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Abstract. An edge-colored graph G is proper connected if every pair of vertices is con-
nected by a proper path. The proper connection number of a connected graph G, denoted
by pc(G), is the smallest number of colors that are needed to color the edges of G in
order to make it proper connected. In this paper, we obtain the sharp upper bound for
pc(G) of a general bipartite graph G and a series of extremal graphs. Additionally, we give
a proper 2-coloring for a connected bipartite graph G having δ(G) > 2 and a dominating
cycle or a dominating complete bipartite subgraph, which implies pc(G) = 2. Furthermore,
we get that the proper connection number of connected bipartite graphs with δ > 2 and
diam(G) 6 4 is two.
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1. Introduction

All graphs in this paper are finite, connected and simple. We follow the termi-

nology and notation of Bondy and Murty [2]. An k-edge-coloring of a graph is an

assignment of k colors to the edges of G. An edge coloring is proper if adjacent

edges receive distinct colors. The minimum number of colors needed in a proper

edge coloring of the graph G is referred to as the edge chromatic number of G and

denoted by χ′(G). Except the classical vertex coloring and edge coloring, there

are many kinds of colorings being studied, such as list coloring, star coloring and

acyclic coloring. In addition, rainbow connection and rainbow vertex-connection
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are the new ones. For more details we refer to a survey paper [5] and a book [6].

Inspired by proper coloring and rainbow coloring in graphs, Borozan et al. [3]

introduced the concept of proper coloring of a graph G. Let G be an edge-colored

graph. A path P in G is called a proper path if no two adjacent edges of P are colored

the same. An edge-coloring c is a proper-path coloring of a connected graph G if

every pair of distinct vertices u, v of G are connected by a proper (u, v)-path in G.

If k colors are used, then c is referred to as a k-proper coloring. The minimum

number of colors needed to produce a proper coloring of G is called the proper

connection number of G, denoted by pc(G). More generally, a graph G is said to

be k-proper connected if any two vertices are connected by k internally pairwise

vertex-disjoint proper paths. The k-proper connection number of a k-connected

graph G, denoted by pck(G), is the smallest number of colors that are needed in

order to make G k-proper connected. From the definition, it is easy to get that

1 6 pc(G) 6 min{χ′(G), rc(G)} 6 m, where m is the number of edges of G. Re-

cently, a lot of results have been obtained with respect to several aspects, such as

connectivity, minimum degree, complements, operations on graphs and so on. For

details we refer to [1], [3] and a dynamic survey paper [4].

Borozan et al. in [3] showed that the proper connection number of a complete

bipartite graph is two but the proper connection number of a general bipartite graph

is still unknown. Also in [3], Borozan et al. proved that pc(G) = 2 for a 2-connected

bipartite graph G by induction. However, how to give a proper 2-coloring for a 2-

connected bipartite graph? These two problems are interesting and meaningful. We

focus on these two problems in this paper.

This paper is organized as follows. In Section 2, we introduce some basic defini-

tions and useful lemmas on the proper connection number of a graph. In Section 3,

the sharp upper bound of pc(G) for a general bipartite graph G together with a series

of extremal graphs are given. Section 4 gives a proper 2-coloring for the connected

bipartite graph G such that δ(G) > 2 and G has a dominating cycle or a domi-

nating complete bipartite subgraph. Furthermore, the proper connection number of

a connected bipartite graph G with δ > 2 and diam(G) 6 4 are obtained.

2. Preliminaries

In this section, we introduce some definitions and present several useful lemmas

about the proper coloring of graphs. We begin with some basic conceptions.

Definition 2.1. Given a colored path P = v1v2 . . . vs−1vs between two ver-

tices v1 and vs, we denote by star(P ) the color of the first edge in the path, i.e. c(v1v2),

and by end(P ) the last color, i.e. c(vs−1vs).
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Definition 2.2. Let G = (V,E) be a connected graph. A (v, S)-path, where

v ∈ V , S ⊆ V , is a path which starts at v and ends at one vertex in S. An (S1, S2)-

path, where S1, S2 ⊆ V , is a path which starts at one vertex in S1 and ends at one

vertex in S2.

Definition 2.3. Let G = (V,E) be a connected graph. The distance between two

vertices u and v in G, denoted by d(u, v), is the length of a shortest path between

them in G. The diameter of G is the maximum distance between two vertices

of G. The distance between a vertex v and a set S ⊆ V is d(v, S) := min
x∈S

d(v, x).

The k-step neighborhood of a set S ⊆ V is Nk(S) := {x ∈ V : d(x, S) = k},

k ∈ {0, 1, 2, . . .}. The degree of a vertex v is deg(v) := |N1(v)|. The minimum

degree of G is δ(G) := min
x∈V

deg(x). A vertex is called pendant if its degree is 1 and

isolated if its degree is 0. We may use Nk(v) in place of Nk({v}).

Definition 2.4. Given a graph G, a set D ⊆ V (G) is called a k-step dominating

set of G if every vertex in G is at a distance at most k from D. Further, if D induces

a connected subgraph of G, then it is called a connected k-step dominating set of G.

Definition 2.5. A two-step dominating set D of vertices in a graph G is called

a two-way two-step dominating set if

(i) every pendant vertex of G is included in D,

(ii) every vertex in N2(D) has at least two neighbours in N1(D).

Further, if G[D] is connected, D is called a connected two-way two-step dominating

set of G.

For other notation and terminology, we refer to [2]. Next we state some known

results on the proper coloring, which will be useful in the sequel.

Lemma 2.1 ([3]). If pc(G) = 2, then pc(G ∪ v) = 2 as long as d(v) > 2.

As the general case of Lemma 2.1, we give the following proposition.

Proposition 2.1. If pc(G) = k, k > 2, then pc(G ∪ v) 6 k as long as d(v) > 2.

P r o o f. Let u,w be two neighbours of v in G. Assume that c is a proper k-

coloring of G, then there is a proper (u,w)-path P in G. Now color the edges uv and

wv with colors in the color set of c such that c(uv) 6= star(P ) and c(wv) 6= end(P ).

Now we will check that this is a proper k-coloring of the new graph G∪v. If uw is an

edge of G, then c(uv) 6= c(uw) and c(wv) 6= c(uw). Since every vertex has a proper

path to u, every vertex has a proper path to v. And for the case that uw is not an

edge of G, every vertex has a proper path to v through either u or w since every

vertex has a proper path to any inner vertex of P . This completes the proof. �
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Remark 2.1. The value of pc(G) − pc(G ∪ v) can be arbitrarily large. We

construct a new graph S′
k as follows. Take a star Sk, k > 3, as the base graph and

the vertex v0 as the center vertex of Sk. Add a new vertex v to Sk so that v is adjacent

to k (if k is even) or k−1 (if k is odd) vertices in V (Sk)−{v0}. Since |N(v)| is even, we

can divide N(v) into two parts A and B so that |A| = |B| = |N(v)|/2 and A∩B = ∅.

For the case when k is odd we denote the only vertex in V (Sk)− {v0} −N(v) by u.

Now we give a 2-proper coloring of the new graph S′
k as follows. Color all (v,A)-

edges and (v0, B)-edges by 1 and all (v,B)-edges and (v0, A)-edges by 2. For the

case when k is even, we have colored all edges in S′
k while for the case when k is

odd, color the edge uv0 with 1 or 2. One can check that this is a 2-proper coloring

of S′
k. Then pc(Sk)− pc(S′

k) = k− 2 and this difference can be arbitrarily large if k

is large enough.

A B

v0

v

S′

k
(k is even)

A B

v0

v

u

S′

k
(k is odd)

Figure 1. 2-proper colored graphs for Remark 2.1.

3. Proper connection number of bipartite graphs

In this section, we mainly consider the proper connection number of a general

bipartite graph. First, we give some known results on the proper connection number

of the complete bipartite graphs and the 2-connected (2-edge-connected) bipartite

graphs.

Lemma 3.1 ([3]). Let G = Km,n, m > n > 2k for k > 1. Then pck(G) = 2.

Lemma 3.2 ([3]). Let G be a graph. If G is bipartite and 2-connected (2-edge-

connected), then pc(G) = 2 and there exists a 2-coloring of G that makes it properly

connected with the following strong property. For any pair of vertices v, w there exist

two paths P1 and P2 between them (not necessarily disjoint) such that star(P1) 6=

star(P2) and end(P1) 6= end(P2).
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The above lemma implies that it suffices to consider a connected bipartite graph G

containing bridges. The following theorem gives a sharp upper bound for pc(G).

Theorem 3.1. LetG be a connected bipartite graph containing bridges. If b is the

maximum number of bridges incident with a single vertex in G, then pc(G) 6 b+ 2

and this upper bound is sharp.

P r o o f. Let G be a connected bipartite graph containing bridges. The block

decomposition of G includes its isolated vertices, bridges and maximal 2-connected

subgraphs. In order to prove pc(G) 6 b + 2, we only need to give a (b + 2)-proper

coloring c of G. The coloring c is defined as follows. For the bridges which are

incident to a single vertex v we color each bridge incident with v by a distinct fresh

color in [b] = {1, 2, . . . , b}. Since b is the maximum number of bridges incident with

a single vertex, it is enough to color all bridges in G using b distinct colors. And

for blocks which are maximal 2-connected subgraphs of G we give each of them

a {b+1, b+2}-proper coloring having strong property as stated in Lemma 3.2. One

can check that the above coloring c is a (b + 2)-proper coloring of G.

Now we will show that this upper bound is sharp. For the case when b = 1, we find

the graph G1 (depicted in Figure 2) with pc(G1) = 3, which implies the sharpness of

the upper bound. Since G1 is not complete, then pc(G1) > 2. Suppose that 2 colors

are enough to make G1 proper connected. Note that there are only paths of length 2

or 4 between v1 and v2, v1 and v3, also v2 and v3. Hence, for any proper coloring c1

of G1, c1(u1v1), c1(u2v2) and c1(u3v3) are pairwisely different, a contradiction. So

pc(G1) = 3.

u1 u2v1 v2

u3

v3

Figure 2. The graph G1.

Next we will show that this upper bound is sharp for the case when b > 2. As

depicted in Figure 3, the graph Gb has a cycle C of length 6. And each vertex

of C is adjacent to b bridges, which lead to nontrivial blocks. Now we will show the

sharpness of this upper bound by proving that pc(Gb) = b+ 2.

Claim 1. The sharp upper bound of pc(G) is greater than b.
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P r o o f of Claim 1. We will prove this claim by showing that b colors are

not enough to make Gb (see Figure 3) proper connected. Assume that there is

a [b] = {1, 2, . . . , b}-proper coloring c′ for Gb. Obviously, the b bridges which are

adjacent to ui must be assigned distinct colors and without loss of generality, we

set c′(u1u1i) = c′(u2u2i) = i, 1 6 i 6 b. In addition, c′(u1u6) 6= c′(u1u2). Since

c′(u1u6), c
′(u1u2) ∈ [b] and if c′(u1u6) = c′(u1u2), there is a vertex u1k such that

c′(u1u1k) = c′(u1u6) = c′(u1u2), which contradicts c
′ being a proper coloring of Gb.

So we can assume that c′(u1u6) = 1 and c′(u1u2) = 2. But there is no (u11, u22)-

proper path under the coloring c′, a contradiction.

The above claim implies that the sharp upper bound of pc(G) is either b + 1 or

b + 2. Suppose that Gb (see Figure 3) has a [b + 1]-proper coloring cb and assume

that cb(u1u1i) = i, 1 6 i 6 b.

u1

Gb

u11

u6

u2 u5

u3 u4

u12
u1b

u21

u22

u2b

u31u32

u3b

G0

u61 u62

u6b

u4b
u42

u41

(each represents a nontrivial block)

u

v

b ve
rtice

s

b
ve
rt
ic
es

b vertices

Figure 3. Graphs for the proof of Theorem 3.1.

Claim 2. Undering the proper coloring cb, any two adjacent edges of C :=

u1u2u3u4u5u6u1 are assigned different colors.

P r o o f of Claim 2. Suppose there are two adjacent edges on C with the same

color. Without loss of generality, we can assume that cb(u1u2) = cb(u1u6). Then

cb(u1u2) = cb(u1u6) = b + 1. If b + 1 /∈ {cb(u2u21), cb(u2u22), . . . , cb(u2u2b)},

then {cb(u2u21), cb(u2u22), . . . , cb(u2u2b)} = [b]. Since the path u2u1u6 is not

proper, u2iu2u3u3i, 1 6 i 6 b, must be proper and so cb(u2u3) = b + 1 and

{cb(u3u31), cb(u3u32), . . . , cb(u3u3b)} = [b]. Additionally, u3iu3u4, 1 6 i 6 b, must

be proper since cb(u2u3) = b+1 = cb(u1u2). So cb(u3u4) = b+1 but both u2iu2u1u6

and u2iu2u3u4, 1 6 i 6 b, are not proper, which contradicts cb being a proper

coloring of Gb. Hence, b + 1 ∈ {cb(u2u21), cb(u2u22), . . . , cb(u2u2b)} and one of [b]
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does not appear in {cb(u2u21), cb(u2u22), . . . , cb(u2u2b)}. Without loss of general-

ity, we assume {cb(u2u21), cb(u2u22), . . . , cb(u2u2b)} = [b + 1] \ {1}. Since u2u1u6

is not proper, u2iu2u3u3i, 1 6 i 6 b, must be proper and so cb(u2u3) = 1 and

{cb(u3u31), cb(u3u32), . . . , cb(u3u3b)} = [b+ 1] \ {1}. In addition, u3iu3u4, 1 6 i 6 b,

must be proper since u3u2u1u6 is not. So cb(u3u4) = 1 but both u2iu2u1u6 and

u2iu2u3u4, 1 6 i 6 b are not proper, which contradicts cb being a proper coloring

of Gb. Thus, the result of Claim 2 is obtained.

From Claim 2 we know that for every vertex uj ∈ V (C) there is a bridge ujujk

such that either cb(ujujk) = cb(ujuj+1) (mod 6) or cb(ujujk) = cb(ujuj−1) (mod 6).

Let us assume cb(u1u6) = cb(u1u11) = 1. It follows that the paths u11u1u2u3u3i,

1 6 i 6 b, and u11u1u2u3u4 must be proper and cb(u1u2) ∈ [b+ 1] \ {1}.

If cb(u1u2) = 2 (the cases cb(u1u2) = 3, . . . , b are all similar), then {cb(u2u21),

cb(u2u22), . . . , cb(u2u2b)} = [b + 1] \ {2} since u11u1u6 is not a proper path and

u11u1u2u2i, 1 6 i 6 b, must be proper. Additionally, since u2u1u12 is not proper,

then u2iu2u3, 1 6 i 6 b, must be proper and so cb(u2u3) = 2. However, this

contradicts to the fact that the path u11u1u2u3 must be proper. If cb(u1u2) = b+1,

then {cb(u2u21), cb(u2u22), . . . , cb(u2u2b)} = [b] since u11u1u6 is not a proper path

and u11u1u2u2i, 1 6 i 6 b, must be proper. Take cb(u2u3) = 1 into consideration and

for cb(u2u3) = 2, . . . , b, the analyses are similar. Since u11u1u2u3u3i, 1 6 i 6 b, are

all proper paths, then {cb(u3u31), cb(u3u32), . . . , cb(u3u3b)} = [b + 1] \ {1}. Without

loss of generality, we can assume cb(u2u21) = 1 and then u21u2u3 is not proper.

And this implies that u3iu3u4 is proper and cb(u3u4) = 1. However, this contradicts

u11u1u2u3u4 being a proper path. As a result, the graph Gb has no proper (b + 1)-

coloring and pc(Gb) = b+ 2. �

From the proof of Theorem 3.1, we can find that the cycle C in Gb can be any

even cycle. Furthermore, the structure of G0 (see Figure 3) leads to the sharpness of

the above upper bound. With similar analysis for Theorem 3.1, we can obtain the

following result.

Theorem 3.2. Let G be a connected bipartite graph containing bridges and b > 2

be an integer. If G contains G0 as its induced subgraph and all paths in G joining

any pair of vertices of V (G0) except {u, v} appear in G0, then pc(G) = b+ 2.

Additionally, Andrews et al. in [1] gave a lower bound for any nontrivial connected

graphs containing bridges, which is stated as follows.

Theorem 3.3 ([1]). Let G be a nontrivial connected graph containing bridges.

If b is the maximum number of bridges incident with a single vertex in G, then

pc(G) > b.
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Together with the results in Theorem 3.1 and Theorem 3.3, we can directly obtain

the following corollary.

Corollary 3.1. Let G be a connected bipartite graph containing bridges. If b is

the maximum number of bridges incident with a single vertex in G, then pc(G) ∈

{b, b+ 1, b+ 2}.

4. Proper colorings for bipartite graphs

In [7], we found upper bounds of the proper connection number pc(G) with the

help of two-way dominating sets or two-way two-step dominating sets of a graph G.

This implies that the dominating set is a useful tool to help us to find a proper

coloring and determine the proper connection number of a connected graph.

Theorem 4.1. Let G = (X,Y ) be a connected bipartite graph such that δ(G) > 2

and G has a dominating cycle or a dominating complete bipartite subgraph. Then

pc(G) = 2.

P r o o f. In order to prove the theorem, we will distinguish two cases according

to different dominating subgraphs of G.

Case 1. Suppose C2k, k > 2, be a dominating cycle of G.

We claim that G is a 2-connected graph. If not, there exists a cut-vertex, say

x0 ∈ X . Then the graph G−x0 can be composed by at least two bipartite subgraphs

G1 = (X1, Y1), G2 = (X2, Y2), where X1, X2 ∈ X and Y1, Y2 ∈ Y . Since G has

a dominating cycle, x0 ∈ X∩V (C2k) and one of X1 and X2 must be empty. Without

loos of generality, we assume that X2 = ∅. Then all the vertices in Y2 are only

adjacent x0, which contradicts δ(G) > 2. Then the graphG is a 2-connected bipartite

graph, and pc(G) = 2.

Now we give a proper 2-coloring for a spanning subgraph of G. Let C2a be the

dominating even cycle of G and color the edges of C2a by 1, 2 alternately, so that

121212 . . .. For any vertex v ∈ V (G) \ V (C2a) we have |N(v) ∩ V (C2a)| > 2 or

|N(v) ∩ V (C2a)| = 1. If |N(v) ∩ V (C2a)| > 2, then take two neighbours of v, say

u,w ∈ C2a, and color uv and wv so that uvwC2au is a proper 2-coloring cycle,

where the segment wC2au has a greater length than the remaining segment of C2a.

If |N(v) ∩ V (C2a)| = 1, v must on an open ear of length 3, denoted by xivv
′xj

(xi, xj ∈ C2a and v, v′ /∈ C2a). Color this open ear by 1, 2 alternately as 121212 . . .,

so that xivv
′xjC2axi is a proper 2-coloring cycle, where the segment xjC2axi has

a smaller length than the remaining segment of C2a. One can check this is indeed

a proper 2-coloring for a spanning subgraph of G.
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Case 2. Let D = (X,Y ) be a dominating complete bipartite subgraph of G.

Subcase 2.1. |X | = 1 or |Y | = 1. Then D is a star. Without loss of generality,

assume the vertex v0 is the center vertex of D. Let U = N1
G(v0) and V = V (G) \U .

Obviously, v0 ∈ V and N2
G(v0) = V \ {v0}. Since G is bipartite and δ(G) > 2,

{v0} is a connected two-way two-step dominating set of G and for all v ∈ N1
G(v0),

N(v) ∩ N2
G(v0) 6= ∅. The proof of Theorem 3.1 in [7] implies a proper 2-coloring of

a spanning subgraph of G and so pc(G) = 2.

Subcase 2.2. |X | > 2 or |Y | > 2. The dominating complete bipartite graphD must

be an induced subgraph of G, since G is bipartite. Let X = {u1, u2, . . . , u|X|}, Y =

{v1, v2, . . . , v|Y |} be the bipartition of D. Set D
′ = V (D) ∪ {w : |N(w) ∩ V (D)| > 2,

w ∈ V (G) \ V (D)}. Then we have pc(G[D′]) = 2 by Lemma 3.1 and Lemma 2.1.

Now we give a proper {dark(1), light(2)}-coloring c for G[D′] (see Figure 4) as

follows. Set c(u1v1) = 1, c(uivj) = 1 and c(u1vj) = c(v1ui) = 2 for all 2 6 i 6 |X |,

2 6 j 6 |Y |. For any vertex w ∈ D′ \ V (D) it is obvious that N(w) ∩ V (D) ⊆ X or

N(w) ∩ V (D) ⊆ Y because G is a bipartite graph. If u1w ∈ G, then set c(u1w) = 1.

Take some uk ∈ N(w) ∩ V (D), 2 6 k 6 |X | and set c(ukw) = 2. Similarly, if

v1w ∈ G, then set c(v1w) = 1. Take some vl ∈ N(w) ∩ V (D), 2 6 l 6 |Y | and set

c(vlw) = 2. If u1w /∈ G and v1w /∈ G, then there are uj, uk ∈ N(w), 2 6 j 6= k 6 |X |

or vl, vi ∈ N(w), 2 6 l 6= i 6 |Y |. In this case, if uj, uk ∈ N(w), then color the

edges ujw and ukw so that {c(ujw), c(ukw)} = {1, 2}; if vl, vi ∈ N(w), then color

the edges vlw and viw so that {c(vlw), c(viw)} = {1, 2}.

D

u1

v1

u2

v2

us

vt

u|X|

v|Y |

wi wj

wk wl

w
′
i w

′′
i w

′
j w

′′
j

Figure 4. Proper 2-coloring of a subgraph of G[D′].

Let S = V (G) \ D′ = {w : |N(w) ∩ V (D)| = 1, w ∈ V (G) \ V (D)}. For any

w ∈ S, if w ∈ N(ui) for some i, 1 6 i 6 |X |, then there is either w′ ∈ N(w)

such that w′ ∈ S and N(w′) ∩ V (D) ⊆ Y (i.e., there is a vertex vj , 1 6 j 6 |Y |

such that w′vj ∈ E(G)) or w′ ∈ D′ \ V (D) and N(w′) ∩ V (D) ⊆ Y , since G is a

bipartite graph and D is a dominating complete bipartite subgraph. Similarly, if

w ∈ N(vk) for some k, 1 6 k 6 |Y |, then there is w′ ∈ N(w) such that w′ ∈ S

and N(w′) ∩ V (D) ⊆ X (i.e., there is either a vertex ul, 1 6 l 6 |X | such that
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w′ul ∈ E(G) or w′ ∈ D′ \ V (D)) and N(w′) ∩ V (D) ⊆ X . For the vertex w ∈ S we

call the vertex w of type I in S if N(w) ∩ (D′ \ V (D)) = ∅ (i.e., N(w) \ V (D) ⊆ S),

the rest elements of S are called type II ones.

Now we extend the coloring c of G[D′] to G. For any vertex w ∈ S of type I, there

is a 4-cycle wuivjw
′w, 1 6 i 6 |X |, 1 6 j 6 |Y | in G. Set c(ww′) = c(uivj) and

c(wui) = c(w′vj) ∈ {1, 2} \ c(uivj). This coloring implies that each vertex w ∈ S

of type I is contained in a proper 4-cycle except w0 ∈ S in shapes (a), (b), (c), (d),

which is depicted in Figure 5. We call all these vertices singular vertices.

v1

u1

vk

wu1

wv1
w0

(a)

u1

v1

ul

wu1

wv1

w0

(b)

u1

vi

uj

wuj
w0

wvi

(c)

v1

up

vq

wup

wvq
w0

(d)

Figure 5. Proper 2-coloring for shapes (a), (b), (c), (d).

For each vertex w ∈ S of type II there exists at least one vertex w0
i ∈ D′ \D such

that ww0
i ∈ G. If wu1 ∈ G, then set c(wu1) = 1 and c(ww0

i ) = 2. If wuj1 ∈ G,

2 6 j1 6 |X |, then set c(wuj1 ) = 2 and c(ww0
i ) = 1. If wv1 ∈ G, then set c(wv1) = 1

and c(ww0
i ) = 2. If wvj2 ∈ G (2 6 j2 6 |Y |), then set c(wvj2 ) = 2 and c(ww0

i ) = 1.

Thus, we give a 2-coloring c of a spanning subgraph of G and the above analysis

implies that this spanning subgraph is 2-connected. Therefore, the graph G has a

2-connected bipartite spanning subgraph and Lemma 3.2 implies that pc(G) = 2.

Now we will prove that the 2-coloring c defined as above is indeed a proper coloring

of G.

Based on the proper 2-coloring c of G[D′] as above, vertices of type I in S can

be divided into five classes, as depicted in Figure 6, {w1, w
′
1}, {w2, w

′
3}, {w3, w

′
2},

{w4, w
′
4} and {w′′

4 , w
′′′
4 }. We only take the first four items into consideration (Fig-

ure 6 (0)), since the case of {w′′
4 , w

′′′
4 } is the same as that of {w4, w

′
4}.

Case 3. For any pair of vertices w, w′ of type I in S there is a proper 2-coloring

(w,w′)-path which excludes any (D′ \ V (D), V (D))-edges.

For any pair of vertices w, w′ of type I in S, if neither w nor w′ is w0 in

shape (a), (b), (c) or (d), then {w,w′} ⊆ {w1, w2, w3, w4, w
′
1, w

′
2, w

′
3, w

′
4}. So

it suffices to show that there is a proper path between any pair of vertices

in {w1, w2, w3, w4, w
′
1, w

′
2, w

′
3, w

′
4}. One can check that w1u1w2, w1u1v1u2w3,
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w
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w
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w
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′
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w
′
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′
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w
′
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w
′′
4

w
′′′
4

Figure 6. Proper 2-coloring for edges between vertices of type I in S and D
′.

w1w
′
1v1u1v2usw4 (or w1w

′
1v1u1v2u|X|w4), w1w

′
1, w1w

′
1v1u1v2w

′
2, w1w

′
1v1w

′
3 and

w1u1v1u2vtw
′
4 (or w1u1v1u2v|Y |w

′
4) are proper (w1, w2), (w1, w3), (w1, w4), (w1, w

′
1),

(w1, w
′
2), (w1, w

′
3) and (w1, w

′
4)-paths, respectively. One can similarly find proper

paths between any other pair of vertices in {w1, w2, w3, w4, w
′
1, w

′
2, w

′
3, w

′
4}.

Now we assume that both w and w′ are singular vertices in shape (a), (b), (c)

or (d). We only need to show that every pair of singular vertices can reach each

other through proper paths. If w, w′ both are singular vertices of shape (a), then

wvku1v1wv1wu1
w′ is a proper (w,w′)-path. If w is a singular vertex of shape (a)

and w′ is a singular vertex of shape (b), then wvku1v1ulw
′ is a proper (w,w′)-path.

If w is a singular vertex of shape (a) and w′ is a singular vertex of shape (c), then

wvku1w
′ is a proper (w,w′)-path. If w is a singular vertex of shape (a) and w′ is

a singular vertex of shape (d), then wwu1
wv1v1w

′ is a proper (w,w′)-path. The cases

of other pairs of singular vertices are similar and we omit the details.
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Finally, we consider the case that one of w, w′ is a singular vertex while the other

is not. Without loss of generality, we assume that w is a singular vertex in shape

(a), (b), (c) or (d). Thus, it suffices to show that there is a proper path between

w and every vertex in {w1, w2, w3, w4, w
′
1, w

′
2, w

′
3, w

′
4}. If w is a singular vertex

of shape (a), then wvku1v1w
′
1w1, wvku1w2, wvku1v1u2w3, wwu1

wv1v1u1v2usw4

(or wwu1
wv1v1u1v2u|X|w4), wvku1v1w

′
1, wwu1

wv1v1u1v2w
′
2, wwu1

wv1v1w
′
3 and

wwu1
wv1v1u1vtw

′
4 (or wwu1

wv1v1u1v|Y |w
′
4) are proper (w,w1), (w,w2), (w,w3),

(w,w4), (w,w
′
1), (w,w

′
2), (w,w

′
3) and (w,w′

4)-paths, respectively. If w is a singular

vertex of shape (b), then wulv1u1w1, wwv1wu1
u1w2, wwv1wu1

u1v1u2w3, wulw4 (if

ul = us or ul = u|X|) or wulv1u1v2us (or u|X|)w4, wulv1u1w1w
′
1, wulv1u1v2w

′
2,

wulv1w
′
3 and wwv1wu1

u1v1u2vt (or v|Y |)w
′
4 are proper (w,w1), (w,w2), (w,w3),

(w,w4), (w,w
′
1), (w,w

′
2), (w,w

′
3) and (w,w′

4)-paths, respectively. For the cases

when w is a singular vertex of shape (c) or (d), one can check it in the similar way.

By checking the proper paths above between any pair of vertices of type I in S, we

obtain a direct observation that there is a proper path under the coloring c between

any pair of vertices of type I in S such that these proper paths do not contain any

(D′ \ V (D), V (D))-edges. And then, we complete the proof of Case 3.

Considering the proper 2-coloring c of G[D′], we divide vertices of type II in S

into four classes, as depicted in Figure 7, {w5, w
′
5}, {w6, w

′
6}, {w7, w

′
7} and {w8, w

′
8}.

For i ∈ {5, 6, 7, 8} (see Figure 7) it is possible that only one of {wiw
0
3 , wiw

0
4} appears

in G, so we use dotted lines to label the edges wiw
0
3 and wiw

0
4. And we use dotted

edges for {w′
iw

0
5, w

′
iw

0
6} for the same reason in Figure 7.

Case 4. For any pair of vertices w, w′ of type II in S there is a proper 2-coloring

(w,w′)-path such that all edges except the first and the last ones of this path are

contained in G[D′].

At first, we illustrate that there is a proper path between each pair of ver-

tices in {w5, w6, w7, w8, w
′
5, w

′
6, w

′
7, w

′
8}. If w5w

0
3 ∈ G, as depicted in Figure 7 (1),

w5u1v2upw6, w5u1v2umw7, w5u1v2u|X|w8, w5u1v3u3v1w
′
5, w5w

0
3v1u3vgw

′
6, w5w

0
3v1

u3vjw
′
7 and w5w

0
3v1u3v|Y |w

′
8 are, respectively, proper (w5, w6), (w5, w7), (w5, w8),

(w5, w
′
5), (w5, w

′
6), (w5, w

′
7) and (w5, w

′
8)-paths. Otherwise, there is a vertex

like w0
4 (as depicted in Figure 7 (1)) such that w5w

0
4 ∈ G. Thus, w5u1v2upw6,

w5u1v2umw7, w5u1v2u|X|w8, w5u1v3u3v1w
′
5, w5w

0
4vq(=vg)w

′
6 or w5w

0
4vqu1v1u2vgw

′
6,

w5w
0
4vq(=vj)w

′
7 or w5w

0
4vqu1v1u2vjw

′
7, and w5w

0
4vq(=v|Y |)w

′
8 or w5w

0
4vqu1v1u2

v|Y |w
′
8 are proper (w5, w6), (w5, w7), (w5, w8), (w5, w

′
5), (w5, w

′
6), (w5, w

′
7) and

(w5, w
′
8)-paths, respectively. For any other pair of vertices in {w5, w6, w7, w8, w

′
5, w

′
6,

w′
7, w

′
8}, one can find proper paths in the same way.

Additionally, we need to show that for two vertices w, w′ which both are like wi

or w′
i, 5 6 i 6 8, there is a proper (w,w′)-path. Take the case when w, w′ are both

like w5 as an example. Suppose ww
0, ww′ 0 ∈ G and the edge coloring is defined
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w
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w
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w
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Figure 7. Proper 2-coloring for edges between vertices of type II in S and D
′.

as c, where w0, w′ 0 ∈ D′ \ V (D). Then ww0v1u2v2u1w
′ or ww0v2u1w

′ is a proper

(w,w′)-path in G.

By verifying the proper paths above between any pair of vertices of type II in S, we

obtain a direct observation that there is a proper path under the coloring c between

any pair of vertices of type II in S such that all edges except the first ones and the

last ones in these proper paths are contained in G[D′]. And this implies the result

in Case 4.

Case 5. For any pair of vertices w,w′ of type I and II in S, respectively, there is a

proper 2-coloring (w,w′)-path which does not contain any (D′ \ V (D), V (D))-edge.

As depicted in Figure 8, {w1, w2, w3, w4, w
′
1, w

′
2, w

′
3, w

′
4, w

1
1 , w

1
2 , w

1
3 , w

1
4 , w

1
5, w

1
6} are

all distinct classes vertices of type I in S, where {w1
1}, {w

1
2, w

1
3}, {w

1
4} and {w1

5 , w
1
6}
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are, respectively, singular vertices in shapes (c), (b), (d) and (a). In addition,

{w5, w6, w7, w8} are all vertices of distinct classes with type II in S. Here, we need

to check that there is a proper (w,w′)-path for any w ∈ {w1, w2, w3, w4, w
′
1, w

′
2, w

′
3,

w′
4, w

1
1, w

1
2 , w

1
3 , w

1
4 , w

1
5 , w

1
6} and w′ ∈ {w5, w6, w7, w8}. If w = w1, then w1u1w5,

w1w
′
1v1u1v2urw6, w1w

′
1v1u1v2usw7 and w1w

′
1v1u1v2u|X|w8 are proper (w,w5),

(w,w6), (w,w7) and (w,w8)-paths, respectively. If w = w4, then w4urv2u1w5 (if

w4ur ∈ G) or w4usv2u1w5 (if w4us ∈ G), w4w
′
4vg(or vt)urw6, w4w

′
4vg(or vt)usw7 and

w4w
′
4vg(or vt)u|X|w8 are proper (w,w5), (w,w6), (w,w7) and (w,w8)-paths, respec-

tively. If w = w1
1 , then w1

1wviwuj
ujviu1w5, w

1
1u1v2urw6, w

1
1u1v2usw7, w

1
1u1v2usw7

and w1
1u1v2u|X|w8 are proper (w,w5), (w,w6), (w,w7) and (w,w8)-paths, respec-

tively. With similar analysis, we can find proper paths between other pairs of vertices

and as a direct observation, these paths do not contain any (D′ \V (D), V (D))-edge.

D
u|X|

v|Y |

u1

v1

u2

v2
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w1

w3w2
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w
′
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w
′
3 w

′
2

w
′
4
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vt

w8

w5

w
0

1
w

0

2

w
0

3

w
0

4

w
1

1

w
1

2

w6

w
1

3

w7

w
1

4
w

1

5
w

1

6

Figure 8. Proper 2-coloring for edges between vertices of types I and II in S.

Case 6. For any pair of vertices w ∈ S and w′ ∈ D′, there is a proper 2-coloring

(w,w′)-path such that all edges except the first edge of this proper path are contained

in G[D′].

Now we give proper (w,w′)-paths for any w ∈ S of type I and w′ ∈ D′ first.

As depicted in Figure 6 (0), w1u1, w1u1v1ui, 2 6 i 6 |X |, i 6= s or i 6= |X |,

w1u1v1, w1u1v1u2vj , 2 6 j 6 |Y |, w1u1w
0
1 , w1u1v1usw

0
2 , w1u1v1u2v2w

0
3 and

w1u1v1u2v|Y |w
0
4 are proper (w1, X), (w1, Y ) and (w1, D

′ \V (D))-paths, respectively.

If w = w4, then w4us(or u|X|)v2u1, w4us (or u|X|), w4us(or u|X|)v2u1v1ui, 2 6

i 6 |X |, w4us(or u|X|)v2u1v1, w4us(or u|X|)vj , 2 6 j 6 |Y |, w4us(or u|X|)v2u1w
0
1 ,

w4us(or u|X|v2u1v1us)w
0
2 , w4us(or u|X|)v2w

0
3 and w4us(or u|X|)v|Y |W

0
4 are, respec-

tively, proper (w4, X), (w4, Y ) and (w4, D
′ \ V (D))-paths. Through the same way

we can find proper (w2, D
′), (w3, D

′), (w′
1, D

′), (w′
2, D

′), (w′
3, D

′) and (w′
4, D

′)-paths

and all edges except the first ones of these proper paths are contained in G[D′]. This
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implies that we can also find proper (w0, D
′)-paths, when w0 is a singular vertex of

shape (a) (or (b), (c), (d)) in similar way as that for w′
2 (or w3, w2, w

′
3).

Next we will give proper (w,w′)-paths for any w ∈ S of type II and w′ ∈ D′.

As depicted in Figure 7 (1), w5u1, w5u1v2ui, 2 6 i 6 |X |, w5u1v2u2v1, w5u1vj ,

2 6 j 6 |Y |, w5u1v2u2w
0
1 , w5u1v2umw0

2 , w5u1v2u2v1w
0
3 and w5u1vqw

0
4 are proper

(w5, X), (w5, Y ) and (w5, D
′\V (D))-paths, respectively. If w = w8, then w8u|X|v2u1,

w8u|X|, w8u|X|v2u1v1ui, 2 6 i < |X |, w8u|X|v2u1v1, w8u|X|vj , 2 6 j 6 |Y |,

w8u|X|v2u1w
0
1 , w8u|X|v2u1v1upw

0
2 , w8u|X|v2w

0
3 and w8u|X|vlw

0
4 are proper (w8, X),

(w8, Y ) and (w8, D
′ \ V (D))-paths, respectively. Similarly, we can find proper

(w6, D
′), (w7, D

′), (w′
5, D

′), (w′
6, D

′), (w′
7, D

′) and (w′
8, D

′)-paths and all edges ex-

cept the first ones of these proper paths are contained in G[D′], which implies the

result in Case 6.

Therefore, c is indeed a proper 2-coloring of the graph G. �

Corollary 4.1. Let G = (X,Y ) be a connected noncomplete bipartite graph with

minimum degree δ(G) > 2 and diam(G) 6 4. Then pc(G) = 2.

P r o o f. If G is 2-connected, then Lemma 3.2 implies the result. Otherwise,

we can assume that v0 ∈ X be a cut vertex of G and G1, G2, . . . , Gt, t > 2 be

the connected components of G \ {v0}, where Gi = (Xi, Yi), Xi ⊆ X, Yi ⊆ Y . It

follows that Yi 6= ∅, where 1 6 i 6 t. Also, Xi 6= ∅, 1 6 i 6 t since δ(G) > 2.

In addition, diam(G) 6 4 implies that v0 is adjacent to all vertices of
t
⋃

i=1

Yi. For

each vertex v ∈ Xi, NG\{v0}(v) ⊆ Yi and |NG\{v0}(v)| = |NG(v)| > 2. Hence, the

star G
[

{v0}
t
⋃

i=1

Yi

]

is a dominating set of the bipartite graph G and Theorem 4.1

suggests that pc(G) = 2. �
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