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DISTRIBUTED EVENT-TRIGGERED ALGORITHM
FOR OPTIMAL RESOURCE ALLOCATION
OF MULTI-AGENT SYSTEMS

Weiyong Yu, Zhenhua Deng, Hongbing Zhou and Xianlin Zeng

This paper is concerned with solving the distributed resource allocation optimization prob-
lem by multi-agent systems over undirected graphs. The optimization objective function is a
sum of local cost functions associated to individual agents, and the optimization variable sat-
isfies a global network resource constraint. The local cost function and the network resource
are the private data for each agent, which are not shared with others. A novel gradient-based
continuous-time algorithm is proposed to solve the distributed optimization problem. We take
an event-triggered communication strategy and an event-triggered gradient measurement strat-
egy into account in the algorithm. With strongly convex cost functions and locally Lipschitz
gradients, we show that the agents can find the optimal solution by the proposed algorithm
with exponential convergence rate, based on the construction of a suitable Lyapunov func-
tion. Finally, a numerical example is provided to demonstrate the effectiveness of the proposed
scheme.

Keywords: distributed optimization, event-triggered strategy, multi-agent systems, re-
source allocation

Classification: 37N40, 90C26, 93A14

1. INTRODUCTION

Recently, the distributed optimization problem of multi-agent systems has received con-
siderable attention in various areas for its broad application background, such as ma-
chine learning, sensor networks, smart grids, and many significant results have been
obtained (see [13, 14, 22, 18, 9]). Resource allocation is one of the important opti-
mization problems (see [7]). In particular, various distributed algorithms for resource
allocation optimization have been discussed in [1, 4, 11, 20]. For example, [1] considered
the network utility maximization problem and proposed a fast distributed dual-based
gradient method for solving the problem. Furthermore, [23] proposed a class of pro-
jected continuous-time distributed algorithms to solve resource allocation optimization
problems with local feasibility constraint.

In order to solve this distributed optimization problem, each agent needs to update
its protocol by frequently measuring its gradient information and exchanging its state
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information with its neighbors. However, in some practical situations, these agents may
have limited energy or capacity. In other words, people have to care about the cost of
the communication between agents and the measurement of the gradients of local cost
functions when we deal with distributed optimization problem. On the other hand, it
is well known that event-triggered strategy, which has drawn much attention (such as
[10, 17, 6, 12, 21]), provides an effective method in solving control problem with reducing
communication cost and computation burden in multi-agent systems for leader-following
or leaderless cases. Some results can be found in [2, 19, 3], where different distributed
event-triggered optimization algorithms were presented for different situations. However,
to the best of our knowledge, up to now, no result has been obtained for the reduction
of communication and measurement in the study of the distributed resource allocation
optimization problem.

The purpose of this paper is to design an algorithm to solve the distributed resource
allocation optimization problem by multi-agent systems concerning both neighboring
communication cost and gradient measurement/computation burden. The contributions
of this paper can summarized as follows. (i) Compared with the algorithm presented in
[23], we construct a distributed event-triggered optimization algorithm, where commu-
nication and gradient measurement are triggered by two different events, respectively.
Our algorithm can greatly reduce the costs of communication and gradient measure-
ment, which are supported by the simulation studies. (ii) Compared with the results of
[9], which proposed a class of distributed continuous-time algorithms with discrete-time
communication that solve network optimization problem, the proposed algorithm in this
paper can achieve the exact optimal solution with exponential convergence rate, while
the results of [9] only achieved a neighborhood of the optimal solution.

The reminder of this paper is organized as follows. In Section 2, our problem is
formulated with related preliminaries. Then the distributed gradient-based optimiza-
tion scheme is proposed and the convergence is proved in Section 3, while a simulation
example is given in Section 4. Finally, we give some concluding remarks in Section 5.

Notations: R and Rn represent the set of real numbers and the set of real n-
dimensional column vectors, respectively; In ∈ Rn×n is the identity matrix; 1n (or 0n)
denotes an n dimensional column vector whose components are all 1 (or 0); for a vector
or a matrix X,XT represents its transpose, and ‖ · ‖ represents the Euclidean norm
of a vector or the corresponding induced norm of a matrix; ⊗ denotes the Kronecker
product.

2. PRELIMINARIES AND PROBLEM STATEMENT

In this section, we provide some basic definitions on graph theory used in the paper and
introduce our research problem.

2.1. Graph theory

A weighted undirected graph G = (V, E , A) consists of a finite vertex set V = {1, . . . , N},
an edge set E ⊆ V ×V, and a weighted adjacency matrix A = [aij ] ∈ Rn×n with aij > 0
if (j, i) ∈ E and aij = 0 otherwise. An edge (j, i) represents that i, j can obtain each
other’s information. Ni = {j : (j, i) ∈ E} denotes the set of neighbors of agent i. A path
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is a sequence of vertices connected by edges. An undirected graph G is connected if there
is a path between any two vertices of G. The Laplacian matrix of graph G is L = B−A
with B = diag{b1, . . . , bN}, where bi =

∑N
j=1 aij , i = 1, . . . , N . We define b = max

i∈V
{bi}

and a = max
i,j∈V
{aij}. Note that L1N = 0N . Denote the eigenvalues of L by λ1, . . . , λN

with λi ≤ λi+1, i = 1, . . . , N − 1. The undirected graph G is connected if and only if
λ2 > 0.

2.2. Problem statement

Consider a network of N agents interacting over an undirected graph G. The objective of
this paper is to solve the problem of distributed resource allocation optimization under
the network resource constraint through the collaboration of N agents:

min
x∈RNm

F (x), F (x) =
N∑
i=1

fi(xi),

subject to
N∑
i=1

xi =
N∑
i=1

di, (1)

where x =
(
xT

1 , . . . , x
T
N

)T ∈ RNm, agent i can decide its local allocation xi ∈ Rm, and
access the local resource data di ∈ Rm. The total network resource is

∑N
i=1 di, then

the optimization problem should satisfy the network resource constraint:
∑N
i=1 xi =∑N

i=1 di. The cost function of agent i, fi : Rm → R, and its local resource data di are
only known by itself.

We introduce the following well-known assumptions on the graph G and the local cost
functions, respectively.

Assumption 2.1. The undirected graph G is connected.

Assumption 2.2. For i = 1, . . . , N , the local cost functions fi are differentiable and
ωi-strongly convex, that is

(x− y)T(∇fi(x)−∇fi(y)) ≥ ωi‖x− y‖2, for ∀ x, y ∈ Rm,

furthermore, their gradients are θi-Lipschitz, that is

‖∇fi(x)−∇fi(y)‖ ≤ θi‖x− y‖, for ∀ x, y ∈ Rm,

where the constants ωi, θi > 0.

Remark 2.3. Under Assumption 2.1, there exists an orthogonal matrix Q =
[

1N√
N
R
]

with R ∈ RN×(N−1), RRT = IN − 1
N 1N1T

N such that QTLQ = diag{0, λ2, . . . , λN}, then
λ2IN−1 ≤ RTLR ≤ λNIN−1, see [5].

Remark 2.4. Under Assumption 2.2, the function F is strongly convex, then there
exists a bounded optimal solution to problem (1), see [15].
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3. DISTRIBUTED OPTIMIZATION ALGORITHM

In this section, we provide a distributed optimization algorithm with event-triggered
communication and gradient measurement to cooperatively solve the optimization prob-
lem stated in (1) under the undirected graph.

To reduce the costs of communication and gradient measurement, the gradient-based
event-triggered optimization algorithm is designed for agent i ∈ V as follows, which is a
modified version of the algorithm given in [23]:

ẋi = −∇fi
(
xi(t1il)

)
− yi,

ẏi = −
∑
j∈Ni

aij
(
yi(t2ik)− yj(t2jk)

)
+
∑
j∈Ni

aij
(
zi(t2ik)− zj(t2jk)

)
+ (xi − di), (2)

żi = −
∑
j∈Ni

aij
(
yi(t2ik)− yj(t2jk)

)
, t ∈

[
t1il, t

1
i(l+1)

)
∩
[
t2ik, t

2
i(k+1)

)
,

where xi is the estimation of agent i for the optimal solution of problem (1), yi and zi
are the auxiliary variables of agent i.

Without loss of generality, we assume that t1i0 = t2i0 = 0. The triggering time se-
quences of the gradient information measurement {t1il}∞l=0 and communication with its
neighbors {t2ik}∞k=0 for agent i are determined by

t1i(l+1) = inf
{
t : t > t1il, g

i
x > 0

}
,

t2i(k+1) = inf
{
t : t > t2ik, g

i
y > 0 or giz > 0

}
, (3)

with the trigger functions given as follows:

gix =
∥∥eix∥∥− αβ1

∥∥∥ ∑
j∈Ni

aij
(
xi(t1il)− xj(t1jl)

)∥∥∥− β2e
−γt,

giy =
∥∥eiy∥∥− αβ3

∥∥∥ ∑
j∈Ni

aij
(
yi(t2ik)− yj(t2jk)

)∥∥∥− β4e
−γt, (4)

giz =
∥∥eiz∥∥− αβ5

∥∥∥ ∑
j∈Ni

aij
(
zi(t2ik)− zj(t2jk)

)∥∥∥− β6e
−γt.

The positive parameters α, βi and γ are to be determined later. The measurement errors
are defined by

eix(t) = xi(t1il)− xi(t), eiy(t) = yi(t2ik)− yi(t), eiz(t) = zi(t2ik)− zi(t). (5)

It is easy to see that eix(t1il) = 0 and eiy(t2ik) = eiz(t
2
ik) = 0, for any l, k ∈ N and i ∈ V.

Remark 3.1. Obviously, for any agent i, there exist two triggering time sequences
{t1il}∞l=0 and {t2ik}∞k=0. By t ∈

[
t1il, t

1
i(l+1)

)
∩
[
t2ik, t

2
i(k+1)

)
, we can get a new time sequence

denoted by {tir}∞r=0, where

{ti0} = 0,
∞⋃
r=0

[
tir, ti(r+1)

)
= [0,∞) and

[
tir1 , ti(r1+1)

)
∩
[
tir2 , ti(r2+1)

)
= ∅ for any r1 6= r2.
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If
[
tir, ti(r+1)

)
=
[
t1il, t

1
i(l+1)

)
∩
[
t2ik, t

2
i(k+1)

)
, then

[
ti(r+1), ti(r+2)

)
=
[
t1i(l+1), t

1
i(l+2)

)
∩[

t2ik, t
2
i(k+1)

)
, or

[
t1il, t

1
i(l+1)

)
∩
[
t2i(k+1), t

2
i(k+2)

)
, or

[
t1i(l+1), t

1
i(l+2)

)
∩
[
t2i(k+1), t

2
i(k+2)

)
.

Remark 3.2. It is worth mentioning that the conditions (3) and (4) are verified by agent
i only based on information of itself and neighboring agents, thus the algorithm (2) is
a distributed event-triggered scheme. Besides, we know from (4) that the continuous
communication between neighboring agents is avoided.

The algorithm (2) can be rewritten as the following compact form

ẋ = −∇F
(
x+ ex)− y,

ẏ = −(L⊗ Im)(y + ey) + (L⊗ Im)(z + ez) + (x− d), (6)
ż = −(L⊗ Im)(y + ey),

where x =
(
xT

1 , . . . , x
T
N

)T ∈ RNm, y =
(
yT1 , . . . , y

T
N

)T ∈ RNm, z =
(
zT1 , . . . , z

T
N

)T ∈ RmN ,
ex=

(
e1x

T
, . . . , eNx

T)T∈ RNm, ey=
(
e1y

T
, . . . , eNy

T)T∈ RNm, ez=
(
e1z

T
, . . . , eNz

T)T∈ RNm,
d =

(
dT1 , . . . , d

T
N

)T ∈ RNm. L is the Laplacian matrix of graph G.

The following lemma indicates the relationship between the equilibrium point of (6)(or
(2)) and the optimal solution of problem (1).

Lemma 3.3. Suppose that Assumptions 2.1 and 2.2 hold. If (x∗, y∗, z∗) is the equilib-
rium point of (6), then x∗ is the optimal solution of problem (1).

P r o o f . Note that ex = ey = ez = 0Nm once the equilibrium of system (6) is achieved.
Hence,

−∇F (x∗)− y∗ = 0Nm,
−(L⊗ Im)y∗ + (L⊗ Im)z∗ + (x∗ − d) = 0Nm, (7)

−(L⊗ Im)y∗ = 0Nm.

Since the undirected graph G is connected, using L1N = 0N , we have

y∗ = 1Nm ⊗ λ∗, λ∗ ∈ R.

Substituting the above inequality into (7) and utilizing 1T
NL = 0T

N , we find that

−∇F
(
x∗)− 1Nm ⊗ λ∗ = 0, λ∗ ∈ R,

N∑
i=1

x∗i =
N∑
i=1

di, (8)

which is exactly the optimality condition (KKT) for problem (1) by Theorem 3.34 in
[16]. Thus, the conclusion follows. �

For (2), we have the following result.
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Theorem 3.4. Under Assumptions 2.1 and 2.2, the optimization problem (1) is solved
by the distributed algorithm (2) with event-triggered scheme (3). Concretely, for any
initial conditions xi(0), yi(0) ∈ Rm and

∑N
i=1 zi(0) = 0m, the algorithm (2) with con-

dition (3) makes xi(t) → x∗i exponentially as t → ∞ for each i ∈ V, where x∗ =(
x∗1, . . . , x

∗
N

)T ∈ RNm is the optimal solution of problem (1). Furthermore, the event-
triggered scheme (3) is free of Zeno behavior.

P r o o f . For convenience, we show the proof in three steps.

Step 1: The changes of coordinates and the closed-loop system.

Let

x = x− x∗, y = y − y∗, z = z − z∗, (9)

where (x∗, y∗, z∗) is the equilibrium point of (6) and x∗ =
(
x∗1, . . . , x

∗
N

)T ∈ RNm, y∗ =(
y∗1 , . . . , y

∗
N

)T ∈ RNm, z∗ =
(
z∗1 , . . . , z

∗
N

)T ∈ RNm.
From the initial condition

∑N
i=1 zi(0) = 0m, we obtain (1T

N ⊗ Im)z(0) = 0m. Then
the dynamic equations of x, y and z are given by

ẋ = −h− y,
ẏ = −(L⊗ Im)(y + ey) + (L⊗ Im)(z + ez) + x, (10)
ż = −(L⊗ Im)(y + ey),

where h = h1 + h2 with h1 = ∇F (x+ ex)−∇F (x) and h2 = ∇F (x)−∇F (x∗).
Define the following coordinate transformations

X =
[
XT

1 XT
2:N

]T =
(
QT ⊗ Im

)
x, eX =

[
e1X

T
e2:NX

T
]T

=
(
QT ⊗ Im

)
ex,

Y =
[
Y T

1 Y T
2:N

]T =
(
QT ⊗ Im

)
y, eY =

[
e1Y

T
e2:NY

T
]T

=
(
QT ⊗ Im

)
ey,

Z =
[
ZT

1 ZT
2:N

]T =
(
QT ⊗ Im

)
z, eZ =

[
e1Z

T
e2:NZ

T
]T

=
(
QT ⊗ Im

)
ez,

(11)

where X1, e
1
X , Y1, e

1
Y , Z1, e

1
Z ∈ Rm, X2:N , e

2:N
X , Y2:N , e

2:N
Y , Z2:N , e

2:N
Z ∈ R(N−1)m and Q

is determined by Remark 2.3. Then we have from (10) and Remark 2.3 that

Ẋ1 = −Y1 −
(

1T
N√
N
⊗ Im

)
h, Ẋ2:N = −Y2:N −

(
RT ⊗ Im

)
h,

Ẏ1 = X1, Ẏ2:N = X2:N −
(
RTLR⊗ Im

)(
Y2:N + e2:NY

)
+
(
RTLR⊗ Im

)(
Z2:N + e2:NZ

)
,

Ż1 = 0m, Ż2:N = −
(
RTLR⊗ Im

)(
Y2:N + e2:NY

)
.

(12)

Moreover, we obtain Z1 ≡ 0m by (1T
N ⊗ Im)z(0) = 0m.
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Step 2: The choices of Lyapunov function and relevant parameters.

Construct the Lyapunov function V = V1 + V2, where

V1 =
1
2
k1

(
XTX + Y TY

)
+

1
2

(k1 + k2)ZTZ +
1
2
k2

(
Y2:N − Z2:N

)T(
Y2:N − Z2:N

)
,

V2 =
1
2
k3(X + Y )T(X + Y ), (13)

with the positive parameters k1, k2 and k3 are to be determined later.
Differentiating (13) along the trajectories of (12) yields

V̇1 = k1

(
XT

1 Ẋ1 +XT
2:N Ẋ2:N + Y T

1 Ẏ1 + +Y T
2:N Ẏ2:N

)
+(k1 + k2)ZT

2:N Ż2:N + k2

(
Y2:N − Z2:N

)T(
Ẏ2:N − Ż2:N

)
= k1X

T
(
− Y −

(
QT ⊗ Im

)
h
)

+ k1Y
TX − k1Y

T
2:N

(
RTLR⊗ Im

)(
Y2:N + e2:NY

)
+k1Y

T
2:N

(
RTLR⊗ Im

)(
Z2:N + e2:NZ

)
− (k1 + k2)ZT

2:N

(
RTLR⊗ Im

)(
Y2:N + e2:NY

)
+k2

(
Y2:N − Z2:N

)T(
X2:N +

(
RTLR⊗ Im

)(
Z2:N + e2:NZ

))
= −k1x

Th− k1Y
T
2:N

(
RTLR⊗ Im

)
Y2:N + k1Y

T
2:N

(
RTLR⊗ Im

)(
e2:NZ − e2:NY

)
−(k1 + k2)ZT

2:N

(
RTLR⊗ Im

)
e2:NY + k2

(
Y T

2:N − ZT
2:N

)
X2:N

−k2Z
T
2:N

(
RTLR⊗ Im

)
Z2:N + k2

(
Y T

2:N − ZT
2:N

)(
RTLR⊗ Im

)
e2:NZ , (14)

and

V̇2 = k3(X + Y )T(Ẋ + Ẏ )

= k3(X + Y )T


−Y1 −

(
1T

N√
N
⊗ Im

)
h+X1

−Y2:N −
(
RT ⊗ Im

)
h+X2:N −

(
RTLR⊗ Im

)(
Y2:N + e2:NY

)
+
(
RTLR⊗ Im

)(
Z2:N + e2:NZ

)


= k3(X1 + Y1)T

(
− Y1 −

(
1T
N√
N
⊗ Im

)
h+X1

)
+k3(X2:N + Y2:N )T

(
− Y2:N −

(
RT ⊗ Im

)
h+X2:N −

(
RTLR⊗ Im

)(
Y2:N + e2:NY

)
+
(
RTLR⊗ Im

)(
Z2:N + e2:NZ

))
= −k3Y

TY − k3x
Th− k3y

Th+ k3X
TX

−k3X
T
2:N

(
RTLR⊗ Im

)
Y2:N − k3Y

T
2:N

(
RTLR⊗ Im

)
Y2:N

+k3(XT
2:N + Y T

2:N )
(
RTLR⊗ Im

)(
Z2:N + e2:NZ − e2:NY

)
. (15)

Recalling that h = h1 + h2 =
(
∇F (x + ex) − ∇F (x)

)
+
(
∇F (x) − ∇F (x∗)

)
, using
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Assumption 2.2 and ‖Q‖ = 1, we obtain the following estimation

− (k1 + k3)xTh− k3y
Th = −(k1 + k3)xT

(
∇F (x+ ex)−∇F (x)

)
−(k1 + k3)xT

(
∇F (x)−∇F (x∗)

)
−k3y

T
((
∇F (x+ ex)−∇F (x)

)
+
(
∇F (x)−∇F (x∗)

))
≤ θ(k1 + k3)‖x‖‖ex‖ − ω(k1 + k3)‖x‖2 + θk3‖y‖(‖ex‖+ ‖x‖)

≤ −ω(k1 + k3)− 2θ2k2
3

2
‖X‖2 +

1
2
‖Y ‖2

+
2ωθ2k2

3 + θ2(k1 + k3)
2ω

‖eX‖2, (16)

where ω = min
i∈V
{ωi} and θ = max

i∈V
{θi}.

From Assumption 2.1 and Remark 2.3, we get

k1Y
T
2:N

(
RTLR⊗ Im

)(
e2:NZ − e2:NY

)
≤ k1

2
Y T

2:N

(
RTLR⊗ Im

)
Y2:N + λNk1

(
‖eY ‖2 + ‖eZ‖2

)
,

−(k1 + k2)ZT
2:N

(
RTLR⊗ Im

)
e2:NY ≤ λN‖Z2:N‖2 + λN (k1 + k2)2‖eY ‖2,

k2

(
Y T

2:N − ZT
2:N

)
X2:N ≤ k2

2‖X‖2 +
1
2
‖Y ‖2 +

1
2
‖Z‖2,

k2

(
Y T

2:N − ZT
2:N

)(
RTLR⊗ Im

)
e2:NZ ≤ k2

2
Y T

2:N

(
RTLR⊗ Im

)
Y2:N + λNk2‖eZ‖2

+
k2

2
ZT

2:N

(
RTLR⊗ Im

)
Z2:N . (17)

In addition, it is obvious that

− k3X
T
2:N

(
RTLR⊗ Im

)
Y2:N ≤

λNk3

2
‖X‖2

+
k3

2
Y T

2:N

(
RTLR⊗ Im

)
Y2:N ,

k3(XT
2:N + Y T

2:N )
(
RTLR⊗ Im

)(
Z2:N + e2:NZ − e2:NY

)
≤ λNk3

2
‖X‖2 + 3λNk3‖Z‖2

+
k3

2
Y T

2:N

(
RTLR⊗ Im

)
Y2:N

+ 3λNk3

(
‖eY ‖2 + ‖eZ‖2

)
.(18)

Using (13) – (18), we have

V̇ ≤ −
(ω(k1 + k3)

2
− k2

2 − k3 − λNk3 − θ2k2
3

)
‖X‖2 − (k3 − 1)‖Y ‖2

−
(λ2k2

2
− 3λNk3 − λN −

1
2

)
‖Z‖2 − k1 − k2

2
Y T

2:N

(
RTLR⊗ Im

)
Y2:N

+
2ωθ2k2

3 + θ2(k1 + k3)
2ω

‖eX‖2 +
(
λNk1 + λN (k1 + k2)2 + 3λNk3

)
‖eY ‖2

+
(
λNk1 + λNk2 + 3λNk3

)
‖eZ‖2. (19)
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It results from the trigger conditions (3) and (4) that

‖eix‖ ≤ αβ1

∥∥∥ ∑
j∈Ni

aij
(
xi(til)− xj(t

j
l )
)∥∥∥+ β2e

−γt

≤ αβ1

( ∑
j∈Ni

aij‖eix‖+
∑
j∈Ni

aij‖xi‖+
∑
j∈Ni

aij‖ejx‖+
∑
j∈Ni

aij‖xj‖

)
+ β2e

−γt.

Therefore,

‖eX‖2 ≤
6α2β2

1(b2 +Na2)
(1− αβ1b)2 − 6Nα2β2

1a
2
‖X‖2 +

2Nβ2
2

(1− αβ1b)2 − 6Nα2β2
1a

2
e−2γt,

‖eY ‖2 ≤
6α2β2

3(b2 +Na2)
(1− αβ3b)2 − 6Nα2β2

3a
2
‖Y ‖2 +

2Nβ2
4

(1− αβ3b)2 − 6Nα2β2
3a

2
e−2γt, (20)

‖eZ‖2 ≤
6α2β2

5(b2 +Na2)
(1− αβ5b)2 − 6Nα2β2

5a
2
‖Z‖2 +

2Nβ2
6

(1− αβ5b)2 − 6Nα2β2
5a

2
e−2γt.

Substituting (20) into (19), we obtain

V̇ ≤ −µ1‖X‖2 − µ2‖Y ‖2 − µ3‖Z‖2 + µ4e
−2γt

−k1 − k2

2
Y T

2:N

(
RTLR⊗ Im

)
Y2:N , (21)

where

µ1 =
ω(k1 + k3)

2
− k2

2 − k3 − λNk3 − θ2k2
3 −

6α2β2
1(b2 +Na2)

(
2ωθ2k2

3 + θ2(k1 + k3)
)

2ω
(
(1− αβ1b)2 − 6Nα2β2

1a
2
) ,

µ2 = k3 − 1−
6α2β2

3(b2 +Na2)
(
λNk1 + λN (k1 + k2)2 + 3λNk3

)
(1− αβ3b)2 − 6Nα2β2

3a
2

,

µ3 =
λ2k2

2
− 3λNk3 − λN −

1
2
−

6α2β2
5(b2 +Na2)

(
λNk1 + λNk2 + 3λNk3

)
(1− αβ5b)2 − 6Nα2β2

5a
2

,

µ4 =
Nβ2

2

(
2ωθ2k2

3 + θ2(k1 + k3)
)

ω
(
(1− αβ1b)2 − 6Nα2β2

1a
2
) +

2Nβ2
4

(
λNk1 + λN (k1 + k2)2 + 3λNk3

)
(1− αβ3b)2 − 6Nα2β2

3a
2

+
2Nβ2

6

(
λNk1 + λNk2 + 3λNk3

)
(1− αβ5b)2 − 6Nα2β2

5a
2

.

Choose the parameters ki, α and βj such that k1 > k2, µ1, µ2, µ3, µ4 > 0 (which obviously
can be done). As a result,

V̇ ≤ −µ‖P‖2 + µ4e
−2γt, (22)

where µ = min{µ1, µ2, µ3} and PT =
(
XT, Y T, ZT

)
.
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Note that k1‖P‖2 ≤ V ≤ k1+3k2+2k3
2 ‖P‖2. Choose 0 < γ ≤ µ

k1+3k2+2k3
, and thus,

‖P (t)‖2 ≤ k1 + 3k2 + 2k3

2k1

∥∥P (0)
∥∥2 exp

{
− 2µ
k1 + 3k2 + 2k3

t

}
+

µ4(k1 + 3k2 + 2k3)
2k1

(
µ− γ(k1 + 3k2 + 2k3)

)( exp
{
− 2γt

}
− exp

{
− 2µ
k1 + 3k2 + 2k3

t

})
,

≤ γ0e
−2γt, (23)

where γ0 = k1+3k2+2k3
2k1

∥∥P (0)
∥∥2+ µ4(k1+3k2+2k3)

2k1

(
µ−γ(k1+3k2+2k3)

) . This implies that x exponentially

converges to x∗.
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Fig. 1. The trajectories of xi1 in the algorithm (2).

Step 3: Analysis of Zeno behavior.
Firstly, we verify that the gradient information measurement is free of Zeno behavior.

From (23), we have that ‖x(t)−x∗‖ ≤ √γ0e
−γt, ‖y(t)−y∗‖ ≤ √γ0e

−γt and ‖z(t)−z∗‖ ≤√
γ0e
−γt. Thus, according to (5), (2), and using Assumption 2.2, it follows that for

t ∈
[
t1il, t

1
i(l+1)

)
∥∥ėix(t)

∥∥ = ‖ẋi(t)‖

≤
(∥∥(∇fi(xi(t1il))−∇fi(x∗i ))∥∥+ ‖y‖

)
≤ θi

√
γ0e
−γt1il +

√
γ0e
−γt. (24)
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Fig. 2. The trajectories of xi2 in the algorithm (2).

Applying eix(t1il) = 0 and integrating the above inequality from t1il to t, we deduce that

∥∥eix(t)
∥∥ =

∥∥∥∫ t

t1il

ėix(s)ds
∥∥∥ ≤ ∫ t

t1il

∥∥ėix(s)
∥∥ds

≤ θi
√
γ0e
−γt1il

(
t− t1il

)
+
√
γ0

γ

(
e−γt

1
il − e−γt

)
, for t ∈

[
t1il, t

1
i(l+1)

)
. (25)

The next gradient measurement will not be executed until the first trigger function gix
crosses zero, that is

αβ1

∥∥∥ ∑
j∈Ni

aij
(
xi(t1il)− xj(t1jl)

)∥∥∥+ β2e
−γt1i(l+1) =

∥∥eix(t1i(l+1))
∥∥

≤ θi
√
γ0e
−γt1il

(
t1i(l+1) − t

1
il

)
+
√
γ0

γ

(
e−γt

1
il − e−γt

1
i(l+1)

)
.

Accordingly, the following inequality holds
√
γ0 + β2γ

γ
e−γ
(
t1i(l+1)−t

1
il

)
≤ θi
√
γ0

(
t1i(l+1) − t

1
il

)
+
√
γ0

γ
. (26)

Since eε ≥ 1 + ε for any ε ∈ R, we have for any agent i

t1i(l+1) − t
1
il ≥

β2√
γ0(θi + 1) + β2γ

> 0. (27)
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Fig. 3. The trajectories of yi1 in the algorithm (2).

Consequently, the Zeno behavior is excluded for any agent i.

Next, we prove that the communication with neighbors is free of Zeno behavior.

Similar to (24), for t ∈
[
t2ik, t

2
i(k+1)

)
, we get

‖ėiy(t)‖ = ‖ẏi(t)‖

≤
∥∥∥ ∑
j∈Ni

aij

((
yi(t2ik)− y∗i )− (yj(t2jk)− y∗j

))∥∥∥
+
∥∥∥ ∑
j∈Ni

aij

((
zi(t2ik)− z∗i )− (zj(t2jk)− z∗j

))∥∥∥+ ‖xi − x∗i ‖

≤ 4b
√
γ0 +

√
γ0e
−γt (28)

and

‖ėiz(t)‖ = ‖żi(t)‖

=
∥∥∥ ∑
j∈Ni

aij

((
yi(t2ik)− y∗i )− (yj(t2jk)− y∗j

))∥∥∥
≤ 2b

√
γ0. (29)
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Fig. 4. The trajectories of yi2 in the algorithm (2).

Following the procedure of (25), we derive that

αβ3

∥∥∥ ∑
j∈Ni

aij
(
yi(t2ik)− yj(t2jk)

)∥∥∥+ β4e
−γt2i(k+1) =

∥∥eiy(t2i(k+1))
∥∥

≤ 4b
√
γ0

(
t2i(k+1) − t

2
ik

)
+
√
γ0

γ

(
e−γt

2
ik − e−γt

2
i(k+1)

)
(30)

and

αβ5

∥∥∥ ∑
j∈Ni

aij
(
zi(t2ik)− zj(t2jk)

)∥∥∥+ β6e
−γt2i(k+1) =

∥∥eiz(t2i(k+1))
∥∥ ≤ 2b

√
γ0

(
t2i(k+1) − t

2
ik

)
. (31)

Accordingly,
√
γ0 + β0γ

γ
e−γ
(
t2i(k+1)−t

2
ik

)
≤ 4b
√
γ0

(
t2i(k+1) − t

2
ik

)
eγt

2
ik +

√
γ0

γ
, (32)

where β0 = min{β4, β6}.
We can see that the set

{
t2i(k+1) − t2ik > 0 : 4b

√
γ0

(
t2i(k+1) − t2ik

)
eγt

2
ik +

√
γ0
γ −

√
γ0+β0γ

γ e−γ
(
t2i(k+1)−t

2
ik

)
> 0
}

is nonempty for any agent i. Hence, the Zeno behavior is
avoided.

In the light of Lemma 3.3, we complete the proof of Theorem 3.4. �
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Fig. 5. The trajectories of zi1 in the algorithm (2).
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Fig. 6. The trajectories of zi2 in the algorithm (2).

Remark 3.5. Clearly, the result is consistent with the one given in [23] when the com-
munication is continuous-time. The implementation of the proposed algorithm in [23]
requires continuous-time communication among the agents, which is useful for analysis,
but it is important to notice that communication is only available at discrete instants
of time in practical scenarios. The main motivation of our study stems from this obser-
vation.
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4. SIMULATION EXAMPLE

In this section, a simulation example is given for illustration.
Consider a network of five agents to minimize F (x) =

∑4
i=1 fi(xi), xi ∈ R2 with the

network resource constraint:
∑4
i=1 xi =

∑4
i=1 di, where the local cost functions

f1(x1) = ‖x1‖2

f2(x2) =
x2

21

20
√
x2

21 + 1
+

x2
22

20
√
x2

22 + 1
+ ‖x2‖2

f3(x3) = ‖x3 − [2 3]T‖2

f4(x4) = ln(e−0.05x41 + e0.05x41) + ln(e−0.05x42 + e0.05x42) + ‖x4‖2,

and the local resource data of these four agents are

d1 = [2, 1]T, d2 = [2, 3]T, d3 = [2, 4]T, d4 = [1, 5]T.

Obviously, for i = 1, . . . , 4, fi are differentiable and strongly convex and the gradients
of fi are globally Lipschitz, and therefore fi satisfy Assumption 2.2.

The optimal solution x∗ can be calculated by MATLAB:

x∗ =
[
x∗1

T, x∗2
T, x∗3

T, x∗4
T]T = [1.2572, 2.5074, 1.2301, 2.4810, 3.2572, 5.5074, 1.2556, 2.5043]T.

The weighted matrix of the undirected graph G is

A =


0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

 ,
which implies that G is connected.

According to Theorem 3.4, we can choose appropriate parameters α, βi and γ such
that the algorithm (2) solves our problem.

Let α = 0.0003, β1 = β2 = β4 = 1, β3 = β6 = 2, β5 = 0.5, γ = 0.1, the initial values
x1(0) = [2, 0]T, x2(0) = [1.5, 0.5]T, x3(0) = [1, 1]T, x4(0) = [4, 6]T, y1(0) = y2(0) =
y3(0) = y4(0) = z1(0) = z2(0) = z3(0) = z4(0) = [0, 0]T, The simulation results are
shown in Figures 1-8.

From Figures 1- 2, it is clear that, the trajectories x(t) converge to the global optimal
solution x∗. Furthermore, Figures 3 – 6 show that the trajectories yi and zi of each agent
i converge to some constants. Besides, for all circles in Figures 7 and 8, the ordinate of
the circle center represents the time interval between the last sampling/communication
time and the abscissa of the circle center denotes the latest sampling/communication
time. From Figures 7 – 8, we can see that the costs of communication and gradient
measurement are reduced and the Zeno behavior of triggering time can be avoided.

5. CONCLUSIONS

In this paper, a novel distributed event-triggered algorithm for continuous-time multi-
agent systems has been designed to solve the network optimization problem. We have
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Fig. 7. The inter-execution times of gradient sampling.
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proved that the proposed algorithm can achieve the exact optimization with exponential
convergence rate, and moreover, the given two event-triggered strategies are free of Zeno
behavior. Simulation results have been given to demonstrate the effectiveness of the
algorithm. Future work may include the design of distributed optimization algorithms
with various constraints.
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