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Radon-Nikodym property

Surjit Singh Khurana

Abstract. For a Banach space E and a probability space (X,A, λ), a new proof
is given that a measure µ : A → E, with µ ≪ λ, has RN derivative with
respect to λ iff there is a compact or a weakly compact C ⊂ E such that
|µ|C : A → [0,∞] is a finite valued countably additive measure. Here we define
|µ|C(A) = sup{

∑
k
|〈µ(Ak), fk〉|} where {Ak} is a finite disjoint collection of

elements from A, each contained in A, and {fk} ⊂ E′ satisfies supk |fk(C)| ≤ 1.
Then the result is extended to the case when E is a Frechet space.
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1. Introduction and notations

In this paper K will always denote the field of real or complex numbers (we
will call them scalars), R the real numbers and N the set of natural numbers. All
locally convex space are assumed to be Hausdorff and are over K and notations
and results of [8] will be used. Given a locally convex space E with E′ its dual, for
x ∈ E and f ∈ E′, we will also write 〈f, x〉 = 〈x, f〉 for f(x); for an A ⊂ E, Γ(A)
will denote the absolute convex hull of A. Let (X,A, λ) be a complete probability
space. By a measure we will always mean a countably additive measure. For a
measure µ, |µ| will denote its total variation measure. For measures and vector
measures we refer to [2]; see also [4], [5].

In [3], for a Banach space E, an interesting characterization is given for a
vector measure µ : A → E of bounded variation, µ ≪ λ, to have a derivative. It
is proved that µ has derivative iff there is a compact or weakly compact C ⊂ E

such that |µ|C : A → [0,∞] is a finite valued countably additive measure. Here we
define |µ|C(A) = sup{

∑
k |〈µ(Ak), fk〉|} where {Ak} is a finite disjoint collection

of elements from A, each contained in A, and {fk} ⊂ E′ satisfies supk |fk(C)| ≤ 1.
First we give a new proof of this result and then extend this to Frechet spaces.
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2. Main results

Theorem 1. Let A be a σ-algebra of subsets of a set X , E a Frechet space and

µ : A → E countably additive measure with µ ≪ λ. Suppose µ has finite variation

with respect to every continuous semi-norm on E. Then µ has RN derivative

relative to λ iff there is a compact or weakly compact C ⊂ E such that |µ|C : A →
[0,∞] is a finite-valued measure. Here we define |µ|C(A) = sup{

∑
k |〈µ(Ak), fk〉|}

where {Ak} is a finite disjoint collection of elements from A, each contained in A,

and {fk} ⊂ E′ satisfies supk |fk(C)| ≤ 1.

Proof: First we consider E to be a Banach and give an entirely different proof
than the one given in [3]; we will reduce it to a reflexive Banach subspace
of E with a finer topology. Take an absolutely convex weakly compact C ⊂ E

with a countably additive measure ν = |µ|C ≤ 1. This implies µ(A) ⊂ C

([3, Theorem 2.1(1)]). By [1], there is a reflexive Banach space E0 ⊂ E such
that C ⊂ E0, C is weakly compact in E0, and the identity mapping E0 → E

is continuous. Take an f0 ∈ E′
0 with norm ≤ 1 and fix c > 0. If we con-

sider C as a subset of E, (f0)|C is an affine continuous function on C. It is
proved in [7, Proposition 3.5, p. 31] that (E′

|C + K) is uniformly dense in the

space of all continuous affine functions on C (this is proved when K = R but
easily extends to general K). Thus there is an f ∈ E′ and r ∈ K such that
sup |(f + r − f0)(C)| ≤ c. Since C is absolutely convex (that implies 0 ∈ C),
we get sup |(f − f0)(C)| ≤ 2c. Take a decreasing sequence {An} ⊂ A such that
An ↓ ∅. Now f ◦ µ(An) → 0 and since sup |(f − f0)(C)| ≤ 2c and c is arbitrarily
small, we get f0 ◦ µ(An) → 0 and so µ : A → E0 is countably additive. Now we
will prove that µ : A → E0 is of bounded variation. Take p > 0 with pC ⊂ B

(the unit ball of E0), a finite collection {fi} in the closed unit ball of E′
0, and

disjoint elements {Ai} ⊂ A. We have |pfi(C)| ≤ 1 ∀i. As explained above, take
{f ′

i} ⊂ E′ with sup |(pfi − f ′
i)(C)| ≤ 1

2i ∀i. We get

∑
|〈fi, µ(Ai)〉| ≤

1

p

∑
|(pfi−f ′

i)µ(Ai)|+
1

p

∑
|(f ′

i)µ(Ai)| ≤
1

p
+

1

p
|µ|C(X) ≤

2

p
.

This proves µ : A → E0 is of bounded variation. Since E0 is reflexive, there is an
h ∈ L1(X, E0) with µ = hλ. From this it easily follows that h ∈ L1(X, E). The
converse is same as for Frechet space which we will consider now.

Now we consider the case when E is a Frechet space. Suppose µ has RN

derivative dµ
dλ

= g ∈ L1(λ, E) = L1(λ)⊗̂E (the completion in projective tensor

product). Thus g =
∑

i αigixi, {gi}, {xi} being null sequences in L1(λ) and E

respectively and {αi} ∈ ℓ1 ([8, Theorem 6.4, p. 94]); we can assume that
∫
|gi|dλ ≤

1 ∀i. Let C be the closed, absolutely convex hull of {xi}; C is compact. Take
a finite, disjoint family {Ak} of elements of A and {fk} elements of E′ with
sup |fk(C)| ≤ 1 ∀k. We have

∑
k |〈|µ(Ak), fk|〉| ≤

∑
k

∑
i

∫
Ak

|αi| |gi| |fk(xi)|dλ ≤

α where α =
∑

i |αi|. Thus |µ|C is finite-valued. It is a routine verification that
|µ|C is countably additive ([2, p. 4], [3, Theorem 2.1(5), p. 142]).
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Conversely suppose for an absolutely convex weakly compact C ⊂ E, ν = |µ|C
is finite-valued. We have µ ≪ |µ|C . Also it follows from the definition of |µ|C
that, for an f ∈ E′ with sup |f(C)| ≤ 1, we have |µ|C ≥ |f ◦ µ|. Denoting
the completion of |µ|C by |µ|C again, we fix a lifting ρ0 for this measure ([9])
and take the lifting topology T0 on X which has {ρ0(A) : A ∈ A} as the base
of open sets; we can assume this topology to be Hausdorff and denote by Cb(X)
all scalar-valued bounded continuous functions on X . For each f ∈ E′ there
is a φf ∈ L1(|µ|C) such that f ◦ µ = φf |µ|C . Put sup |f(C)| = p; we claim
|φf | ≤ p a.e. [|µ|C ]. Suppose this is not true. Then there is a c > 0 such that
|µ|C(A) > 0 where A = {x ∈ X : |φf (x)| ≥ p + c}. Now, since | 1

p
f(C)| ≤ 1,

we have |µ|C(A) ≥ 1

p
|f ◦ µ|(A) = 1

p

∫
A
|φf |d|µ|C ≥ 1

p
(p + c)|µ|C(A) which is

a contradiction. Thus there is a unique function in Cb(X) which is equal to
φf a.e. [|µ|C ]; we denote this function also by φf .

Define φ : X → KE′

, (φ(x))f = φf (x). It is a simple verification that φf1+f2
=

φf1
+ φf2

and φrf = rφf for any f1, f2, f ∈ E′ and any r ∈ K. Also E, with

weak topology, can be considered as a subspace of KE′

with product topology.
We claim that φ(X) ⊂ C. If this is not true, by separation theorem ([8, 9.2,
p. 65]), ∃x0 ∈ X and f ∈ E′ such that p = sup |f(C)| < Rl(φf (x0)) = p + 3η

for some η > 0 (note C is absolutely convex and so sup(Rl(f(C))) = sup |f(C)|).
Now ν(A) > 0 where A = {x ∈ X : |φf (x)| > p + 2η}. Since |φf | ≤ p, we
have pν(A) ≥

∫
A
|φf |dν ≥ (p + 2η)ν(A), a contradiction. By [6, Theorem 2,

p. 389], φ is weakly equivalent to a function φ0 such that φ0(X) is contained in
a separable weakly compact subset of E; thus φ0 is bounded. Now it is well-
known that if a weakly measurable function has a separable range in E then it
is strongly measurable ([2, Theorem 2, p. 42]; it is proved for a Banach space
but thus easily extends to a Frechet space). Now being bounded and strongly
measurable, φ0 ∈ L1(ν, E). Since |µ| ≪ ν and ν ≪ λ, the result follows. �
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