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KYBER NET IKA — VOLUM E 5 3 ( 2 0 1 7 ) , NUMBE R 5 , P AGES 8 2 0 – 8 3 7

ALTERNATE CHECKING CRITERIA FOR REACHABLE
CONTROLLABILITY OF RECTANGULAR DESCRIPTOR
SYSTEMS

Vikas Kumar Mishra and Nutan Kumar Tomar

Contrary to state space systems, there are different notions of controllability for linear time
invariant descriptor systems due to the non smooth inputs and inconsistent initial conditions.
A comprehensive study of different notions of controllability for linear descriptor systems is
performed. Also, it is proved that reachable controllability for general linear time invariant
descriptor system is equivalent to the controllability of some matrix pair under an assumption
milder than impulse controllability. The whole theory has been developed by coining two new
decompositions for system matrices. Examples are given to illustrate the presented theory.

Keywords: descriptor systems, controllability, reachable controllability
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1. INTRODUCTION

Consider linear time-invariant continuous descriptor systems of the form

Eẋ(t) = Ax(t) +Bu(t), (1)

where E,A ∈ Rm×n, and B ∈ Rm×r. The vectors x(t) ∈ Rn and u(t) ∈ Rr represent
the semistate vector and the control (input) vector for the system (1), respectively. The
set of systems of the form (1) is denoted by Σm,n,r. A square system [E A B] ∈ Σn,n,r
is called regular if there exists λ ∈ C such that the matrix pencil (λE −A) is invertible,
where C denotes the set of complex numbers. A square system [E A B] ∈ Σn,n,r is
called state space if the matrix E = In, the identity matrix of size n.

Descriptor systems arise naturally in various real world applications [5, 6, 10, 22, 23,
24, 31] as these are general enough to describe the intrinsic properties of underlying
physical systems. However, the analysis of descriptor systems is more delicate than
state space systems in the sense that the solutions may have impulses if the input is
not sufficiently smooth or the initial condition is not suitably chosen. These properties
give rise to the two important concepts for descriptor systems, viz. index and consistent
initialization. These concepts also led to different kind of controllability properties for
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descriptor systems. See the works [9, 11, 13, 14, 29, 30] for regular descriptor systems and
[1, 2, 17, 25, 32] for general descriptor systems in context of solvability and controllability.

Now, we recall the following concepts which are useful in the development of the
paper. See [1] for details.

Definition 1.1. A trajectory (x, u) : R → Rn × Rr is said to be solution of (1) if and
only if it belongs to the behavior B[E A B] of (1) that is defined as follows:

B[E A B] := {(x, u) ∈W 1,1
loc (R,Rn)× L1

loc(R,Rr) : (x, u) satisfies (1)
for almost all t ∈ R}, (2)

where
L1
loc(R,Rr) := Locally Lebesgue integrable functions u : R→ Rr,

and
W 1,1
loc (R,Rn) := {x : R→ Rn : x, ẋ ∈ L1

loc(R,Rn)}.

Definition 1.2. The set of all consistent initial vectors for the system (1) is defined as
follows

V = {x0 ∈ Rn : ∃ (x, u) ∈ B[E A B] : x(0) = x0}.

Definition 1.3. Two systems [Ei Ai Bi] ∈ Σm,n,r, i = 1, 2, are called restricted system
equivalent (r.s.e.) if and only if there exist invertible matrices W ∈ Rm×m and T ∈ Rn×n
such that [

λE1 −A1 B1

]
= W

[
λE2 −A2 B2

] [T 0
0 Ir

]
.

To analyze various controllability concepts for any system [E A B] ∈ Σm,n,r, we write
the following conditions [1, 25].

(C1) rank
[
λE −A B

]
= rank

[
E A B

]
, ∀ λ ∈ C;

(C2) rank
[
λE −A B

]
= rankR(s)

[
sE −A B

]
, ∀ λ ∈ C, where RHS (right-hand

side) represents the maximum rank of the matrix over R(s): the quotient field of
the ring of polynomials with coefficients in R;

(C3) rank
[
E B

]
= rank

[
E A B

]
;

(C4) rank
[
E AV∞ B

]
= rank

[
E A B

]
, where V∞ spans the null space of E;

(C5) rank
[
E 0 0
A E B

]
= rank

[
E A B

]
+ rankE.

The following comments on the above conditions are warrant.

• Conditions (C1) and (C3) hold if and only if the system is completely controllable,
that is, ∃ T > 0 ∀ x0, xf ∈ Rn ∃ (x, u) ∈ B[E A B] : x(0) = x0 and x(T ) = xf .

• Conditions (C1) and (C4) hold if and only if the system is strongly controllable,
that is, ∃ T > 0 ∀ x0, xf ∈ Rn ∃ (x, u) ∈ B[E A B] : Ex(0) = Ex0 and Ex(T ) =
Exf .
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• Condition (C2) holds if and only if the system is reachable controllable (R-controllable),
that is, ∀ x0, xf ∈ V ∃ T > 0 ∃ (x, u) ∈ B[E A B] : x(0) = x0 and x(T ) = xf .

• Condition (C3) holds if and only if the system is controllable at infinity, that is,
∀ x0 ∈ Rn ∃ (x, u) ∈ B[E A B] : x(0) = x0.

• Condition (C4) holds if and only if the system is impulse controllable (I-controllable),
that is, ∀ x0 ∈ Rn ∃ (x, u) ∈ B[E A B] : Ex(0) = Ex0.

One or more of the above conditions have been assumed in designing some appropriate
controllers such that the closed loop system satisfies certain properties [4, 7, 15, 20, 21,
26]. In case the system (1) is regular, the term rank

[
E A B

]
appeared in conditions

(C1) – (C5) is replaced by n, i. e. the order of the matrix E or A [13, 14]. Furthermore,
for regular descriptor systems conditions (C1) and (C2) turn out to be the same and are
equivalent to the reachable controllability of the system [30]. But, if the system (1) is not
regular, conditions (C1) and (C2) are obviously different. To the best of our knowledge,
the condition (C2) first appeared in the article [1] where it is proved to be equivalent to
the reachable controllability of the descriptor system (1). It should be noted that in [1]
the reachable controllability and behavioral controllability are the same concepts.

Now, the following questions arise naturally for any general system [E A B] ∈ Σm,n,r:
(i) Is (C1) weaker or stronger than (C2)? (ii) When do conditions (C1) and (C2) co-
incide? Such questions are answered in this article by developing a new numerically
reliable decomposition of the system matrices. In establishing these results, we have
proven a novel result on impulse controllability of the system. Thereafter, we study
R-controllability. By using the Weierstrass canonical form [16], it can be checked easily
that for any regular descriptor system, R-controllability is equivalent to the controllabil-
ity of some matrix pair. We prove analogous result for any general descriptor system (1)
by coining another numerically reliable decomposition of system matrices under some
mild condition. Since the provided condition is in terms of the controllability of matrix
pair, it may be useful to obtain other necessary and sufficient conditions for various con-
trol applications. In this direction, it is important to mention the work of Stefanovski
where optimal control problems for descriptor systems have been transformed to opti-
mal control problems for state space systems [28]. In summary, we propose two novel
decompositions for the system matrices. The first is used to derive a result on impulse
controllability and the second on R controllability.

The rest of the paper is organized as follows: In the next section, we recall some
simple properties of matrix theory. Section 3 presents a mathematical discussion on the
conditions (C1) – (C5). A new decomposition of system matrices is proposed and is used
in deriving some equivalences for different types of controllability properties. Section 4
is devoted to the study of R-controllability of descriptor systems [E A B] ∈ Σm,n,r.
Examples are provided to illustrate the effectiveness of the developed theory in Section 5.
Section 6 concludes the paper.

2. PRELIMINARY RESULTS FROM MATRIX THEORY

Throughout the development of the presented theory, we make frequent use of the sin-
gular value decomposition (SVD) of a matrix T ∈ Rm×n of rank α, which is given
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as

T = U

[
ΣT 0
0 0

]
V T ,

where U ∈ Rm×m and V ∈ Rn×n are orthogonal matrices and ΣT ∈ Rα×α is a diagonal
positive definite matrix. Here, V T denotes the transpose of the matrix V .

Apart from the SVD of the matrices, the following simple properties of matrix theory
will be incredibly employed in the subsequent development of the paper.

(P1) The rank of a matrix is unaltered if it is pre- and/or post- multiplied by an invert-
ible matrix.

(P2) Let A, B, and C be any matrices of compatible dimensions. Then, the following
inequality holds

rank
[
A B
0 C

]
≥ rank(A) + rank(C).

Moreover, the equality holds if A is full row rank and/or C is full column rank.

(P3) Let A ∈ Rm×n with rankA = α. Then there exist orthogonal matrices P1 ∈ Rm×m
and Q1 ∈ Rn×n such that

P1A =
[
Σα
0

]
and AQ1 =

[
Σ̂α 0

]
,

where Σα ∈ Rα×n is a full row rank matrix and Σ̂α ∈ Rm×α is a full column rank
matrix. Matrices P1 and Q1 may be calculated using the SVD of the matrix A.
Matrices P1 and Q1 are called row compression and column compression of the
matrix A, respectively.

The discussion on matrix theory presented in this section may be looked in [3, 18, 27].

3. DISCUSSION ON CONDITIONS (C1) – (C5)

The following facts are important for subsequent discussion.

Fact 1. Conditions (C4) and (C5) are equivalent.

Fact 2. Condition (C3) ⇒ condition (C4).

Fact 3. Condition (C1) ⇒ condition (C2).

The proof of Fact 1 is a straightforward generalization of the proof given for regular
descriptor systems in [14, Section 4.5.3]. The proofs of Fact 2 and Fact 3 are consequences
of the following inequalities, respectively.

rank
[
E B

]
≤ rank

[
E AV∞ B

]
≤ rank

[
E A B

]
. (3)

rank
[
λE −A B

]
≤ rankR(s)

[
sE −A B

]
≤ rank

[
E A B

]
, ∀ λ ∈ C. (4)

The following example indicates that the converse of the Fact 3 need not be true in
general.



824 V.KUMAR MISHRA AND N.KUMAR TOMAR

Example 3.1. Let the following matrices represent the system (1)

E =

1
0
0

 , A =

0
1
0

 , and B =

0
0
1

 . (5)

It can be checked that condition (C2) holds but (C1) does not hold.

In order to derive the sufficient condition under which condition (C2) implies condi-
tion (C1), we need to develop some background material.

Theorem 3.2. Consider the system [E A B] ∈ Σm,n,r. Then, there exist orthogonal
matrices P ∈ Rm×m, Q ∈ Rn×n and U ∈ Rr×r such that

PEQ =

n0 h0 g


ΣE 0 0 n0

0 0 0 v0

0 0 0 h0

0 0 0 d

, PBU =

v0 f


B11 B12 n0

ΣB2 0 v0

0 0 h0

0 0 d

, and

PAQ =

n0 h0 g


A1 A21 A22 n0

A31 A411 A412 v0

A321 ΣA42 0 h0

A322 0 0 d

.

Here, matrix partitions are compatible. The matrices ΣE , ΣB2 , and ΣA42 are diagonal
positive definite matrices. Moreover, n0 + h0 + g = n and n0 + v0 + h0 + d = m.

P r o o f . Let rankE = n0. Then, there exist orthogonal matrices P1 ∈ Rm×m and
Q1 ∈ Rn×n such that

P1EQ1 =

n0 e[ ]
ΣE 0 n0

0 0 v
, P1AQ1 =

n0 e[ ]
A1 A2 n0

A3 A4 v
, and P1B =

r[ ]
B1 n0

B2 v
.

Here, n0 + e = n and n0 + v = m.
Let us assume that rankB2 = v0. Then, there exist orthogonal matrices P2 ∈ Rv×v and
Q2 ∈ Rr×r such that

P2B2Q2 =
[
ΣB2 0

0 0

]
.

This implies that for

P̃2 =
[
In0 0
0 P2

]
P1,
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the following hold:

P̃2EQ1 =

n0 e[ ]ΣE 0 n0

0 0 v0

0 0 h

, P̃2BQ2 =

v0 f[ ]
B11 B12 n0

ΣB2 0 v0

0 0 h

, and

P̃2AQ1 =

n0 e[ ]A1 A2 n0

A31 A41 v0

A32 A42 h

.

Here,

B1Q2 =
[
B11 B12

]
, P2A3 =

[
A31

A32

]
, and P2A4 =

[
A41

A42

]
.

Also, v0+h = v, v0+f = r and n0+v0+h = m. Again, let us assume that rankA42 = h0.
Then, there exist orthogonal matrices P3 ∈ Rh×h and Q3 ∈ Re×e such that

P3A42Q3 =
[
ΣA42 0

0 0

]
.

Now, we obtain the desired decomposition by setting the matrices P , Q, and U as
follows

P =

In0 0 0
0 Iv0 0
0 0 P3

 P̃2, Q = Q1

[
In0 0
0 Q3

]
, and U = Q2,

with the following decompositions,

A2Q3 =
[
A21 A22

]
, A41Q3 =

[
A411 A412

]
, and P3A32 =

[
A321

A322

]
.

�
Theorem 3.2 is proved constructively by using the SVD of system matrices. Hence,

the above theorem not only presents an existence result on the decomposition but the
decomposition is also computable in a numerically efficient way. Theorem 3.2 as well
as Theorem 4.1 (given in next Section) seem to be an extension of the works of Bunse-
Gerstner et al. [4] to rectangular systems. In [4], a repetitive number of SVDs for square
system matrices have been performed to get decompositions to regularize the system.
But, in the present work, we have performed limited number of SVDs for rectangular
system matrices in a different fashion than [4] to get the desired decompositions for our
special purposes in particular to analyze condition (C2).

The next result provides an equivalent condition to the condition (C5).

Theorem 3.3. The system is impulse controllable if and only if the block matrix A322

is identically zero.
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P r o o f . Using (P1), condition (C5) is equivalent to the following

rank
[
PEQ 0 0
PAQ PEQ PBU

]
= rank

[
PEQ PAQ PBU

]
+ rankE.

Applying Theorem 3.2, we obtain

rank



ΣE 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
A1 A21 A22 ΣE 0 0 B11 B12

A31 A411 A412 0 0 0 ΣB2 0
A321 ΣA42 0 0 0 0 0 0
A322 0 0 0 0 0 0 0



= rank


ΣE 0 0 A1 A21 A22 B11 B12

0 0 0 A31 A411 A2
412 ΣB2 0

0 0 0 A321 ΣA42 0 0 0
0 0 0 A322 0 0 0 0

+ rankE,

which is equivalent to

A322 = 0, (using (P2)).

Hence, the theorem is proved. �

Remark 3.4. The above theorem provides a novel criterion to check the impulse con-
trollability of the system (1). It should also be noted that the matrix A322 being iden-
tically zero includes the possibility of the matrix being empty and this convention will
be used throughout the paper.

The next result presents a sufficient condition under which both the conditions (C1)
and (C2) are equivalent.

Theorem 3.5. If condition (C5) holds, then condition (C2) implies condition (C1).

P r o o f . It is sufficient to prove that

rank
[
E 0 0
A E B

]
− rankE = rankR(s)

[
sE −A B

]
. (6)
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Applying Theorem 3.2 and Theorem 3.3, the RHS of (6) becomes

rankR(s)


sΣE −A1 −A21 −A22 B11 B12

−A31 −A411 −A412 ΣB2 0
−A321 −ΣA42 0 0 0
−A322 0 0 0 0


= rankR(s)

sΣE −A1 +B11Σ−1
B2
A31 −A21 +B11Σ−1

B2
A411 B 0 B12

−A31 −A411 −A412 ΣB2 0
−A321 −ΣA42 0 0 0


= v0 + rankR(s)

[
sΣE −A1 +B11Σ−1

B2
A31 −A21 +B11Σ−1

B2
A411 B B12

−A321 −ΣA42 0 0

]
= v0 + h0 + rankR(s)

[
sΣE − A B B12

]
, (using (P2))

= v0 + h0 + n0,

where A = A1 − B11Σ−1
B2
A31 − A21Σ−1

A42
A321 + B11Σ−1

B2
A411Σ−1

A42
A321 and B = −A22 +

B11Σ−1
B2
A412. Again, applying Theorem 3.2, the LHS of (6) turns out to be v0 +h0 +n0.

Hence the theorem is proved. �

Remark 3.6. In view of Fact 2, it is clear that when condition (C3) holds, again the
conditions (C1) and (C2) are equivalent.

In summary, in this section, both the questions (i) – (ii) raised in the Introduction
section have been answered.

4. REACHABLE CONTROLLABILITY

First, we present the following theorem on the decomposition of system matrices which
will be used in deriving the main result on R-controllability.

Theorem 4.1. Consider the system [E A B] ∈ Σm,n,r. Then, there exist orthogonal
matrices M ∈ Rm×m and N ∈ Rn×n such that

MEN =

s0 q0 k0


E11 E121 E122 r0

ΣE2 0 0 s0

0 0 0 q0

0 0 0 q1

, MB =

r


B1 r0

0 s0

0 q0

0 q1

, and

MAN =

s0 q0 k0


A1
1 A1

21 A1
22 r0

A2
1 A2

21 A2
22 s0

A2
31 ΣA2

4
0 q0

A2
32 0 0 q1

.

where the matrices ΣE2 and ΣA2
4

are diagonal positive definite while matrix B1 has full
row rank. Moreover, s0 + q0 + k0 = n and r0 + s0 + q0 + q1 = m.
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P r o o f . Let rankB = r0. Then, there exists, using (P3), an orthogonal matrix M1 ∈
Rm×m such that

M1E =

n[ ]
E1 r0

E2 s
, M1A =

n[ ]
A1

r0

A2
s
, and M1B =

r[ ]
B1 r0

0 s
,

where r0 + s = m. Let us assume that rankE2 = s0. Then, there exist orthogonal
matrices M2 ∈ Rs×s and N2 ∈ Rn×n such that

M2E2N2 =
[
ΣE2 0

0 0

]
and M2A

2N2 =
[
A2

1 A2
2

A2
3 A2

4

]
.

This implies that for

M̃2 =
[
Ir0 0
0 M2

]
M1,

the following hold:

M̃2EN2 =

s0 k[ ]
E11 E12 r0

ΣE2 0 s0

0 0 q

, M̃2B =

r[ ]
B1 r0

0 s0

0 q

, and

M̃2AN2 =

s0 k[ ]A1
1 A1

2 r0

A2
1 A2

2 s0

A2
3 A2

4 q

.

Here,
E1N2 =

[
E11 E12

]
and A1N2 =

[
A1

1 A1
2

]
.

Also s0 + k = n and r0 + s0 + q = m. Again, let us assume that rankA2
4 = q0. Then,

there exist orthogonal matrices M3 ∈ Rq×q and N3 ∈ Rk×k such that

M3A
2
4N3 =

[
ΣA2

4
0

0 0

]
.

Now, we obtain the desired decomposition by setting the matrices M and N as follows

M =

Ir0 0 0
0 Is0 0
0 0 M3

 M̃2 and N = N2

[
Is0 0
0 N3

]
,

with the following decompositions

M3A
2
3 =

[
A2

31

A2
32

]
, A1

2N3 =
[
A1

21 A1
22

]
, A2

2N3 =
[
A2

21 A2
22

]
, and E12N3 =

[
E121 E122

]
.

�
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Before we relate the R-controllability of general descriptor system to some suitably
designed matrix pair, the following basic definition is recalled.

Definition 4.2. [3, 8, 19] A matrix pair (A,B) is controllable if and only if

rank
[
λI −A B

]
= p, ∀ λ ∈ C, (7)

where p is the order of square matrix A.

Exploiting Theorem 4.1 and Definition 1.3, the system (1) is r.s.e. to the following
system [

E11 E121 E122

]
ẋ =

[
A1

1 A1
21 A1

22

]
x+B1u (8a)

ΣE2 ẋ1 = A2
1x1 +A2

21x2 +A2
22x3 (8b)

0 = A2
31x1 + ΣA2

4
x2 (8c)

0 = A2
32x1, (8d)

where N−1x =

x1

x2

x3

 .
Systems (8b) and (8c) can equivalently be written as:

ẋ1 = Ax1 + Bx3, (9)

where A = Σ−1
E2
A2

1 − Σ−1
E2
A2

21Σ−1
A2

4
A2

31 and B = Σ−1
E2
A2

22. Note that A ∈ Rs0×s0 and

B ∈ Rs0×k0 .
Now, we present the main theorem on R-controllability of the system (1).

Theorem 4.3. If the block matrix A2
32 in Theorem 4.1 is identically zero, then con-

trollability of the matrix pair (A,B) is equivalent to the R-controllability of the system
(1).

P r o o f . Applying Theorem 4.1 to the condition (C2), we obtain

rank


λE11 −A1

1 λE121 −A1
21 λE122 −A1

22 B1

λΣE2 −A2
1 −A2

21 −A2
22 0

−A2
31 −ΣA2

4
0 0

−A2
32 0 0 0



= rankR(s)


sE11 −A1

1 sE121 −A1
21 sE122 −A1

22 B1

sΣE2 −A2
1 −A2

21 −A2
22 0

−A2
31 ΣA2

4
0 0

−A2
32 0 0 0

 ,
which is, using (P2), the same as

rank
[
λΣE2 −A2

1 −A2
21 −A2

22

−A2
31 −ΣA2

4
0

]
= rankR(s)

[
sΣE2 −A2

1 −A2
21 −A2

22

−A2
31 −ΣA2

4
0

]
, (10)
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which is, again using (P2), equivalent to

rank
[
λIs0 − Σ−1

E2
A2

1 + Σ−1
E2
A2

21Σ−1
A2

4
A2

31 −Σ−1
E2
A2

22

]
= s0. (11)

In the notations of system (9),

rank
[
λIs0 −A B

]
= s0. (12)

This completes the proof of the theorem. �

The above theorem relates the R-controllability of the system (1) to the controllability
of the matrix pair (A,B). We now recall all the computational steps required to find
the matrix pair (A,B) in the form of the following algorithm.

Algorithm 1 Computational steps to find the matrix pair (A,B).

Step 1. Convert the given system into the form of system (8) using the following sub-
steps (based on the proof of Theorem 4.1)

(i) Obtain the matrices
[
E1

E2

]
and

[
A1

A2

]
in view of converting the matrix B into full row

rank matrix.

(ii) Performing the SVD of the matrix E2, find the matrices ΣE2 ,
[
A2

1 A2
2

A2
3 A2

4

]
, and[

A1
1 A2

1

]
.

(iii) Performing the SVD of the matrix A2
4, calculate the matrices ΣA2

4
,
[
A2

31

A2
32

]
, and[

A2
21 A2

22

]
.

Step 2. The desired matrix pair (A,B) is given by:

A = Σ−1
E2
A2

1 − Σ−1
E2
A2

21Σ−1
A2

4
A2

31,

B = Σ−1
E2
A2

22.

Now, we show that the condition used as the assumption of Theorem 4.3 is milder
than condition (C5).

Theorem 4.4. The condition (C5) implies that the block matrix A2
32 is identically zero

in Theorem 4.1.
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P r o o f . Applying Theorem 4.1 to the condition (C5), we obtain that

rank



E11 E121 E122 0 0 0 0
ΣE2 0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
A1

1 A1
21 A1

22 E11 E121 E122 B1

A2
1 A2

21 A2
22 ΣE2 0 0 0

A2
31 ΣA2

4
0 0 0 0 0

A2
32 0 0 0 0 0 0



= rank


E11 E121 E122 A1

1 A1
21 A1

22 B1

ΣE2 0 0 A1
1 A1

21 A1
22 0

0 0 0 A2
31 ΣA2

4
0 0

0 0 0 A2
32 0 0 0

+ rankE,

which is, using (P2), the same as

s0 + rankE122 = rankE + rankA2
32,

which is equivalent to

s0 + rankE122 = s0 + rank
[
E121 E122

]
+ rankA2

32,

⇒ A2
32 = 0.

Hence, the theorem is proved. �

Remark 4.5. The converse of the above theorem need not be true. See Example 5.2
and Example 5.3 in the next Section. It can be seen that the converse holds if either block
matrix E121 is identically zero or the columns of the matrix E121 are linear combinations
of the columns of the matrix E122.

5. ILLUSTRATING EXAMPLES

Example 5.1. Consider an electrical LR circuit as shown in Fig.1. Let I1 and I2 denote
the currents flowing in the clockwise direction in first and second loop, respectively. Let
Li and Ri, for i = 1, 2, denote the inductances and resistances, respectively. The AC
source voltage is denoted by us. Moreover, we denote by VLi and VRi , for i = 1, 2, the
voltages across the inductors and resistors, respectively.

L1

R1us

L2

R2

Fig. 1. LR circuit.
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Applying basic circuit theory, we get the following equations

L1İ1 = VL1 , (13a)
0 = VR1 −R1I1 +R1I2, (13b)
0 = uS − VL1 − VR1 , (13c)

L2İ2 = VL2 , (13d)
0 = VR2 −R2I2, (13e)
0 = VR1 − VL2 − VR2 , (13f)
0 = uS − VL1 − VL2 − VR2 . (13g)

The system (13) can be written in the form of (1) by taking

E =



L1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 L2 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


, A =



0 0 1 0 0 0
−R1 R1 0 1 0 0

0 0 −1 −1 0 0
0 0 0 0 1 0
0 −R2 0 0 0 1
0 0 0 1 −1 −1
0 0 −1 0 −1 −1


,

B =



0
0
1
0
0
0
1


, x(t) =


I1
I2
VL1

VR1

VL2

VR2

 , and u = us.

For numerical purposes, we take L1 = L2 = 1 unit and R1 = R2 = 1 unit. Now,
applying Theorem 3.2, we obtain

P =



1 0 0 0 0 0 0
0 0 0 −1 0 0 0
0 0 0.7071 0 0 0 0.7071
0 −0.2689 0.3776 0 0.2689 −0.7551 −0.3776
0 0.7071 0 0 0.7071 0 0
0 0.6540 0.1553 0 −0.6540 −0.3105 −0.1553
0 0 −0.5774 0 0 −0.5774 0.5774


,

Q =


1 0 0 0 0 0
0 −1 0 0 0 0
0 0 0 0 0 −1
0 0 −0.6139 0.7071 0.3508 0
0 0 0.4961 0 0.8682 0
0 0 0.6139 0.7071 −0.3508 0

 , and U = 1. (14)
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Also,

PEQ =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


, PBU =



0
0

1.4142
0
0
0
0


,

and PAQ =



0 0 0 0 0 −1
0 0 −0.4961 0 −0.8682 0
0 0 −0.3508 −1 −0.6139 1.4142

0.2689 0.5378 2.2830 0 0 0
−0.7071 0 0 1 0 0
−0.6540 −1.3080 0 0 0.5365 0

0 0 0 0 0 0


. (15)

Notice that the matrix A322 is a zero matrix. Hence, the system (13) is I-controllable by
Theorem 3.3. It can also be verified that system (13) satisfies condition (C5). Moreover,
It can be checked that system (13) is R-controllable by utilizing Theorems 4.1 and 4.3.

This is because the desired system (9) is given by A =
[
0 0
1 −2

]
and B =

[
−1
0

]
is

controllable. Note that here Theorem 4.4 ensures that the assumption required for the
Theorem 4.3 is satisfied.

Example 5.2. Let the system (1) be represented by the following matrices

E =


1 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0

 , A =


1 0 0 1
1 2 3 1
2 0 0 0
0 4 0 2
1 2 3 1

 , and B =


0 1
0 1
1 0
0 0
0 0

 . (16)

Clearly, condition (C5) is not satisfied. Applying Theorem 4.1, we obtain

M =


0.7071 0.7071 0 0 0

0 0 1 0 0
−0.7071 0.7071 0 0 0

0 0 0 −0.8156 −0.5786
0 0 0 0.5786 −0.8156

 and

N =


−0.7071 −0.2223 −0.6712 0

0 −0.8491 0.2812 −0.4472
0.7071 −0.2223 −0.6712 0

0 −0.4245 0.1406 0.8944

 . (17)
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Also,

MEN =


0 −0.3144 −0.9493 0
0 0 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 , MB =


0 1.4142
1 0
0 0
0 0
0 0

 ,

and MAN =


0.5000 −2.5872 −1.7766 0.6325
−1.4142 −0.4447 −1.3425 0
1.5000 −1.6724 −1.0262 −0.6325
−0.8183 5.2053 0 0
−1.1534 0 2.4301 0

 . (18)

Notice that the matrix A2
32 is an empty matrix of order 0× 1 and thus satisfying the

requirement of the Theorem 4.3. Further, for system (9), the matrices are as follows
A = 0.7500 and B = −0.6325 and clearly the system is controllable. Hence, by Theorem
4.3 the original system (18) is R-controllable.

Example 5.3. The present example is a prototype of constrained optimal control prob-
lem taken from the article [12]. The problem is to find an optimal control u(t) such that
a certain cost functional J(x(t), u(t)) is minimized, where x(t) is governed by

ẋ(t) = Kx(t) + Lu(t), (19)

with the path constraint
w = Mx(t) +Nu(t), (20)

where K, L, M and N are constant matrices and w is a constant vector. The equation
(19) and constraint (20) can be represented asI 0

0 I
0 0

[ẋ
ẇ

]
=

K 0
0 0
M −I

[x
w

]
+

L0
N

u, (21)

which is in the form of system (1). Therefore, an equivalent statement for the optimal
control problem is to find optimal control u(t) for the descriptor system (21) such that
the cost functional J(x(t), u(t)) is minimized.

Now, we apply our theory to check the controllability of the system (21). For numer-
ical purposes, we take

K =
[
1 2
3 4

]
, M =

[
1 0

]
, L =

[
1
0

]
, and N = 0. (22)

Then system (21) may be represented by (1) if we take

E =


1 0 0
0 1 0
0 0 1
0 0 0

 , A =


1 2 0
3 4 0
0 0 0
1 0 −1

 , and B =


1
0
0
0

 , (23)
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Clearly, condition (C5) is not satisfied. Applying Theorem 4.1, we obtain

M =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 and N =

0 0 1
0 1 0
1 0 0

 . (24)

Also,

MEN =


0 0 1
1 0 0
0 1 0
0 0 0

 , MAN =


0 2 1
0 0 0
0 4 3
−1 0 1

 , and MB =


1
0
0
0

 . (25)

Notice that the matrix A2
32 is an empty matrix of order 0 × 2 and thus satisfying

the requirement of Theorem 4.3. Further, for system (9), the matrices are as follows

A =
[
0 0
3 4

]
and B is an empty matrix of order 2× 0. Since the matrix B is empty, the

system (9) is not controllable implying that the given system (21) is not R-controllable
for numerical values as taken in (22).

6. CONCLUDING REMARKS

Various notions of controllability for general descriptor systems have been investigated.
In particular, we have studied the R-controllability of general descriptor systems which
has been less regarded in the existing literature. We have related the R-controllability
of general linear time-invariant descriptor systems to the controllability of a matrix pair
under some mild condition. Two numerically stable decompositions of system matrices
have been developed which played a vital role in developing the whole theory. Physical
as well as numerical examples are provided to illustrate the effectiveness of the presented
theory.
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