1, Yk—2]yk—2yk—1v2v1 is a cycle of length at least 6, a contradiction.
O

Since G is a counterexample, by Claim 2.15, for every longest path Q of G, V(C) C
V(Q). But now all the longest paths of G contain V(C), a contradiction.

2.4. Proof of the case r = 6. If r = 6, then by Claim 2.1 we have that s > 6.

Claim 2.16. For any longest path Q of G, |[V(Q)NV(C)| = 3.

Proof. Let Q = yoy1...ys be a longest path of G. Similar to the proof of
Claim 2.12, we could obtain that |V(Q) NV (C)| > 2.

If |[V(Q)NV(C)| = 2, then at least two vertices of V/(C)\V (Q) are consecutive in C.
Suppose v;Wv; is a maximum consecutive segment in C' \ V(Q), and Nong(v;) =
{w:}, Neng(vj) = {7;}. If the length of Wiv;, v;] is at least 2, then as @ is a longest
path of G, the length of Q[T;,7;] is at least 4. But now v;Wv,;7;Q[v;,7;]v,v; is a
cycle of length at least 8, a contradiction. If the length of Wv;,v,] is at most 1,
then as r = 6, there are two independent edges in C'\ V(Q). We assume that s < 6,
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since otherwise yoy1, Y23, Y4¥s, Ysy7 and two independent edges in C'\ V(Q) are 6
independent edges, a contradiction. But now, we could find a path longer than Q, a
contradiction. O

Claim 2.17. For any longest path Q of G, if v; € V(C)\ V(Q), then v;_1,v;41 €
V(Q).

Proof. If not, then there exists a longest path @1 and v; € V(C) \ V(Q1)
such that v;—1 ¢ V(Q1) or viy1 ¢ V(Q1). Without loss of generality, suppose that
vi—1 & V(Q1). By the proof of Claim 2.16, v;11,v,—2 € V(Q1). Now v;11, v;_o are
not end-vertices of ()1, since otherwise adding v;, v;_1 to @1 results in a longer path,
a contradiction. Suppose that viy1 = yi, vi—2 = y;j, k < j. Since @ is a longest
path of G and r = 6, v, 1w wWaV;—2 is a segment of Q1 (wy, wy may be vertices
of V(C)). If s = 9, then yoy1, Y2ys, Yays, Ysy7, Ysyo, v;v;—1 are 6 independent edges,
a contradiction. Thus s < 8.

We can check that for each vertex v € {v;,v;_1}, the following assertions hold:

(i) v is not adjacent to w1, w2, Yk—1, Yj+1 (by Claim 2.3);

(ii) v is not adjacent to any vertex in Q1[yo, yx—2] U Q1[yj+2,ys| (since r = 6);

(iii) N, (v) € {vit1,vi—2} (since (i) and (ii)).

If there is a vertex v, € V(G) \ V(Q1) such that v;v} € E(G), then as s < 8, Q1 =
YoY1Vit1 W1 Wav;_oYeyrys. We assume that Ng(v)) = Ng, (vi)U{v;}. Since if there is
avertex v] € V(G)\V(Q1) such that v[v] € E(G), then yoy1vi+1w1wav;—2v;— 10,00}
is a path of length 9, and if vjv;—; € E(G), then yoy1vi+1v;v;v;—1v;—2Ysy7ys is a path
of length 9, a contradiction. Furthermore, we assume that Ng(v}) C {v;, v;—2}. Since
by (iii), we could obtain that Ng, (v}) C {vit1,vi—2}, and if viv,41 € E(G), then
YoY1Vit1V,0;U;—1V—2YeY7Ys is a path of length 9, a contradiction. Now v;—1v;11 ¢
E(G) and there is no vertex v;_; € V(G) \ V(Q1) such that v,_1v}_; € E(G). Since
otherwise v}v;v;_1v;11Qys or v;_,v;—1v;v;41Qys is a path of length 9, a contradiction.
Thus dg(vi—1) = 2.

Now if there is a longest path Q2 not containing v;_o, then by Claim 2.2,
vi—1 ¢ V(Q2). By the proof of Claim 2.16, v;,v;—3 € V(Q2). We can check
that Ng,(vi—2) C {v,vi—3}. Now wy ¢ V(Q2) or ys ¢ V(Q2). Without
loss of generality, suppose that ws ¢ V(Q2). As above, we could prove that
Ng(wz) C {vi—2,v;}. By (i), viwe ¢ E(G). Now dg(wz) = 1, a contradiction to that
Q1 = Yoy1Vi+1w1wav;—2Ysy7ys. LTherefore all the longest paths of G' contain v;_».

Since G is a counterexample, Ng(v;) C {vit1,vi—2,v;—1} and Ng(vi—1) C
{Vit1,vi—2,v;}. If vjv;_o € E(G), then all the longest paths of G contain v;_s.
Since if there is a longest path @3 not containing v;_2, then as dg(vi—2) > 4,
vi—1 € V(Qs). Now v;_1, v; (if they exist) are not end-vertices of @3, otherwise
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adding v;_o to Qs results in a longer path, a contradiction. But now v;41v;—10;v;41
is a segment of @3, a contradiction. Since G is a counterexample, dg(v;) = 2.
Similarly, dg(v;—1) = 2. Now all the longest paths of G contain v;_s. Since if there
is a longest path @4 not containing v;_o, then by Claim 2.2, v;,v,_1 ¢ V(Q4). But
now by the proof of Claim 2.16, we could obtain that Q)4 is a path of length at
least 10, a contradiction. Since G is a counterexample, for any longest path @ of G,
if v; € V(C)\ V(Q), then v;_1,v;41 € V(Q). O

Claim 2.18. If there is a vertex v; € V(C') such that dg(v;) = 2, then all the
longest paths of G contain v;—1 and v;y1.

Proof. Similar to the proof of Claim 2.10, we could obtain this result. (]

Claim 2.19. If there is a longest path Q@ = yoy1...ys of G such that |V (Q) N
V(C)| < 5, then for each vertex v € V(C) \ V(Q), dg(v) = 2.

Proof. Without loss of generality, suppose that v; € V(C) \ V(Q). By
Claim 2.17, va, vg € V(Q). Since r = 6, v2w1vg OF VawiWal OF VaW1WaW3Ve 1S
a subpath of @ in G (wy,ws, w3 may be vertices of V(C)). Now vy and wvg are
not end-vertices of (), since otherwise adding v; to @ results in a longer path, a
contradiction. Suppose v2 =Yk, v6 =Y, l <k <j<s—1

Case 2.4.1. vawyvg is a subpath of (). In this case, we can check that for the
vertex v1 € V(C) \ V(Q), the following assertions hold:
(i) v is not adjacent to w1, yr—1,yj+1 (by Claim 2.3);
(if) v1 is not adjacent to any vertex in Q[yo, yx—3] U Q[yj+3,ys| (since r = 6);
(i) Ng(v1) C {v2,v6,yk—2,yj+2} (since (i) and (ii)).

Claim 2.20. V1Yj4-2 ¢ E(G)

Proof. If viy;42 € E(G), then since r = 6, viyp—2 ¢ E(G). Now we can check
that for each vertex v € {w1, y;+1}, the following assertions hold:
(i) v is not adjacent to any vertex in Q[yo, yx—1] (since if there exists a vertex z €
Qlyo, yr—1] such that vz € E(G), then zQuav1yj42Quw12 or 2Qy;v1Yj42Yj+17 is
a cycle of length at least 7);
(if) v is not adjacent to any vertex in Q[y;+3,ys] (since if there exists a vertex
z € Q[yj+3,Ys) such that vz € E(G), then zQy;vivowiz or 2QYj+2v1v2QY 1172
is a cycle of length at least 7);
(iii) wy is not adjacent to y;41 (since otherwise yoQw1y;+1Y;v1yj+2Qys is a path
longer than Q);
(1) No(v) C {ea, v, yj12} (since (i), (i) and (ii)).
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If there exists a vertex w) € V(G) \ V(Q) such that wiw] € E(G), then
wiw1v2v106QYs is a path of length at least 7 and there is no vertex wf € V(G)\V(Q)
such that wjw] € E(G). Since if there exists such vertex, then Q[yo, vs] has length
at least 5, and yoy1Quav1yjt2yj+1vswiwiw! is a path of length at least 9, and
we could find 6 independent edges, a contradiction. Thus Ng(w)) = No(w}).
Since Ng(w1) € {wv2,v6,yj+2}, No(wi) C {wi,ve,vs,yj+2}. By Claim 2.3,
wivg, wive ¢ E(G). If wiy12 € E(G), then wjwivev1vsy,1+1y,+2w) is a cycle
of length 7, a contradiction. Thus dg(w]) = 1. Similarly, we could obtain that for
any vertex y: , € V(G) \ V(Q) such that y;11y;,, € E(G), dg(yj1) = 1.

If there exists a vertex v € V(G) \ V(Q) such that vjv; € E(G), then s > 8, for
otherwise either vjv1v2Qys or viv1y,12Qyo is a path longer than @, a contradiction.
Furthermore s = 8, for otherwise yoy1, Y23, Y4¥s, Y6y7, YsYo, v1v] are 6 independent
edges, a contradiction. We assume that Ng(vi) = Ng(vi) U {v1}. Since if there
exists a vertex v] € V(G) \ V(Q) such that vjv] € E(G), then v{vjv1v2Qys is a
path of length at least 10, a contradiction. As Ng(vi) = {vs, vs,yj+2}, No(v)) C
{v2,v6, yj+2}. By Claim 2.3, vjve, vvs, viyj+2 ¢ E(G). Thus dg(vy) = 1.

If there is a longest path ()1 not containing v, then by Claim 2.17, vi, w1, yj4+1 €
V(Q1). Now v1,ws,yj+1 are not end-vertices of ()1, otherwise adding vg to Q1
results in a longer path, a contradiction. If vov1y;42 is a subpath of @1, then there
are two vertices ui,us € V(G) \ V(Q) such that ujwiva, u2yj11yj42 OF U1Y;j4+1V2,
Uusw1Yj+2 are two subpaths of @)1, since otherwise vov1yj12w1v2 O VoUIYjy2yj+1V2
is a subpath of @, a contradiction. But now Q1 = uwi1V2V1Yj42Yj+1U2 OF
Q1 = W1Yj+1v201Y +2wiue is a path of length 6, a contradiction. Since Ng(vi) =
{v2,v6,yj12}, there exists a vertex v] € V(G) \ V(Q) such that vjvivs or viv1y;t2
is a segment of ;. Without loss of generality, suppose that vjvivs is a segment
of Q1. Now there is no vertex u; € V(G) \ V(Q) such that uqwive or uiy,41vs is
a subpath of Q, for otherwise Q1 = vijvivowiu; or Q1 = v’lvlvgyj+1u1, a contra-
diction. If there is a vertex u; € V(G) \ V(Q) such that uwjwiy 42 is a subpath
of Q1, then vay 1Yo is a subpath of @1, for otherwise Q1 = w1wiYj12yj4+1u2
(u2 € V(G)\ V(Q)), a contradiction. But now Q1 = vjv1v2y, 41y +2wiu1, & con-
tradiction. Since Ng(w1) C {v2, V6, Yj+2}, vow1y,+2 is a subpath of Q1. Similarly,
we could prove that vay;11yj4+2 is a subpath of Q1. But now vaw1yj42yj41v2 is a
subpath of @)1, a contradiction. Thus all the longest paths of G contain vg. Since G
is a counterexample, v1y;+2 ¢ E(G). O

Similarly, we could obtain that v1yx_2 ¢ E(G). Therefore dg(v1) = 2.

Case 2.4.2. vowiwsvg is a subpath of (). In this case, we can check that for
the vertex v1 € V(C) \ V(Q), the following assertions hold:
(i) v is not adjacent to any vertex in {w1, w2, yx—1,¥yj+1} (by Claim 2.3);
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(if) v is not adjacent to any vertex in Q[yo, yx—2| U Q[yj+2,ys| (since r = 6);
(iii) dg(v) =2 (since (i) and (ii)).

Case 2.4.3. vswjwowsvg is a subpath of (. In this case, similar to the proof
of Case 2.4.1 we could obtain that dg(v1) = 2. O

Claim 2.21. If there is a longest path Q@ = yoy1...ys of G such that |V (Q) N
V(C)| < 5, then all the longest paths of G have a common vertex.

Proof. Without loss of generality, suppose that v; € V(C) \ V(Q). By
Claim 2.19, dg(v1) = 2. If dg(vi) = 2, then by Claim 2.18, all the longest paths
of G share a common vertex.

If dg(vy) > 3, then similar to the proof of Claim 2.15 in the third, forth, fifth
paragraphs, we could obtain that for each vertex w € V(G) \ V(Q) such that vyw €
E(G) we must have Ng(w) N (V(G) \ V(Q)) = {v1}.

Now we prove that all the longest paths of G contain v,. If there exists a longest
path Q2 not containing vy, then by Claim 2.17, v; € V(Q2). If wy ¢ V(Q2), then
there exists a vertex u € Q[wi, vg] such that u € V(Q2), for otherwise by Claim 2.17,
vs € V(Q2) and C5 = v1Qa2[v1, vs|vsvsQuivevr is a cycle of length at least 8, a
contradiction. But now asr = 6, Cy = v1Qa[v1, uJuwvev; is a cycle of length 6. Now
for Cy, vo, w1 € V(C4)\V(Q2), a contradiction to Claim 2.17. Thus w; € V(Q2). By
Claim 2.19, yx—1 ¢ V(Q2). By the above, Na(yr—1) N (V(G)\ V(Q2)) = {v2}. Thus
Yr—2 € V(Q2). But now Cs5 = v1Q2[v1, Yp—2|yk—2yk—1v2v1 is a cycle of length 6, a
contradiction to Claim 2.17. O

Since G is a counterexample, by Claim 2.21, for every longest path Q of G, V(C) C
V(Q). But now all the longest paths of G contain V(C), a contradiction.

2.5. Proof of the case r = 7. If r = 7, then by Claim 2.1 we have that s > 7.

Claim 2.22. For any longest path Q of G, |[V(Q)NV(C)| = 3.

Proof. Let Q= yoy1...ys be alongest path of G. If |V (Q)NV(C)| < 2, then
YoU1, Y2Ys, Ya¥s, Yeyr and two independent edges in C' \ V(Q) are 6 independent
edges, a contradiction. O

Claim 2.23. For any longest path Q of G, if v; € V(C)\ V(Q), then v;_1,v;41 €
V(Q).
Proof. If not, then there exists a longest path @1 and v; € V(C) \ V(Q1)

such that v;—1 ¢ V(Q1) or viy1 ¢ V(Q1). Without loss of generality, suppose that
vi—1 ¢ V(Q1). Now similar to the proof of Claim 2.17 in the first paragraph, we
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could obtain that v;11wiwav;—2 Or V11 WiWow3sV;—2 is a segment of Q1 (w1, wa, ws
may be vertices of V(C)) and 7 < s < 8.
We can check that for each vertex v € {v;,v;—1} the following assertions hold:
(i) v is not adjacent to wi,wa, Yr—1,Yj+1 (f viprwiwov;—2 is a segment of Q) or
Wi, W, W3, Ye—1, Yj+1 (f viprwiwowsv;_o is a segment of Q1) (by Claim 2.3);

(ii) v is not adjacent to any vertex in Q1[yo, yx—3] U Q1[yj+3,ys] (since r = 7);

(iii) v is not adjacent to any vertex in {yr—o2,yj4+2} (since otherwise v;v;_1yr—2Q1Ys
or Vi—1V;Yk—2Q1Ys OF ViVi—1Yj+2Q1Y0 Or Vi—10;¥j+2Q 1Yo is a path of length at
least 9, a contradiction);

(iv) No,(v) C {wvit1,vi—2} (since (i), (ii) and (iii)).

Now similar to the proof of Claim 2.17 in the third, forth and fifth paragraphs, we
could obtain that for any longest path @ of G, if v; € V(C)\V(Q), then v;_1,v;11 €

V(Q). O

Claim 2.24. If there is a vertex v; € V(C') such that dg(v;) = 2, then all the
longest paths of G contain v;—1 and v;41.

Proof. We could obtain this result similarly as in the proof of Claim 2.10. [

Claim 2.25. If there is a longest path Q@ = yoy1...ys of G such that |V (Q) N
V(C)| < 6, then for each vertex v € V(C)\ V(Q), do(v) = 2.

Proof. Without loss of generality, suppose that v1 € V(C) \ V(Q). By
Claim 2.23, v, vy € V(Q). Since r = 7, vowiv7 Or VawiWaV7 OT VaWiWaW3V7 OF
VoW1 Wowswyv7 is a subpath of @ (w1, wa, ws, wy may be vertices of V(C)). Now v
and v; are not end-vertices of ), since otherwise adding v, to @ results in a longer
path, a contradiction. Suppose v2 = yi,v7 =y;, 1 <k <j<s—1.

Case 2.5.1. vawyvy is a subpath of (). In this case, we can check that for the
vertex v; € V(C) \ V(Q), the following assertions hold:

(i) v is not adjacent to w1, yr—1, Yj+1 (by Claim 2.3);

(ii) v1 is not adjacent to any vertex in Q[yo, Yx—a] U Q[y;+4,ys] (since r = 7);

(ili) No(v1) € {v2,v7, Yk—2, k-3, Yj+2, Yj+3} (since (i) and (ii)).

Claim 2.26. v1y;4+3 ¢ E(G).

Proof. If viyjts € E(G), then by Claim 2.3, v1y,42 ¢ E(G). Furthermore, as
r =7, v1yk—2,01Ys—3 ¢ E(G). We assume that dg(v1) = 3. Since if there exists a
vertex v] € V(G)\ V(Q) such that v1v] € E(G), then both Q[yo, v2] and Q[yj+3,Ys)
have lengths at least 2, for otherwise vjv1v2Qys or viv1y;13Quo is a path longer
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than @, a contradiction. But now s > 9 and yoy1, Y2y3, Ya¥s, Y6Y7, Ysyo, v1V] are 6
independent edges, a contradiction.
Now we can check that for the vertex wi, the following assertions hold:

(i) wi is not adjacent to any vertex in Q[yo,yr—1] U Q[yj+4,ys] (since if there
exists a vertex z € Q[yo,Yr—1] U Q[yj+a,ys] such that wiz € E(G), then
2Quav1Yj4+3Qwn 2 or zQUrv1v2w1 z is a cycle of length at least 8, a contradiction);

(if) wq is not adjacent to any vertex in {yj41,yj4+2}. Since otherwise

YoQuav1vrw1Yj11QYs o YoQUaw1Yj42Y5+1Y5V1Y5+3QYs

is a path longer than @Q;

(iii) w; is not adjacent to any vertex in V(G) \ V(Q) (If there exists a vertex z €
V(G) \ V(Q) such that wiz € E(G), then both Q[yo, v2] and Qly;+3,ys| have
lengths at least 2, for otherwise zw;v2v1v7Qys or zw1QY;j4+3v1v2QYo is a path
longer than @, a contradiction. But now yoyi, vav1, w12, V7Yjt+1, Yj+2¥i+3,
Ys—1Ys are 6 independent edges.);

(iv) Ng(wi) C {ve,v7,yj43} (since (i), (ii) and (iii)).

Now we prove that all the longest paths of G contain v;. If there exists a longest
path @1 not containing v7, then by Claim 2.23, wy,v1 € V(Q1). Now wq,v; are
not end-vertices of (Q1, since otherwise adding v; to ()1 results in a longer path, a
contradiction. But now vpv1y;43w1vs is a subpath of @1, a contradiction. Since G
is a counterexample, v1y;+3 ¢ E(G). O

Similarly, we could obtain that viyx_3s ¢ E(G).

Claim 2.27. v1y;4+2 ¢ E(G).

Proof. If viyj42 € E(G), then as r = 7, viyx—2 ¢ E(G). We can check that
for the vertex wy, the following assertions hold:

(i) wi is not adjacent to any vertex in Q[yo,yr—2] U Q[yj+4,ys] (since if there
exists a vertex z € Q[yo,Yk—2] U Q[yj+4,ys] such that wiz € E(G), then
2QUav1Yj+2Qwn 2 or 2QUrv1v2w1 z is a cycle of length at least 8, a contradiction);

(if) w is not adjacent to any vertex in {yx—1,¥j+1,¥j+3} (since otherwise yoQyr—1
w1V V7QYs or YoQUav1vrw1Y;41QYs or YoQuav1Y2Qw1y;43QY, is a path
longer than @, a contradiction);

(i) Ng(w1) C {v2,v7,y,+2} (since (i) and (ii)).

Similarly, we could prove that Ng(y;+1) C {v2, v7,yj42}.

If there exists a vertex w) € V(G) \ V(Q) such that wiw] € E(G), then
wiwivav1v7Qys is a path of length at least 7. If there is a vertex wf € V(G) \
V(Q) such that wjw! € E(G), then Q[yo,v7] has length at least 5, for oth-
erwise w]wjwivavv7Qys is a path longer than @Q, a contradiction. But now
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YoQuav1Yj2yj+1vrwiwiwy is a path of length at least 10, and we could find 6
independent edges, a contradiction. Thus Ng(w]) = Ng(w}). By (iii), Ng(w}) C
{w1,v2,v7,yj42}. By Claim 2.3, wjve,wjvy ¢ E(G). If wjyj+2 € E(G), then
YoQuav1vrwiw]Y;+2QYs is a path longer than @, a contradiction. Thus dg(w)) = 1.
Similarly, we could prove that d(y), ;) = 1 holds for any vertex y’,; € V(G)\V(Q)
such that y; 11y}, € E(G).

Now if there is a longest path (2 not containing v7, then by Claim 2.23, v1,vg €
V(Q2). If wi ¢ V(Q2), then by the proof of Claim 2.16, y;11,v2 € V(Q2). By
the proof of Claim 2.23 we could check that Ng,(v7) € {v2,yj4+1}. But now v; ¢
V(Q2), a contradiction. Thus w1 € V(Q2). Similarly, we could obtain that y;11 €
V(Q2). Now vy, w1, y,+1 are not end-vertices of @2, since otherwise adding v to Q2
results in a longer path, a contradiction. If voviy,12 is a subpath of @2, then there
are two vertices ui,up € V(G) \ V(Q) such that ujwive, u2yj11y;4+2 Or uiwiyj42,
U2Yj+1V2 are two subpaths of @)z, for otherwise y;42v1V2w 1Y 12 OF Yj12V1V2Y+1Yj+2
is a subpath of @2, a contradiction. But now Q2 = wi1w1vV201Y;4+2Yj4+1U2 Or Q2 =
U2Yj4+1V201Yj+2w1 U1, a contradiction. Thus, there exists a vertex v] € V(G) \ V(Q)
such that vjvivs or viv1Y;42 is a segment of Q2. Without loss of generality, suppose
that v{v1v2 is a segment of Q2. Now both Q[yo, v2] and Qy,+2,ys| have lengths at
least 2, for otherwise either vjv1v2Qys or viv1y,+2Qyo is a path longer than Q, a
contradiction. Furthermore, both Q[yo, v2] and Qly;+2,ys] have lengths exactly 2,
for otherwise s > 9 and yoy1, Y293, Ya¥s, Y6Y7, YsYo, v1v} are 6 independent edges, a
contradiction. We assume that Ng(v]) = Ng(v])U{v1}. Since if there exists a vertex
v € V(G)\ V(Q) such that viv) € E(G), then vvjv1v2Qys is a path of length at
least 9, a contradiction. Now as Ng(v1) = {v2,v7,yj42}, No(v)) C {va,v7,yj42}.
By Claim 2.3, vjve, vjv7, v yj+2 ¢ E(G). Thus dg(v)) = 1.

Since vjvivy is a subpath of Q2, there is no vertex u; € V(G) \ V(Q) such
that ujwive or w1y j41v2 is a subpath of Qq, for otherwise Q2 = vivivowius or
Q2 = vivivay;1u1, a contradiction. If there is a vertex us € V(G) \ V(Q) such
that uawiyj+2 is a subpath of @2, then voyj41yj42 is a subpath of @, for oth-
erwise Q2 = uswiy;t2y;y1us (us € V(G) \ V(Q)), a contradiction. But now
Q2 = Viv1v2y 41Yj+2wiu2, a contradiction. Since Ng(w1) C {ve, v7,yj+2}, Vawiyj42
is a subpath of (2. Similarly, we could prove that voy;4+1yj4+2 is a subpath of Qs.
But now vow1y2y;+1v2 is a subpath of @2, a contradiction. Thus, all the longest
paths of G contain v7. Since G is a counterexample, v1y;4+2 ¢ E(G). O

Similarly, we could obtain that v1yx_2 ¢ E(G). Therefore dg(v1) = 2.

Case 2.5.2. vowiwsv; is a subpath of (). In this case, we can check that for
the vertex v1 € V(G) \ V(Q), the following assertions hold:
(i) v is not adjacent to any vertex in {wi, w2, yx—1,yj+1} (by Claim 2.3);
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(if) v1 is not adjacent to any vertex in Q[yo, yx—3] U Q[yj+3,ys| (since r = 7);
(i) Ng(v1) C {v2,v7,yx—2,y;+2} (since (i) and (ii)).

If viys—2 € E(G) or nyj+2 € E(G), then similar to the proof of Case 2.5.1 we
could obtain that dg(vi) = 2.

Case 2.5.3. vswjwowsvy is a subpath of (. In this case, similar to the proof
of Case 2.5.1 we could obtain that dg(v1) = 2.

Case 2.5.4. vowjwowzwav7 is a subpath of (). In this case, similar to the proof
of Case 2.5.1 we could obtain that dg(v1) = 2. O

Claim 2.28. If there is a longest path Q = yoy1 ...ys of G such that |V (Q) N
V(C)| < 6, then all the longest paths of G have a common vertex.

Proof. Without loss of generality, suppose that v1 € V(C) \ V(Q). By
Claim 2.25, dg(vi) = 2. If dg(v1) = 2, then by Claim 2.24, all the longest paths
of G share a common vertex.

If dg(v1) > 3, then similar to the proof of Claim 2.15 in the third, forth, fifth
paragraphs, we could obtain that for any vertex w € V(G) \ V(Q) such that vyw €
E(G), No(w) N (V(G)\V(Q)) = {vi}-

Now we prove that all the longest paths of G contain vy. If there exists a longest
path Q2 not containing ve, then by Claim 2.23, vi,v3 € V(Q2). If wy ¢ V(Q2),
then there exists a vertex u € Q[ws,v7] such that v € V(Qz), for otherwise by
Claim 2.23, v € V(Q2). Now Cy = v1Q2[v1,v6]usv7Quivav1 is a cycle of length at
least 8, a contradiction. Thus wiu € E(Q) and u € V(Q2). Now we could check
that Ng,(v2) € {vi,u}. Thus u = v3. By Claim 2.25, y_1 ¢ V(Q2). By the
above, yx—a € V(Q2). But now C3 = yr—2Q2[yr—2, uluwiveyx_1yr—2 is a cycle of
length at least 8, a contradiction. Thus w; € V(Q2). By Claim 2.25, wq = v
and yp—1 ¢ V(Q2). By the above, yx_2 € V(Q2). But now we could check that
Ng,(v2) C {vs,yx—2}, a contradiction.

Thus, all the longest paths of G contain v,. (]

Since G is a counterexample, by Claim 2.28, for any longest path @ of G, V(C) C
V(Q). But now all the longest paths of G contain V(C'), a contradiction.

2.6. Proof of the case r = 8. If r = 8, then by Claim 2.1 we have that s > 8.

Claim 2.29. For any longest path Q of G, |[V(Q) NV (C)| = 4.
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Proof. Let Q= yoy1...ys be alongest path of G. If |V (Q)NV(C)| < 2, then
YoU1, Y2Ys3, YaYs, Yey7 and two independent edges in C'\ V(Q) are 6 independent edges,
a contradiction. If [V(Q) NV (C)| = 3, then at least two vertices of V(C)\ V(Q) are
consecutive in C. Suppose Wv;, v;] is a maximum consecutive segment in C'\ V(Q),
and Neong(v;) = {7}, Neng(vj) = {7;}. If W{v;,v;] has length 1, then there are
two independent edges in C'\ V(Q). But now yoy1, y2us3, Ya¥s, ysyr and the two
independent edges are 6 independent edges, a contradiction. If W[v;, v;] has length
at least 2, then as @ is a longest path of G, the length of Q[7;,7;] is at least 4.
Suppose that T; = yx, T; = y1, k < . We assume that both Qlyo,yx] and Q[yi, ys]
have lengths at least 3, for otherwise v;Wv;7,Q[v;, ys| or v;Wv,;T,;Q[T;, yo] is a path
longer than @, a contradiction. But now the length of @ is at least 10, and yoy1, y2ys3,
Yays, YeY7, Ysyo with an edge in Wv;, v;] are 6 independent edges, a contradiction.

O

Claim 2.30. For any longest path Q of G, if v; € V(C)\ V(Q), then v;_1,v;41 €
V(Q).

Proof. If not, then there exists a longest path @1 and v; € V(C) \ V(Q1)
such that v;—1 ¢ V(Q1) or viy1 ¢ V(Q1). Without loss of generality, suppose that
vi—1 ¢ V(Q1). Now similar to the first paragraph of the proof of Claim 2.17 we could
obtain that v; 1w wev;_9 Or v;y1WIWwW3V;—_2 is a segment of )1 and s = 8.

We can check that for each vertex v € {v;,v;—1}, the following assertions hold:

(i) v is not adjacent to w1, w2, Yr—1, Yj+1 (if vip1wiwav;—2 is a segment of Q1) or
W, Wa, W3, Ye—1, Yj+1 (if vip1wrwewsv,—2 is a segment of Q1) (by Claim 2.3);
(if) v is not adjacent to any vertex in Q1[yo, yx—2] UQ1[yj+2,ys] (since if there exists
a vertex z € Q1[yo, Yk—2] U Q1[y;+2, ys] such that vz € E(G), then v;v,-12Q1ys
or v;_10;20Q1Ys or v;v,—12Q1yo or v;—1v;2Q1yo is a path of length at least 9, a
contradiction);
(i) Ng,(v) C {viy1,vi—2} (since (i) and (ii)).

Now similar to the proof of Claim 2.17 in the third, forth and fifth paragraphs we
could obtain that for any longest path @ of G, if v; € V(C)\V(Q), then v;_1,v,41 €
V(). O

Claim 2.31. If there is a vertex v; € V(C') such that dg(v;) = 2, then all the
longest paths of G contain v;—1 and v;41.

Proof. Similar to the proof of Claim 2.10 we could obtain this result. O

Claim 2.32. If there is a longest path Q = yoy1...ys of G such that |V (Q) N
V(C)| <7, then for each vertex v € V(C)\ V(Q), do(v) = 2.
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Proof. Without loss of generality, suppose that v; € V(C) \ V(Q). By
Claim 2.31, ve,vg € V(Q). Since r = 8, vawivs Or VaWiWals O VaW1WoW3Vg OF
VoW1 WaW3W4Vg OF V2 WaWswawsvs is a subpath of Q in G (wq, we, w3, wy, w5 may
be vertices of V(C')). Now vg and vs are not end-vertices of ), since otherwise
adding v, to @ results in a longer path, a contradiction. Suppose v2 = yx, vs = ¥yj,
1<k<j<<s—1.

Case 2.6.1. vawyvg is a subpath of (). In this case, we can check that for the
vertex v1 € V(C) \ V(Q), the following assertions hold:

(i) v is not adjacent to w1, yr—1, Yj+1 (by Claim 2.3);

(ii) v1 is not adjacent to any vertex in Q[yo, Yx—s5] U Q[y;+5, ys| (since r = 8);

(ili) No(vi) € {v2,vs, Yr—2, Yn—3, Yn—1, Yj+2, Yj+3, Yj+4} (since (i) and (ii)).

Claim 2.33. V1Yj+4 ¢ E(G)

Proof. If viyj4a € E(G), then viyg—2,v1ys—3,v1yk—a ¢ E(G), otherwise
we could find a cycle longer than C, a contradiction. By Claim 2.3, v1yj4+3 ¢
E(G). If there exists a vertex vj € V(G) \ V(Q) such that v;v] € E(G), then
Vi U1 VW1 V8 Y j+1Yj+2Yj+3Y +4Y +5 1S a path of length 9. Since @ is a longest path,
s 2 9. But now yoy1, Y293, Y4¥s, Yey7, Ysyo, v1v} are 6 independent edges, a contra-
diction. Thus Ng(v1) C {v2,vs, yjt2, Yj+a}-

Now we can check that for the vertex wi, the following assertions hold:

(i) wn is not adjacent to any vertex in Q[yo, yx—1]UQ[Y;+5, ys| (since if there exists
a vertex z € Q[yo, Yr—1] U Q[Y;+5, Ys) such that w1z € E(G), then 2Quav1y,+4Qu1z
or zQyj+4Qusvivo2wi 2 is a cycle of length at least 9);

(ii) w; is not adjacent to any vertex in {y;+1,y;+3}. Since otherwise

YoQuav1vsw1y;+1QYs  or  YoQu1Y,;+3QUsv1Y,;+4QYs

is a path longer than @Q;

(i) wy is not adjacent to any vertex in V(G) \ V(Q) (If there exists a vertex
z € V(G)\V(Q) such that w; z € E(G), then Q[yo, vs] has length at least 4, otherwise
2w v201v8QYs is a path longer than Q. But now yoy1, vav1, W1z, V8Yjt1, Yj+2Yj+3,
Yj+4Yj+5 are 6 independent edges.);

(iv) Ng(w1) C {v2,vs, yj+2,yj+a} (since (i), (ii) and (iii)).

If viyj42 € E(G) or wiyjy2 € E(G), then we can check that for the vertex y;1,
the following assertions hold:

(i) y;j+1 is not adjacent to any vertex in Q[yo, yx—1] U Q[yj+5,ys] (since r = 8);
(if) y,+1 is not adjacent to y;+3 (since otherwise yoQuav1vVsW1Yj4+2Y;+1Y,+3QYs OT
YoQUj+1Yj+3 Yj+201Y;4+4QYs is a path longer than @, a contradiction);
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(iii) y;j+1 is not adjacent to any vertex in V(G) \ V(Q) (If there exists a vertex
z € V(G) \ V(Q) such that y;112 € E(G), then Q[yo, yj+2] has length at least
6, otherwise 2y;11v8v1V2wW1Yj4+2QYs OF 2y;11V8W1V2V1Y;+2QYs is a path longer
than Q. But now yoy1, vav1, wW1vs, Yj+12, Yj+2Yj+3, Yj+4Yj+5 are 6 independent
edges, a contradiction.);

(v) No(yys1) C {v2, vs, yy42, 544} (since (i), (ii) and (iii).

Now we prove that all the longest paths of G contain vg. If there exists a longest
path @1 not containing vg, then by Claim 2.30, @1 contains w1, yj4+1, vi. Now
w1, Yj+1, V1 are not end-vertices of ()1, since otherwise adding vs to Q)1 results
in a longer path, a contradiction. Thus vow1yj42 Or VawW1Yjt4 OF Yjt2W1Yjt4 IS a
segment of ()1. Without loss of generality, suppose that vow:y;42 is a segment of Q).
Now Vo¥j+1Yj+4 OF Yjt+2Yj+1Yj+4 is a segment of (1. Without loss of generality,
suppose that voy;y1y;j4+4 is a segment of Q1. Now we assume that y; 201y 44 is a
segment of ()1, since otherwise vov1Yj 44y +1v2 O V2v1Yy;j12w1v2 is a segment of Q1, a
contradiction. But now ¥4y +1v2w1yj+2v1Y;+4 is a segment of )1, a contradiction.

Since G is a counterexample, v1y;t2, w1Yj4+2 ¢ E(G). Now if there exists a longest
path @2 not containing vg, then by Claim 2.30, Q2 contains v, wi. We say that vy,
w1 are not end-vertices of Q2, since otherwise adding vg to )2 results in a longer path,
a contradiction. But now vov1y44w1v2 is a segment of @2, a contradiction. Thus all
the longest paths of G contain vs. Since G is a counterexample, v1y;4+4 ¢ E(G). O

Similarly, we could prove that viyx_4 ¢ E(G).

Claim 2.34. v1y;4+3 ¢ E(G).

Proof. Ifviyjt1s € E(G), then as r =8, viyg—2, v11yx—3 ¢ E(G). By Claim 2.3,
v1yjt2 ¢ E(G). We assume that dg(vi) = 3, since if there exists a vertex v €
V(G)\V(Q) such that v1v] € E(G), then both Q[yo, v2] and Q[y;43, ys) have lengths
at least 2. But now s > 9 and yoy1, Y2y3, Y4¥s, YeY7, YsYy, v1v; are 6 independent
edges, a contradiction.

Now we can check that for the vertex w; the following assertions hold:

(i) wi is not adjacent to any vertex in Q[yo,yr—2] U Q[yj+5,¥s] (since if there
exists a vertex z € Q[yo,Yk—2] U Qly;+5,Yys] such that wiz € E(G), then
2Quav1Yj4+3Quswr z or zQugvi1vawi 2 is a cycle of length at least 9);

(ii) wq is not adjacent to any vertex in {yr—1,y;+4}. Since otherwise

YoQYr—1w1v20108QYs  or  YoQuav1Yj+3QW1Y;+4QYs

is a path longer than Q;
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(iii) wy is not adjacent to any vertex in {y;y1,y;+2}. Since otherwise

YoQUav1vsW1Yj+1QYs OF  YoQU1Yj+2Yj+1V8V1Yj+3QYs

is a path longer than @Q;

(iv) wy is not adjacent to any vertex in V(G) \ V(Q) (If there exists a vertex z €
V(G) \ V(Q) such that wiz € E(G), then both Q[yo, v2] and Qly;+3,ys| have
lengths at least 2, for otherwise zw;v2v1v8QYs or zw1QY;j4+3v1v2QYo is a path
longer than Q. But now s > 9 and yoyi1, v2v1, W12, V8Yj+1, Yj+2Yj+3> Yj+aYj+s
are 6 independent edges, a contradiction.);

(v) Ng(wi) C{v2,vs,y;+3} (since (i), (ii), (iii) and (iv)).

Now we prove that all the longest paths of G contain vg. If there exists a longest
path Q3 not containing vg, then by Claim 2.30, vi,v7 € V(Q3). If wi € V(Q3), then
w1, v1 are not end-vertices of 03, since otherwise adding vg to (Y3 results in a longer
path, a contradiction. But now vov1y;43w1v2 is a subpath of @3, a contradiction.
Thus wy ¢ V(Q3). By the proof of Claim 2.29, va,y;+1 € V(Q3). We could check
that Ng,(vs) € {v2,y;j+1}, a contradiction to vi,v7 € V(Q3).

Since G is a counterexample, v1y,+3 ¢ E(G). O

Similarly, we could prove that v1yx—3 ¢ E(G).

Claim 2.35. V1Yj42 ¢ E(G)

Proof. If v1yj42 € E(G), then by the proof of the case viyj+a € E(G),
V1Yk—2 ¢ E(G)
Now we can check that for the vertex wi, the following assertions hold:

(i) w1 is not adjacent to any vertex in Q[yo, Yx—3] U Q[y;+5,Ys] (since r = 8);

(if) w is not adjacent to any vertex in {y;+1, Yr—1, y;+3} (since otherwise yoQuav1vg
w1Yj+1QYs or YoQYr—1w1v2v108QYs or YoQuav1Y;+2Qu1Yy;+3QYs is a path
longer than Q);

(iii) No(w1) € {va,vs, Yjr2, Yj+a, yr—2} (since (i) and (ii)).

By symmetry, we could prove that Ng(yj+1) C {v2, vs, Yj+2, Yj+4, Y—2}-
If wiyk—2 € E(Q), then w1y;14,Yj4+1Y;+4 ¢ E(G), for otherwise

yk72yk71’02’01USQijrélwlyku O Yr—2Yk—1V2V1Y;+2Y;j+3Y;j+4Y;j+1V8W1Yk—2

is a cycle of length at least 10, a contradiction. Now Q[yo, vs] has length at least 5,
otherwise yx_1yx—_2wiv2v1V8QYs is a path longer than @, a contradiction. Further,
if there exists a vertex wi € V(G) \ V(Q) such that wiw] € E(G), then Q[yjt+2,¥s]
has length at least 2, otherwise wjwivsy;j4+1y;4+2v102Qyo is a path longer than @,
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a contradiction. But now yoyi, yr—1v2, wWiw], vsV1, Yj+1Yj+2, Yj+3Yj+a are 6 in-
dependent edges, a contradiction. Thus Ng(wi) = Ng(wi) C {va, vs, Yjt2, Yk—2}-
Similarly, we could obtain that Ng(y;4+1) C {v2,vs,yj+2,Yk—2}. Now if there ex-
ists a vertex v € V(G) \ V(Q) such that vjv; € E(G), then Qlyo,vs] has length
at least 6, otherwise v]v1voyr—_1yr—2w1vsQys is a path longer than @, a contradic-
tion. But now s > 9 and we could find 6 independent edges, a contradiction. Thus
Ng(v1) = Ng(v1) C {va,vs,y 42}

Now we prove that all the longest paths of G contain vg. If there is a longest
path Q4 not containing vg, then by Claim 2.30, v, wi,yj+1 € V(Q4). We assume
that vq, w1, y;+1 are not end-vertices of (4, since otherwise adding vg to Q4 results in
a longer path, a contradiction. Since N¢(v1) C {v2,vs, Y42}, v2v1y;42 is a subpath
of Q4. Now either vowiyr—2 and YjioYj+1Yk—2 OF Yj+2W1Yk—2 and vay;j41Yr—2 are
two subpaths of Q4. But now y_2w1v201Yj42Yj4+1Yk—2 OF Yr—2W1Yj4+2V102Yj41Yk—2
is a subpath of @4, a contradiction. Since G is a counterexample, wiyr—2 ¢ E(G).
Similarly, we could prove that wiyt4, Yj+1Yk—2,Yj+1Yj+4 ¢ E(G). Thus Ng(v) C
{v2, vs, yj42}, v € {wr, Y1 }-

If there exists a vertex w) € V(G) \ V(Q) such that wiw] € E(G), then
Ng(w)) C {w1,y;t2}. Since if there exists a vertex w{ € V(G) \ V(Q), then both
Qlyo, v2] and Qlyj+2,ys] have lengths at least 3, for otherwise wfw]wivov1v8Qys
or wiwiwivsyj+1Yj+20102Qyo is a path longer than @, a contradiction. But now
Yoy1, Yk—1V2, WIW], UsV1, Y;j4+1Yj+2, Yj+3Yj+4 are 6 independent edges, a contra-
diction. Thus Ng(wj) = Ng(w}). Since Ng(wi) C {vs,vs,yj+2}, No(wi) C
{w1,v2,vs,yj+2}. By Claim 2.3, wjvs,wivs ¢ E(G). Thus Ng(w)) C {wi,yj+2}-
Similarly, we could prove that for any vertex y;., € V(G) \ V(Q) such that
Yi+1¥j41 € E(G), No(¥j1) € {yj+1,v2}-

Now we prove that all the longest paths of G contain vg. If there exists a longest
path @5 not containing vs, then by Claim 2.30, vi,v7 € V(Q5). If wq ¢ V(Q5),
then by the proof of Claim 2.29, ve,y;11 € V(Q5). We could check that Ng,(vs) C
{v2,yj+1}, a contradiction to vi,v7 € V(Qs5). Thus wy € V(Q5). Similarly, we
could prove that y;11 € V(Q5). Now if vav1y,12 is a subpath of @5, then there
are two vertices ui,u2 € V(G) \ V(Q) such that ujwive, u2y;j+1y 42 Or uiwiyj42,
Uay;j+1v2 are two segments of Q5. But now Q5 = wiwiv2v1y12yj+1u2 or Q5 =
UgYj+1V201Yj+2W1U1, & contradiction. Thus, there exists a vertex v € V(G) \ V(Q)
such that v{v1v2 or vjv1y, 42 is a segment of Q5. Now Q = yoy1V2wW1VsYj+1Y;j+2Y7Ys,
otherwise we could find 6 independent edges, a contradiction. We assume that
wiyjr2 ¢ E(G), otherwise yoy1v2v1vswiw]yj+2y7ys is a path longer than @, a con-
tradiction. Thus dg(wj) = 1. Similarly, dg(y),,) = 1. Without loss of generality,
suppose that vjvyv is a segment of ()5. Since s = 8, Ng(vj) = Ng(v))U{v1}. Since
Ng(v1) € {v2,vs8, yjt2}, No(v1) € {v2,vs,yj+2}. By Claim 2.3, vjve, vivs, v1y;+2 €
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E(G). Thus dg(v)) = 1. If vawyj42 or vay;11y;+2 is a segment of ()5, then there
exists a vertex u € V(G) \ V(Q) such that y;;2y;+1u or yj1owiu is a segment of Q5.
But now Q5 = vjvivawiyjt2yj+1u or Qs = ViVIV2Y 1Y j+2wiu, a contradiction.
Thus, there are two vertices ui,us € V(G) \ V(Q) such that wiwive, uayjt1y;+2
Or UjW1Y;+2, U2y;+1v2 are two segments of (Js. Now either Q5 = wjwivoviv] or
Q5 = u2yj+1v2v10], a contradiction.

Thus, all the longest paths of G contain vg. Since G is a counterexample, v1y;j42 ¢
E(G). O

Similarly, we could prove that v1yx_2 ¢ E(G). Thus dg(vi) = 2.

Case 2.6.2. vowiwsvg is a subpath of (). In this case, we can check that for
vertex v1 € V(G) \ V(Q) the following assertions hold:

(i) v is not adjacent to any vertex in {w1, w2, yr—1, y;+1} (by Claim 2.3);

(ii) v1 is not adjacent to any vertex in Q[yo, Yx—a] U Q[y;+4, ys] (since r = 8);

(ili) No(vi) € {v2,vs, Yj+2, Yj+3, Yr—2, yr—3} (since (i) and (ii)).

Claim 2.36. v1yj42 ¢ E(G) and viyp—2 ¢ E(G).

Proof. We could obtain the result similarly as in the proof of Case 2.6.1. [

Claim 2.37. v1y;4+3 ¢ E(G).

Proof. Ifuviyjts € E(G), then as r =8, v1yg—3, v11yr—2 ¢ E(G). By Claim 2.3,
viyjr2 € E(G). If there exists a vertex v € V(G) \ V(Q) such that v1v] € E(G),
then both Q[yo, v2] and Q[y;+3, ys] have lengths at least 2. But now yoy1, vow1, wavs,
Yi+1Yj+2, Yj+3Yj+a, v10] are 6 independent edges, a contradiction. Thus d¢g(vi) = 3.

We can check that for vertex wo the following assertions hold:

(i) weo is not adjacent to any vertex in {yx—1,y;j4+2}. Since otherwise

YoQUr—1w2w1v201v8QYs o  YoQWaYj42Yj+1U8V1Y5+3RQYs

is a path longer than Q;

(if) we is not adjacent to any vertex in Q[yo, Yx—2] U Q[y;+4, ys] (since r = 8);

(iii) w9 is not adjacent to any vertex in V(G)\V(Q) (Since if there exists a vertex z €
V(G)\ V(Q) such that wez € E(G), then s > 9, for otherwise zwaw1v2v1v8QYs
is a path longer than Q. But now yoy1, vowi, waz, V81, Yj+1Yj+2, Yj+3Yj+4a are
6 independent edges, a contradiction.);

(iv) Ng(wsz) C {ve,vs,yj+3, w1, yj+1} (since (i), (ii) and (iii)).

Similarly, we could prove that Ng(y;+1) C {v2, vs, Yj+2,Yj+3, W2}
We can check that for vertex w; the following assertions hold:
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(i) w; is not adjacent to yjt1, Yj+a (since otherwise yoQuovivswowiy;+1Qys or
YoQu2v1Y;j+3Qw1Y;+4Qys is a path longer than Q);

(if) w is not adjacent to any vertex in Q[yo, yx—1] U Q[y,+5, ys| (since r = 8);

(iii) w; is not adjacent to any vertex in V/(G)\V(Q) (Since if there exists a vertex z €
V(G)\V(Q) such that w2z € E(G), then s > 9, for otherwise zwi Qy;+3v1v2Qyo
is a path longer than Q. But now yr_1v2, w12, Wavs, Yj+1Yj+2, Yj+3V1, Yj+4Yj+5
are 6 independent edges, a contradiction.);

(iv) Ng(wi) C {va,v8,y 43, w2, yj+2} (since (i), (ii) and (iii)).

Similarly, we could prove that Ng(y;+2) C {v2, vs, Yj+3, Yj4+1, w1}

Now we prove that all the longest paths of G contain vg. If there exists a longest
path Q¢ not containing vs, then by Claim 2.30, v1, w2, y;+1 € V(Qs). Now v1, we and
y;j+1 are not end-vertices of (s, since otherwise adding vs to Q)¢ results in a longer
path, a contradiction. Since dg(v1) = 3, vav1y;+3 is a segment of Qg. If vowowy
is a segment of Qg, then since Ng(y;+1) C {v2, Vs, Yj+2, Yj+3, W}, Yj+3Yj+1Yj+2 i
a segment of Qg. Since Ng(w1) C {va, vs, Yj43, w2, yj42}, Na(yjr2) € {va, vs, yjts,
wl,yj+1}, Qs = W1wW2V2V1Y;43Yj+1Yj+2, a contradiction. If voway;y1 is a segment
of Qg, then since Ng(yj+1) C {v2,vs,Yj+2,Yj+3, W2}, Yj+1¥j+2 € E(Qs). Now
Yirowr ¢ E(Qg), otherwise yoQuaw1y;+2y,+1wW2vsv1Y;j+3QYs is a path longer than @,
a contradiction. If wy ¢ V(Qg), then (Qs —vows)Uvawiws is a path longer than Qg, a
contradiction. Thus wy € V(Qg). Since Ng(w1) C {v2, vs, Yj4+3, W2, Yj1+2}, Yjr3wi €
E(Qs). But now Q¢ = yj12yj+1wavav1yj+3w1, a contradiction. If vowsy,is is a
segment of Qs, then y; 3wavov1y;43 is a segment of QJs, a contradiction. Thus
wovy ¢ E(Qg). Similarly, y,1ve, w2y t3, yj+1yj+3 ¢ E(Qs). Therefore wiway i1
and wayj+1Yj+2 are two segments of Qs. Since Ng(w1) C {v2, vs, Yj+3, w2, Yj+2},
Nea(yjt2) C {v2,v8,Yj4+3, W1, Yj+1}, Wiv2,Yj+2yi+3 € E(Qg) or wiyjts,Yjrav2 €
E(Qg). But now V2U1Yj43Yj+2Yj+1WaW1V2 OF VoU1Yj43W1 WY +1Yj+2V2 1S a segment
of Q¢, a contradiction. Therefore all the longest paths of G contain vg. Since G is a
counterexample, v1y;4+3 ¢ E(G). O

Similarly, we could obtain that v1yx_3 ¢ E(G). Therefore dg(v1) = 2.

Case 2.6.3. v,wjwowsvg is a subpath of (). In this case, similar to the proof
of Case 2.6.1, dg(v1) = 2.

Case 2.6.4. vywjwowsw4vg is a subpath of ). In this case, similar to the proof
of Case 2.6.1, dg(v1) = 2.

Case 2.6.5. vywjwowswawsvg is a subpath of (). In this case, similar to the
proofs of Case 2.6.1 and Case 2.6.2, dg(v1) = 2. O
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Claim 2.38. If there is a longest path Q@ = yoy1...ys of G such that |V (Q) N
V(C)| <7, then all the longest paths of G have a common vertex.

Proof. Without loss of generality, suppose that v; € V(C) \ V(Q). By
Claim 2.32, dg(v1) = 2. If dg(v1) = 2, then by Claim 2.31, all the longest paths of
G share a common vertex.

If dg(v1) > 3, then similar to the proof of Claim 2.15 in the third, forth, fifth
paragraphs we could obtain that for any vertex w € V(G) \ V(Q) such that vyw €
E(G), Na(w) 1 (V(@)\ V(Q)) = {vr}.

Now we prove that all the longest paths of G contain v,. If there exists a longest
path @2 not containing vs, then by Claim 2.30, vi,vs € V(Q2). If wq ¢ V(Q2),
then there exists a vertex u € Q[wy,vs] such that v € V(Qz), for otherwise by
Claim 2.30, v; € V(Q2). By the proof of Claim 2.29, Q2 is a path of length at
least 10, a contradiction. Thus wiu € E(Q) and u € V(Q2). Now we could check
that Ng,(v2) C {vi,u}. Thus v = vs. By Claim 2.32, yp_1 ¢ V(Q2). By the
above, yr_2 € V(Q2). But now Q3 is a path of length at least 10, a contradiction.
Thus wy € V(Q2). By Claim 2.32, w; = vz and yr—1 ¢ V(Q2). By the above,
Yr—2 € V(Q2). But now we could check that Ng,(v2) C {vs, yr—2}, a contradiction.

O

Since G is a counterexample, by Claim 2.38, for any longest path @ of G, V(C) C
V(Q). But now all the longest paths of G contain V(C'), a contradiction.

2.7. Proof of the case »r = 9. If r = 9, then by Claim 2.1 we have that s > 9.
Theorem 2.1 is very important for the following proof.

Theorem 2.1 (Petersen’s theorem, [8]). Every bridgeless cubic graph has a per-
fect matching.

Claim 2.39. If Q = yoy;1 -..ys is a longest path of G, then there is no edge in
G\V(Q).

Proof. If there is an edge e € G\ V(Q), then the 5 independent edges in @
together with e are 6 independent edges, a contradiction. O

Claim 2.40. For any v € V(G) \ V(Q), dg(v) = 3.

Proof. Ifd(v) <2, then suppose that vz € E(G). Now we assume that all the
longest paths of G contain z, since if there is a longest path Q1 not containing z,
then by Claim 2.39, v € V(Q1). Now v is not the end-vertex of Q1, since otherwise
adding = to @ results in a longer path, a contradiction. But now dg(v) > 3, a
contradiction.
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If dg(v) > 4, then by Claim 2.3 and r = 9, dg(v) = 4. Suppose that Ng(v) =
{u1, uz, uz, us} and uy = yj,, vz = yj,, Uz = Yjs, Us = Yjs, 1 < J1 < J2 < J3 < ja <
s —1.

If vuiQur,ugjugv is a cycle of length 9, then either wuqwiwouswsugwiuy or
U1 W1 U W2 W3 U3 W4 U4 OF U W1 U WaU3W3W4ly 18 a subpath of Q. If uqywiwouswsuswatiy
is a subpath of @, then Q = youiwiwouswsuzwau4yy, for otherwise we could find 6
independent edges, a contradiction.

We can check that for each vertex v € {ws, w4} the following assertions hold:

(i) v is not adjacent to yg, y9 (since r = 9);

(ii) v is not adjacent to wy,ws (since otherwise we could obtain a path longer
than Q);

(iii) v is not adjacent to any vertex in V(G) \ V(Q) (since if there exists a vertex
z € V(G) \ V(Q) such that vz € E(Q), then youi, wiws, ugv, wsz, usy, UaYo
Or YoUi, W1Wsa, UV, W3lUs, WaZ, UsYg are 6 independent edges, a contradiction);

(iv) wsws ¢ E(G) (since otherwise yoQuswsusvusQys is a path longer than Q, a
contradiction);

(v) Ng(v) C {u1,u2,us,us} (since (i), (i), (iii) and (iv)).

Now we prove that all the longest paths of G contain ugz. If there exists a longest
path Q1 not containing us, then by Claim 2.39, w3, w4, v € V(Q1). Now w3, wy, v are
not end-vertices of Q1, since otherwise adding u3 to ()1 results in a longer path, a con-
tradiction. Suppose that ujvus is a segment of @)1, then uywsuy, uswsuy Or UW3U4,
uiwaty are two segments of Q1. But now wuqwsuivuswity Or UgW4UVULWSUy 1S
a segment of ()1, a contradiction. Thus, all the longest paths of G contain us.
Since G is a counterexample, uwiwousw3usw4u4 i not a subpath of Q. Similarly,
U1 W1 U WoU3W3W4U4 1S NOt a subpath of Q.

If uiwiuswowsuswauy is a subpath of @, then Q = youiwiuswowsuswausyy, for
otherwise we could find 6 independent edges, a contradiction.

We can check that for each vertex v € {wq, w2} the following assertions hold:

(i) v is not adjacent to yo, Y9, ws (since otherwise we could find a path longer
than Q);
(ii) v is not adjacent to any vertex in V(G) \ V(Q) (since if there exists a vertex
z € V(G) \ V(Q) such that vz € E(G), then zwiQuqvuiyy or zwaQuavusQyo
is a path longer than Q);
(iii) wy is not adjacent to {ws,ws}. Since otherwise

Yourvuawiw2Qyy  or  YoQuwiwzwauzvuzQyg

is a path longer than @, a contradiction;
(iv) Ng(wi) C {ur,ug, us, us} and Ng(wz) C {ws, u1,us, us, ug} (since (i), (i) and

(ii)).
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Similarly, we could prove that Ng(ws) C {wa,u1,us,us,us} and Ng(ws) C
{u1, ug, us, uq}.

Now we prove that all the longest paths of G contain us. If there exists a longest
path Q2 not containing us, then by Claim 2.39, w1, we,v € V(Q2). Now wy,we, v are
not end-vertices of Q2, since otherwise adding us to Q)2 results in a longer path, a con-
tradiction. If ujvus is a segment of QQ2, then uywiuy or uzwiuy is a segment of Q.
Without loss of generality, suppose that ujwiuy is a segment of Q2. Now ugwows
or uzwyws is a segment of QJo. Without loss of generality, suppose that ugwsws is
a segment of Q1. Since Ng(ws) C {we,u1,us, us, us}, ws is an end-vertex of Q.
If wy € V(Q2), then since Ng(wys) C {u1,ug, us, us}, Q2 = wawotgwuivuzwy,
a contradiction. Thus wy ¢ V(Q2). Now w3 is not an end-vertex of Q3. If uzyg or
usys € E(Q2), then Qo = wswaugwiuivugyo or Q2 = wswatigWwy U VU3Ys, & contra-
diction. Thus, there exists a vertex z € V(G) \ V(Q) such that usz € E(Q2). But
now Q2 = wswsuswiuvuzz, a contradiction. Thus ujvuz is not a segment of Q.
Similarly, we could prove that wjvuy, usvus are not segments of Q2, a contradic-
tion. Thus, all the longest paths of G contain us. Since G is a counterexample,
vu Qlur, ugugv is a cycle of length 8.

As above, we could prove that Ng(w;) C {u1,us,uz,us}t (i = 1,2,3), and all the
longest paths of G have a common vertex, a contradiction. Thus dg(v) = 3. O

Claim 2.41. G has an independent set of 6 edges.

Proof. Since G is a counterexample, for any vertex v € V(G) there exists a
longest path not containing it. By Claim 2.40, dg(v) = 3. Since s > 9, G has at
least 12 vertices. Suppose that X is a connected component in G\ V(C). If | X| > 4,
then there is a path of length at least 11, and therefore G has 6 independent edges.
If | X| = 3, then since G[X] is connected, there is a spanning path in G[X]. Since G
is cubic, there is a path of length at least 11 and G has 6 independent edges. If
|X| < 2, then since G is a connected cubic graph, the edges connecting X and C
are not cut edges. Thus G is a bridgeless cubic graph. By Theorem 2.1, G has 6
independent edges. (I

By Claim 2.41, G has 6 independent edges, a contradiction.
2.8. Proof of the case r = 10. If » = 10, then by Claim 2.1 we have that s = 10.

Claim 2.42. If Q = yoy1 - - - Y10 is a longest path of G, then there is no edge in
G\ V(Q).

Proof. Ifthereisanedgea € G\V(Q), then 5 independent edges in Q) together
with a are 6 independent edges, a contradiction. Il
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Claim 2.43. For any v € V(G)\ V(Q), dg(v) = 3.

Proof. Since s =10, Ng(v) C {y1,9ys,Y5,y7, Y9} If dg(v) < 2, then suppose
that vz € E(G). Now we claim that all the longest paths of G contain x. Since if
there is a longest path @)1 not containing z, then by Claim 2.42, v € Q1. We see
that v is not the end-vertex of @1, since otherwise adding x to @)1 results in a longer
path, a contradiction. But now dg(v) > 3, a contradiction.

If dg(v) = 5, then y;y; ¢ E(G), i, € {0,2,4,6,8,10} (without loss of generality,
suppose that i < j), for otherwise yoQu:y;Qyi+1vy;+1Qys is a path longer than
@, a contradiction. Now for the cycle C1 = vy1y2ysysysysyrysyov there is no edge
in G\ V(Cy) and for each vertex x € V(G) \ V(C1), Na(z) € {v1,y3,Ys, Y7, Yo }-
If there is a longest path @2 of G not containing y;, then (2 contains at most 9
vertices, a contradiction. Thus, every longest path of G contains y;. Since G is a
counterexample, dg(v) # 5.

If dg(v) = 4 and vy1,vye € E(G), then vy1y2ysysysysyrysyov is a cycle of
length 10. If vys ¢ E(G), then yoy; ¢ E(G), j € {6,8,0,10}, for otherwise
Yoy1vY;—1QY2Y;QYs or Yy10QY2Y0y1v Or Y10Y2QY9vy1Yo is a path longer than Q, a con-
tradiction. Furthermore, y;y; ¢ E(G), i,5 € {0,4,6,8,10} (without loss of generality,
suppose that i < j), for otherwise yoQy;y;Qvi+1vyj+1QYs is a path longer than @,
a contradiction. Now for the cycle Co = vy1Y2y3y4ysyey7ysyov there is no edge in
G\V(C2) and for each vertex x € V(G)\V(C2), Na(z) C {v1,ys, Y5, Y7, Yo }. I yays ¢
E(G), then as above, every longest path of G not containing y; contains at most
9 vertices, a contradiction. Since G is a counterexample, yoys € E(G). Now if there
is a longest path Q3 of G not containing ¥;, then ()5 contains at most 10 vertices,
a contradiction. Thus vys € E(G). Similarly, we could prove that vys,vy; € E(G).
But now dg(v) = 5, a contradiction. Thus vy; ¢ E(G) or vys ¢ E(G). Now we
could obtain that y;y; ¢ E(G), i,j € {2,4,6,8} (without loss of generality, suppose
that ¢ < j), for otherwise yoQuiy;Qyi+1vy;+1Qys is a path longer than Q, a con-
tradiction. If yoy; € E(G) or yi0y; € E(G), i € {0,4,6,8,10}, then y2y140y10Qy3v
or y10QY:YyoQYi—1v or y10y;Quovy;—1Qyo is a path longer than @, a contradiction.
Thus yoyi, y10y: ¢ E(G), i € {0,4,6,8,10}. Furthermore, y2y10 ¢ E(G), for oth-
erwise Yoy1y2y10Qysv is a path longer than @, a contradiction. If ysy1 € E(G),
then C3 = y1y4Qyovysy211 is a cycle of length 10. Now yayo ¢ E(G), for otherwise
YoY291Y4Yy3vysQYys is a path longer than @, a contradiction. But now, as above, we
could obtain that all the longest paths of G contain ys, ys, y7, Y9, a contradiction.
Thus yay1 ¢ E(G). Similarly, we could obtain that y;y1 ¢ E(G), ¢ € {6,8}. Now
Ne(yi) € {ys,ys5,y7, Yo}, ¢ € {4,6,8}. If there is a longest path Q3 of G not contain-
ing y7, then by Claim 2.42, ys, ys, v € V(Q3). Now yg, ys, v are not end-vertices of Q3.
Since otherwise adding y7 to Q3 results in a longer path, a contradiction. If ysvys
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is a segment of Q3, then y3ysyo, Ysyslo O Ys5YsY9, Y3Ysyo are two segments of Q3.
But now yoysy3vysysyg Or Yoysysvysysyo is a segment of U3, a contradiction. Thus,
Yy3vys is not a segment of ()3. Similarly, we could obtain that ysvyg, ysvye ¢ E(G),
a contradiction. Thus dg(v) # 4. Therefore, dg(v) = 3. O

Claim 2.44. G has an independent set of 6 edges.

Proof. Since G is a counterexample, for any vertex v € V(G) there exists a
longest path not containing it. By Claim 2.43, dg(v) = 3. Since s > 10, G has
at least 12 vertices. Suppose that X is a connected component in G\ V(C). If
|X| > 2, then the 5 independent edges and an edge in X are 6 independent edges,
a contradiction. Thus |X| = 1. Since G is a connected cubic graph, there are three
edges connecting X and C. Thus, the edges connecting X and C' are not cut edges.
Now G is a bridgeless cubic graph. By Theorem 2.1, G has 6 independent edges. [

By Claim 2.44, GG has 6 independent edges, a contradiction. Thus, we complete
the proof of Theorem 1.1. O

Proof of Conjecture 1.2. By Theorem 1.1, Gallai’s conjecture is true for every
connected graph G with o/(G) < 5. Thus, a smallest counterexample to Gallai’s
conjecture must have at least 6 independent edges. As the graph in Figure 1 has 12
vertices, we complete the proof. O
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