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GLOBAL ADAPTIVE OUTPUT-FEEDBACK CONTROL
FOR SWITCHED UNCERTAIN NONLINEAR SYSTEMS

Zhibao Song, Junyong Zhai and Hui Ye

In this paper, we investigate the problem of global output-feedback regulation for a class
of switched nonlinear systems with unknown linear growth condition and uncertain output
function. Based on the backstepping method, an adaptive output-feedback controller is designed
to guarantee that the state of the switched nonlinear system can be globally regulated to the
origin while maintaining global boundedness of the resulting closed-loop switched system under
arbitrary switchings. A numerical example is given to demonstrate the effectiveness of the
proposed control scheme.

Keywords: switched nonlinear system, output-feedback, adaptive control

Classification: 93D21, 39A13

1. INTRODUCTION

In recent years, the global output-feedback control has become an interesting topic in
the field of nonlinear control theory, and therefore has attracted considerable attention
[1, 4, 5, 6, 12, 13, 14, 15]. As an important class of hybrid dynamical systems, switched
nonlinear systems are usually encountered in practical applications, such as aircraft
control systems, robot control systems, and networked control systems [2, 8]. Never-
theless, the global output-feedback control problem of switched nonlinear systems has
been limitedly studied in existing literatures [3, 7, 9, 10]. As a consequence, the further
investigation of output-feedback stabilization for switched nonlinear systems turns out
to be much more important.

In this paper, we consider global output-feedback control problem of switched uncer-
tain nonlinear system:

η̇i = giηi+1 + φi,σ(t)(t, η, d(t)), i = 1, . . . , n− 1,
η̇n = gnu+ φn,σ(t)(t, η, d(t)),
y = hσ(t)(η1) (1)

where η = (η1, . . . , ηn)T ∈ Rn, u ∈ R and y ∈ R are system state, control input and
output, respectively. d : R→ Rs is a continuous function which denotes uncertain time-
varying parameter or disturbance. σ(t) is the switching signal taking its values in a finite
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set M = {1, . . . ,m} and m is the number of subsystems. The control coefficients gi > 0,
i = 1, . . . , n, are unknown constants. The uncertain functions φik : R+ ×Rn ×Rs → R,
are continuous and φik(t, 0, d(t)) = 0 for i = 1, . . . , n − 1 and k ∈ M . The uncertain
function hk : R → R, k ∈ M , is C1 and h(0) = 0. Moreover, we assume that the
state of system (1) does not jump at the switching instants, i. e., the trajectory η(t) is
everywhere continuous, and only the system output is measurable.

It is well-known that the backstepping design method is a basic tool to handle global
output-feedback stabilization problem of nonlinear systems. Based on such method,
many interesting results on stability and stabilization of nonlinear system have been
derived, see [5, 6, 10, 12, 14, 15] and the references therein. In the non-switched case,
when the growth rate of nonlinearities is unknown, how to design global output-feedback
adaptive observer and controller becomes much more important. This has been solvable
in [5] by backstepping method and the introduction of one dynamic gain. Then more
extensive results have been achieved in [6] by using double dynamic gains. Without ad-
ditional conditions imposed on the system nonlinearities and control coefficients, global
output stabilization problem was further investigated in [12] by introducing a distinct
high-gain observer. In the switched case, the delicate construction of common Lyapunov
function for all subsystems under arbitrary switchings is of great importance in global
output-feedback stabilization. Recently, a great deal of approaches have been proposed
to select an appropriate common Lyapunov function. For instance, via bacstepping
method, output-feedback stabilization of a class of switched nonlinear systems with
unknown control coefficients was studied in [10] by constructing a common Lyapunov
function. Subsequently, without precise knowledge of system nonlinearity, global output-
feedback stabilization problem for switched uncertain nonlinear systems was solved in
[7] by backstepping approach.

However, the precise knowledge of output function is required in the observer design
technique of all aforementioned literatures. When output function is uncertain, how
to find a proper and general restriction on output function is a main issue. To this
end, [14, 15] resolved the problem of global stabilization for non-switched nonlinear
systems by restricting the upper and the lower bounds of partial derivative of output
function. Up to now, there is no result on control of switched nonlinear systems with
uncertain output function. Spontaneously, an interesting problem is raised: can we find
weaker assumptions and an adaptive controller to globally stabilize switched uncertain
nonlinear system (1) under arbitrary switchings? In this paper, we aim to solve the
adaptive control problem for switched uncertain nonlinear system (1) with unknown
linear growth rate and uncertain output function. To deal with this, by a dynamic gain,
we first construct a novel observer without information of unmeasurable states. Then
based on the backstepping method and the common Lyapunov function idea, a common
universal output-feedback controller is designed such that the state of the closed-loop
switched uncertain nonlinear system can be globally regulated to the origin while all
signals of the closed-loop switched uncertain nonlinear system are bounded. The main
contributions of this paper are characterized as follows:

(i) Compared with [14, 15], a novel dynamic high-gain observer is designed owing to
unknown growth condition and unknown control coefficients.

(ii) Different from [7], a new adaptive output-feedback controller is designed since
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output function is uncertain.

(iii) Our results extend existing global stabilization results for non-switched systems to
control of switched nonlinear systems.

Notations. Throughout this paper,

Rn denotes the n-dimensional real space;
R+ represents the set of all the nonnegative real numbers;
Ci denotes the set of all functions with continuous ith partial derivatives;
|X| interprets the absolute value of scalar X;
‖Y ‖ is the Euclidean norm of a vector Y .

For unification of denotation, we take
∏i
l=j(·) = 1 for j > i.

2. PROBLEM FORMULATION

In order to solve the problem of global output-feedback regulation of switched uncertain
nonlinear system (1), the following assumptions are required.

Assumption 2.1. For i = 1, . . . , n, control coefficients gi satisfy g ≤ gi ≤ ḡ, where g
and ḡ are known positive constants.

Assumption 2.2. For i = 1, . . . , n and k ∈ M , there exist unknown constants θ̃k > 0
such that

|φi,k(t, η, d(t))| ≤ θ̃k(|η1|+ · · ·+ |ηi|). (2)

Assumption 2.3. There exist known positive constants λk and λ̄k, k ∈M such that

λk ≤
∂hk(η1)
∂η1

≤ λ̄k, ∀η1 ∈ R. (3)

Remark 2.1. From Assumption 2.2, it is indicated that the upper boundedness of
nonlinear function depends on unmeasurable states and unknown switching constant,
which is a general linear growth condition. Assumptions 2.1 and 2.3 imply that both
the control coefficients and partial derivative of output function are restricted by two
positive constants, which plays an important role in later control design.

Now, we introduce the following scaling transformation for system (1):

xi =
gn∏n
j=i gj

ηi, i = 1, . . . , n. (4)

Under transformation (4), system (1) can be rewritten as

ẋi = xi+1 + fi,σ(t)(t, x, d(t)), i = 1, . . . , n− 1,
ẋn = gnu+ fn,σ(t)(t, x, d(t)),

y = hσ(t)(gx1) (5)
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where x = (x1, . . . , xn)T , g = (
∏n
j=1 gj)/g

n and fi,k = (gn/
∏n
j=i gj)φi,k, i = 1, . . . , n,

k ∈ M . By Assumptions 2.2 and 2.3, it can be not hard to find an unknown positive
constant θk, and known positive constants ck, c̄k, such that

|fi,k(t, x, d(t))| ≤ θk(|x1|+ · · ·+ |xi|), (6)

ck ≤
∂hk(gx1)
∂x1

≤ c̄k, ∀x1 ∈ R (7)

where ck = λk and c̄k = (ḡn/gn)λ̄k.
In what follows, we will focus on the equivalent system (5). Our objective is to design

an adaptive output-feedback controller

˙̂x = ψ(x̂, L), L̇ = ϕ(y, x̂, L) and u = %(y, x̂, L),

such that the problem of global regulation for switched uncertain nonlinear system (5)
is solvable.

3. MAIN RESULTS

In this section, under Assumptions 2.1 – 2.3, it is possible to globally stabilize switched
nonlinear system (1) by a universal adaptive output-feedback controller. Thus we are
ready to give the main result of present paper.

Theorem 3.1. Under Assumptions 2.1 – 2.3, the problem of global adaptive regulation
for switched uncertain nonlinear system (1) under arbitrary switchings is addressed
by the following dynamic high-gain observer, and observer-based output-feedback con-
troller:

˙̂xi = x̂i+1 − Liaix̂1, i = 1, . . . , n− 1,
˙̂xn = gnu− Lnanx̂1,

L̇ =
y2

L2
+
x̂2

1

L2
+ ξ2n, L(0) = 1,

u = −g−nLn+1bnξn (8)

where (x̂1, . . . , x̂n) is the observer state, L is a dynamic high gain, ai > 0, i = 1, . . . , n
are coefficients of the Hurwitz polynomial p(s) = sn + a1s

n−1 + · · · + an−1s + an, and
ξn is recursively given by

ξ1 =
y

L
, ξi =

x̂i
Li
− αi−1, α1 = −b1ξ1, αi−1 = −bi−1ξi−1, i = 3, . . . , n (9)

with b1, . . . , bn being some appropriate positive constants.

P r o o f . Considering the equivalent system (5), we first introduce the change of coor-
dinates:

εi =
xi − x̂i
Li

, zi =
x̂i
Li
, i = 1, . . . , n. (10)



Adaptive control for switched nonlinear systems 267

In light of (5), (8), (9) and (10), we obtain

ε̇ = LAε+ Fk(·) + ax1 −
L̇

L
Dε,

ż = LAz +
gn

Ln
Bu− L̇

L
Dz (11)

where ε = (ε1, . . . , εn)T , z = (z1, . . . , zn)T , Fk(·) = (f1,k/L, . . . , fn,k/Ln)T ,
a = (a1, . . . , an)T and

A =


−a1 1 · · · 0

...
...

. . .
...

−an−1 0 · · · 1
−an 0 · · · 0


n×n

, B =


0
...
0
1


n×1

, D =


1 0 · · · 0
0 2 · · · 0
...

...
. . . 0

0 0 · · · n


n×n

.

By constructions, A is Hurwitz matrix such that there is a positive definite matrix
P > 0 satisfying ATP + PA ≤ −I and DP + PD ≥ 0.

Construct the Lyapunov function V0 = εTPε. A simple calculation yields

V̇0 = LεT (PA+ATP )ε+ 2εTP (Fk + ax1)− L̇

L
εT (PD +DP )ε

≤ −L‖ε‖2 + 2εTPFk + 2εTPax1. (12)

In what follows, we estimate the last two terms on the right-hand side of (12). Notice
that by construction, L̇(t) ≥ 0, L(0) = 1 and therefore L(t) ≥ 1 for ∀t ≥ 0, which
together with (6) yields

∣∣∣∣fi,kLi
∣∣∣∣ ≤ θk

Li
(|x1|+ · · ·+ |xi|) ≤ θk

i∑
j=1

|xj |
Lj

, i = 1, . . . , n, k ∈M.

This leads to

‖Fk(·)‖ ≤ |f1,k|
L

+
|f2,k|
L2

+ · · ·+ |fn,k|
Ln

≤ nθk
n∑
j=1

|xj |
Lj

, k ∈M. (13)

By the definition of εi and zi, one has

n∑
j=1

|xj |
Lj
≤ |x1|

L
+

n∑
i=2

|zi|+
√
n‖ε‖. (14)

From (7), it can be deduced that

ck|x1| ≤ |y| ≤ c̄k|x1|, k ∈M. (15)
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Combining (13), (14) and (15) gives rise to

2εTPFk ≤ 2θk‖P‖‖ε‖

(
n
|ξ1|
ck

+ n

n∑
i=2

|zi|+ n
√
n‖ε‖

)

≤ 1
2
ξ21 +

1
4

n∑
i=2

z2
i +

(
2θ2kn

2‖P‖2

c2k
+ 2θkn

√
n‖P‖+ 4θ2kn

2(n− 1)‖P‖2
)
‖ε‖2,

2εTPax1 ≤ 2‖ε‖‖Pa‖|Lξ1
ck
| ≤ L

2
‖ε‖2 +

2L‖Pa‖2

c2k
ξ21 . (16)

Substituting (16) into (12) yields

V̇0 ≤ −
(
L

2
−Θk

)
‖ε‖2 +

(
1
2

+
2L‖Pa‖2

c2k

)
ξ21 +

1
4

n∑
i=2

z2
i (17)

where Θk = 2θ2kn
2‖P‖2/c2k + 2θkn

√
n‖P‖+ 4θ2kn

2(n− 1)‖P‖2 is an unknown constant.
�

3.1. Adaptive controller design

In this subsection, we give the design of adaptive output-feedback controller for system
(5) by using the backstepping method. The design procedure is summarized as follows.

Step 1: From the definitions of ξ1 and z1, one obtains

ξ̇1 =
∂hk
∂x1

(
Lε2 + Lz2 +

f1,k
L

)
− L̇

L
ξ1,

ż1 = Lz2 − La1z1 −
L̇

L
z1. (18)

Choose the Lyapunov function V1(ε, z1, ξ1) = V0(ε) + z21
2L + ξ21

2 , whose derivative is

V̇1 =V̇0 + ξ1ξ̇1 +
z1
L
ż1 −

L̇

2L2
z2
1

≤−
(
L

2
−Θk

)
‖ε‖2 +

(
1
2

+
2L‖Pa‖2

c2k

)
ξ21 +

1
4

n∑
i=2

z2
i +

∂hk
∂x1

(
Lε2 + Lz2 +

f1,k
L

)
ξ1

− L̇

L
ξ21 + z1

(
z2 − a1z1 −

L̇

L2
z1

)
− L̇

2L2
z2
1 . (19)

By completion of square and (6)–(7), one arrives at

∂hk
∂x1

Lξ1ε2 ≤ c̄kL|ξ1ε2| ≤
L

4
ε22 + c̄2kLξ

2
1 ≤

L

4
‖ε‖2 + c̄2kLξ

2
1 ,

∂hk
∂x1

ξ1
f1,k
L
≤ c̄kθk

ck
ξ21 ,

z1z2 ≤
a1

2
z2
1 +

1
2a1

z2
2 . (20)
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By construction, we have − 3L̇
2L2 z

2
1 ≤ 0. Then substituting (20) into (19) yields

V̇1 ≤−
(
L

4
−Θk

)
‖ε‖2 +

(
1
2

+
c̄kθk
ck

+
(

2‖Pa‖2

c2k
+ c̄2k

)
L

)
ξ21 −

L̇

L
ξ21 +

1
4

n∑
i=2

z2
i

− a1

2
z2
1 +

1
2a1

z2
2 +

∂hk
∂x1

Lξ1α1 +
∂hk
∂x1

Lξ1(z2 − α1). (21)

Choose the virtual controller of the form

α1 = −b1ξ1, b1 ≥ max
k∈M

{
1
ck

(
1 +

2‖Pa‖2

c2k
+ c̄2k

)}
, (22)

which leads to

V̇1 ≤−
(
L

4
−Θk

)
‖ε‖2 −

(
L− 1

2
− c̄kθk

ck

)
ξ21 −

L̇

L
ξ21 +

1
4

n∑
i=2

z2
i

− a1

2
z2
1 +

1
2a1

z2
2 +

∂hk
∂x1

Lξ1(z2 − α1). (23)

By the fact ξ2 = z2 − α1 = z2 + b1ξ1, one has z2
2 ≤ 2b21ξ

2
1 + 2ξ22 . Hence

V̇1 ≤−
(
L

4
−Θk

)
‖ε‖2 − (L− ω1,k) ξ21 −

L̇

L
ξ21 +

(
1
2

+
1
a1

)
ξ22

+
1
4

n∑
i=3

z2
i −

a1

2
z2
1 +

∂hk
∂x1

Lξ1ξ2 (24)

where ω1,k = 1/2 + c̄kθk/ck + (1/2 + 1/a1)b21 is an unknown positive constant.

Step 2: Choose V2(ε, z1, ξ1, ξ2) = σ1V1(ε, z1, ξ1)+ 1
2ξ

2
2 , where σ1 ≥ 1 is a design constant

to be determined later. From the definition of ξ2, it follows that

ξ̇2 = b1
∂hk
∂x1

(
Lε2 + Lz2 +

f1,k
L

)
+ Lz3 + a2(Lε1 − x1)− 2L̇

L
ξ2 + b1

L̇

L
ξ1. (25)

Therefore, a direct computation yields

V̇2 ≤σ1

(
−
(L

4
−Θk

)
‖ε‖2 −

(
L− ω1,k

)
ξ21 −

L̇

L
ξ21 +

(1
2

+
1
a1

)
ξ22 +

1
4

n∑
i=3

z2
i −

a1

2
z2
1

+
∂hk
∂x1

Lξ1ξ2

)
+ ξ2

(
b1
∂hk
∂x1

(
Lε2 + Lz2 +

f1,k
L

)
+ Lz3 + a2(Lε2 − x1)

− 2L̇
L
ξ2 + b1

L̇

L
ξ1

)
. (26)
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In the following, we estimate some terms on the right hand of (26). The use of (6)–(7)
and the completion of square leads to

σ1
∂hk
∂x1

Lξ1ξ2 ≤ σ1
L

6
ξ21 + σ1

3c̄2kL
2

ξ22 ,

a2ξ2(Lε1 − x1) ≤ σ1
L

6
ξ21 + σ1

L

16
‖ε‖2 +

1
σ1

(
3a2

2L

2c2k
+ 4a2

2L

)
ξ22 ,

b1
∂hk
∂x1

Lξ2ε2 ≤ σ1
L

16
‖ε‖2 +

4b21c̄
2
kLξ

2
2

σ1
,

b1
∂hk
∂x1

Lξ2z2 ≤ b1c̄kL|ξ2||ξ2 − b1ξ1| ≤ σ1
L

6
ξ21 +

(
b1c̄kL+

3b41c̄
2
k

2σ1
L

)
ξ22 ,

b1
∂hk
∂x1

f1,k
L
ξ2 ≤

b21θ
2
k c̄

2
k

2σ1c2k
ξ21 +

σ1

2
ξ22 ,

b1
L̇

L
ξ1ξ2 ≤

b21
4
L̇

L
ξ21 +

L̇

L
ξ22 , (27)

which together with σ1 ≥ 1 and (26) yields

V̇2 ≤− σ1

(
L

8
−Θk

)
‖ε‖2 − σ1

(
L

2
− ω1,k −

b21θ
2
k c̄

2
k

2c2k

)
ξ21 −

(
σ1 −

b21
4

)
L̇

L
ξ21 −

L̇

L
ξ22

+
σ1

4

n∑
i=3

z2
i −

σ1a1

2
z2
1 +

(
σ1 +

σ1

a1
+
(3σ1c̄

2
k

2
+

3a2
2

2c2k
+ 4a2

2 + 4b21c̄
2
k + b1c̄k

+
3b41c̄

2
k

2

)
L
)
ξ22 + Lξ2α2 + Lξ2(z3 − α2).

(28)

By designing the virtual controller

α2 = −b2ξ2, b2 ≥ max
k∈M

{
1 +

3σ1c̄
2
k

2
+

3a2
2

2c2k
+ 4a2

2 + 4b21c̄
2
k + b1c̄k +

3b41c̄
2
k

2

}
,

(28) becomes

V̇2 ≤− σ1

(
L

8
−Θk

)
‖ε‖2 − σ1

(
L

2
− ω2,k

)
ξ21 −

(
L− σ1 −

σ1

a1

)
ξ22 −

(
σ1 −

b21
4

)
L̇

L
ξ21

− L̇

L
ξ22 +

σ1

4

n∑
i=3

z2
i −

σ1a1

2
z2
1 + Lξ2(z3 − α2)

(29)

where ω2,k = ω1,k + b21θ
2
k c̄

2
k/(2c

2
k) is an unknown positive constant. By the fact ξ3 =
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z3 − α2 = z3 + b2ξ2, one has z2
3 ≤ 2b22ξ

2
2 + 2ξ23 . Hence

V̇2 ≤− σ1

(
L

8
−Θk

)
‖ε‖2 − σ1

(
L

2
− ω2,k

)
ξ21 − (L− ω2) ξ22 −

(
σ1 −

b21
4

)
L̇

L
ξ21

− L̇

L
ξ22 +

σ1

2
ξ23 +

σ1

4

n∑
i=4

z2
i −

σ1a1

2
z2
1 + Lξ2ξ3 (30)

where ω2 = σ1 + σ1/a1 + σ1b
2
2/2 is a positive constant.

Inductive step: Suppose at step i − 1, there are a set of common virtual controllers
α1, . . . , αi−1 defined by

α1 = −b1ξ1, ξ2 = z2 − α1,

α2 = −b2ξ2, ξ3 = z3 − α2,

...
αi−1 = −bi−1ξi−1, ξi = zi − αi−1 (31)

with constants b1 > 0, . . . , bi−1 > 0, and a Lyapunov function Vi−1 = σi−2Vi−2(ε, z1, ξ1,
. . . , ξi−2) + 1

2ξ
2
i−1 with constants σl ≥ 1, l = 1, . . . , i − 2 to be determined later, such

that

V̇i−1 ≤−
i−2∏
j=1

σj

(L
2i
−Θk

)
‖ε‖2 −

i−2∏
j=1

σj

( L

2i−2
− ωi−1,k

)
ξ21 −

i−1∑
j=2

i−2∏
l=j

σl

( L

2i−1−j − ωj
)

× ξ2j −
i−2∏
j=2

σj

(
σ1 −

b21
4

(
1 +

i−2∑
p=2

p∏
l=2

b2l

)) L̇
L
ξ21 −

i−2∑
j=2

i−2∏
l=j+1

σl

(
σj −

1
4

i−2∑
p=j

p∏
l=j

b2l

)
× L̇

L
ξ2j −

L̇

L
ξ2i−1 −

∏i−2
l=1 σla1

2
z2
1 +

∏i−2
l=1 σl
2

ξ2i +
∏i−2
l=1 σl
4

n∑
j=i+1

z2
j + Lξi−1ξi

(32)

where ωi−1,k is an unknown positive constant, and ωj , j = 1, . . . , i − 1, are known
positive constants. Next, we will show that (32) still holds at step i. Choose the common
Lyapunov function Vi = σi−1Vi−1(ε, z1, ξ1, . . . , ξi−1) + 1

2ξ
2
i with constant σi−1 ≥ 1 to be

determined later. From the definition of ξi, it is not hard to deduce that

ξ̇i =Lzi+1 −
(
ai +

i−1∑
j=2

i−1∏
l=j

blaj

)
(Lε1 − x1) + L

i∑
j=3

i−1∏
l=j−1

blzj +
i−1∏
l=1

bl
∂hk
∂x1

(
Lε2 + Lz2

+
f1,k
L

)
− i L̇

L
ξi +

i−1∑
j=1

i−1∏
l=j

bl
L̇

L
ξj .

(33)
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Hence, it follows that

V̇i ≤−
i−1∏
j=1

σj

(L
2i
−Θk

)
‖ε‖2 −

i−1∏
j=1

σj

( L

2i−2
− ωi−1,k

)
ξ21 −

i−1∑
j=2

i−1∏
l=j

σl

( L

2i−1−j − ωj
)
ξ2j

−
i−1∏
j=2

σj

(
σ1 −

b21
4

(
1 +

i−2∑
p=2

p∏
l=2

b2l

)) L̇

L
ξ21 −

i−2∑
j=2

i−1∏
l=j+1

σl

σj − 1
4

i−2∑
p=j

p∏
l=j

b2l

 L̇

L
ξ2j

− σi−1
L̇

L
ξ2i−1 −

∏i−1
l=1 σla1

2
z2
1 +

∏i−1
l=1 σl
2

ξ2i +
∏i−1
l=1 σl
4

n∑
j=i+1

z2
j + σi−1Lξi−1ξi

+ ξi

(
Lzi+1 −

(
ai +

i−1∑
j=2

i−1∏
l=j

blaj
)
x̂1 + L

i∑
j=3

i−1∏
l=j−1

blzj +
i−1∏
l=1

bl
∂hk
∂x1

(
Lε2 + Lz2

+
f1,k
L

)
− i L̇

L
ξi +

i−1∑
j=1

i−1∏
l=j

bl
L̇

L
ξj

)
.

(34)

Similar to Step 2, based on the fact σl ≥ 1, l = 1, . . . , i − 1 and (6) – (10), using the
completion of square, we obtain

σi−1Lξi−1ξi ≤
σi−1

6
Lξ2i−1 +

3σi−1

2
Lξ2i ,

−

ai +
i−1∑
j=2

i−1∏
l=j

blaj

 ξi(Lε1 − x1) ≤

ai +
i−1∑
j=2

i−1∏
l=j

blaj

 |ξi|(L|ε1|+ L|ξ1|
ck

)

≤
∏i−1
l=1 σlL

2i+2
‖ε‖2 +

∏i−1
l=1 σlL

2i
ξ21 +

(
2i +

2i−2

c2k

) ai +
i−1∑
j=2

i−1∏
l=j

blaj

2

Lξ2i ,

i−1∑
j=1

i−1∏
l=j

bl
L̇

L
ξjξi ≤ (i− 1)

L̇

L
ξ2i +

b21
∏i−1
l=2 b

2
l

4
L̇

L
ξ21 +

i−1∑
j=2

∏i−1
l=j b

2
l

4
L̇

L
ξ2j ,

i−1∏
l=1

bl
∂hk
∂x1

Lε2ξi ≤
∏i−1
l=1 σl
2i+2

L‖ε‖2 + 2i
i−1∏
l=1

b2l c̄
2
kLξ

2
i ,

i−1∏
l=1

bl
∂hk
∂x1

Lz2ξi ≤
∏i−1
l=1 σl
2i

Lξ21 +
∏i−1
l=2 σl
2i−1

Lξ22 +
(
2i−2b41c̄

2
k + 2i−3b21c̄

2
k

) i−1∏
l=2

b2lLξ
2
i ,

i−1∏
l=1

bl
∂hk
∂x1

f1,k
L
ξi ≤

i−1∏
l=1

blc̄kθk
1
ck
|ξ1||ξi| ≤

c̄2kθ
2
k

∏i−1
l=1 b

2
l

2c2k
ξ21 +

∏i−1
l=1 σl
2

ξ2i ,

Lbi−1ziξi ≤
(
bi−1 +

3
2
b4i−1

)
Lξ2i +

σi−1

6
Lξ2i−1,
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L

i−1∑
j=3

i−1∏
l=j−1

blzjξi ≤
1
6
σi−1Lξ

2
i−1 +

∏i−1
l=2 σl
2i−1

Lξ22 +
i−2∑
j=3

∏i−1
l=j σl

2i−j
Lξ2j

+ 3
i−1∑
j=3

2i−j−1(1 + b2j−1)
i−1∏
l=j−1

b2lLξ
2
i . (35)

Substituting (35) into (34) yields

V̇i ≤−
i−1∏
j=1

σj

( L

2i+1
−Θk

)
‖ε‖2 −

i−1∏
j=1

σj

( L

2i−1
− ωi,k

)
ξ21 −

i−1∑
j=2

i−1∏
l=j

σl

( L

2i−j
− ωj

)
ξ2j

−
i−1∏
j=2

σj

(
σ1 −

b21
4

(
1 +

i−1∑
p=2

p∏
l=2

b2l

)) L̇
L
ξ21 −

i−1∑
j=2

i−1∏
l=j+1

σl

(
σj −

1
4

i−1∑
p=j

p∏
l=j

b2l

) L̇
L
ξ2j

− L̇

L
ξ2i −

∏i−1
l=1 σla1

2
z2
1 +

∏i−1
l=1 σl
4

n∑
j=i+1

z2
j + ξ2i

( i−1∏
l=1

σl + L
(3σi−1

2
+
(
2i +

2i−2

c2k

)
×
(
ai +

i−1∑
j=2

i−1∏
l=j

blaj
)2 + bi−1 +

3
2
b4i−1 +

(
2i−2b41c̄

2
k + 2i−3b21c̄

2
k + 2ib21c̄

2
k

) i−1∏
l=2

b2l

+ 3
i−1∑
j=3

2i−j−1(1 + b2j−1)
i−1∏
l=j−1

b2l

))
+ Lξiαi + Lξiξi+1

(36)

where ωi,k = ωi−1,k + c̄2kθ
2
k

∏i−1
l=1 b

2
l /(2c

2
k) is an unknown constant.

Choosing the virtual controller αi = −biξi with

bi ≥ max
k∈M

{
1 +

3σi−1

2
+
(
2i +

2i−2

c2k

)
×
(
ai +

i−1∑
j=2

i−1∏
l=j

blaj
)2 + bi−1 +

3
2
b4i−1

+
(
2i−2b41c̄

2
k + 2i−3b21c̄

2
k + 2ib21c̄

2
k

) i−1∏
l=2

b2l + 3
i−1∑
j=3

2i−j−1(1 + b2j−1)
i−1∏
l=j−1

b2l

)}
and zi+1 ≤ 2ξ2i+1 + 2b2i ξ

2
i , one arrives at

V̇i ≤−
i−1∏
j=1

σj

(
L

2i+1
−Θk

)
‖ε‖2 −

i−1∏
j=1

σj

(
L

2i−1
− ωi,k

)
ξ21 −

i∑
j=2

i−1∏
l=j

σl

(
L

2i−j
− ωj

)
ξ2j

−
i−1∏
j=2

σj

(
σ1 −

b21
4

(
1 +

i−1∑
p=2

p∏
l=2

b2l

)) L̇

L
ξ21 −

i−1∑
j=2

i−1∏
l=j+1

σl

σj − 1
4

i−1∑
p=j

p∏
l=j

b2l

 L̇

L
ξ2j

− L̇

L
ξ2i −

∏i−1
l=1 σla1

2
z2
1 +

∏i−1
l=1 σl
2

ξ2i+1 +
∏i−1
l=1 σl
4

n∑
j=i+2

z2
j + Lξiξi+1

(37)
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where ωi = (1 + b2i /2)
∏i−1
l=1 σl.

This completes the inductive proof.

Step n: Employing the inductive argument, there is a positive definite and proper Lya-
punov function Vn = σn−1Vn−1(ε, z1, ξ1, . . . , ξn−1) + 1

2ξ
2
n with constant σn−1 ≥ 1 to be

determined later, such that

V̇n ≤−
n−1∏
j=1

σj

( L

2n+1
−Θk

)
‖ε‖2 −

n−1∏
j=1

σj

( L

2n−1
− ωn,k

)
ξ21 −

n−1∑
j=2

n−1∏
l=j

σl

( L

2n−j
− ωj

)
ξ2j

−
n−1∏
j=2

σj

(
σ1 −

b21
4

(
1 +

n−1∑
p=2

p∏
l=2

b2l

)) L̇
L
ξ21 −

n−1∑
j=2

n−1∏
l=j+1

σl

(
σj −

1
4

n−1∑
p=j

p∏
l=j

b2l

) L̇
L
ξ2j

− L̇

L
ξ2n −

∏i−1
l=1 σla1

2
z2
1 + ξ2n

( n−1∏
l=1

σl + L
(3σn−1

2
+
(
2n +

2n−2

c2k

)
×
(
an

+
n−1∑
j=2

i−1∏
l=j

blaj
)2 + bn−1 +

3
2
b4n−1 +

(
2n−2b41c̄

2
k + 2n−3b21c̄

2
k + 2nb21c̄

2
k

) n−1∏
l=2

b2l

+ 3
n−1∑
j=3

2n−j−1(1 + b2j−1)
n−1∏
l=j−1

b2l

))
+
gn

Ln
ξnu

(38)

where ωn,k = ωn−1,k + c̄2kθ
2
k

∏n−1
l=1 b

2
l /(2c

2
k) is an unknown constant.

Designing the controller

u = −g−nLn+1bnξn = −g−n
n∑
j=2

Ln+1−j
n∏
l=j

blx̂j − g−nLn
n∏
l=1

bly (39)

where

bn ≥ max
k∈M

{
1 +

3σn−1

2
+
(
2n +

2n−2

c2k

)
×
(
an +

n−1∑
j=2

n−1∏
l=j

blaj
)2 + bn−1 +

3
2
b4n−1

+
(
2n−2b41c̄

2
k + 2n−3b21c̄

2
k + 2nb21c̄

2
k

) n−1∏
l=2

b2l + 3
n−1∑
j=3

2n−j−1(1 + b2j−1)
n−1∏
l=j−1

b2l

}
leads to

V̇n ≤−
n−1∏
j=1

σj

( L

2n+1
−Θk

)
‖ε‖2 −

n−1∏
j=1

σj

( L

2n−1
− ωn,k

)
ξ21 −

n∑
j=2

n−1∏
l=j

σl

( L

2n−j
− ωj

)
ξ2j

−
n−1∏
j=2

σj

(
σ1 −

b21
4

(
1 +

n−1∑
p=2

p∏
l=2

b2l

)) L̇
L
ξ21 −

n−1∑
j=2

n−1∏
l=j+1

σl

(
σj −

1
4

n−1∑
p=j

p∏
l=j

b2l

) L̇
L
ξ2j
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− L̇

L
ξ2n −

∏n−1
l=1 σla1

2
z2
1

(40)

where ωn =
∏n−1
l=1 σl.

Finally, we select σj , j = 1, . . . , n− 1 satisfying

σ1 ≥ max

{
1,
b21
4

(
1 +

n−1∑
p=2

p∏
l=2

b2l

)}
,

σj ≥ max

1,
1
4

n−1∑
p=j

p∏
l=j

b2l

 , j = 2, . . . , n− 1, (41)

and take

Θ̄ = max
k∈M

{ n−1∏
l=1

σlΘk,

n−1∏
l=1

σlωn,k,

n−1∏
l=j

σlωj , j = 2, . . . , n
}
,

ρ = min

{∏n−1
l=1 σl
2n+1

,

∏n−1
l=1 σla1

2
,

∏n−1
l=j σl

2n−j
, j = 2, . . . , n

}
,

such that (40) becomes

V̇n ≤ −(ρL− Θ̄)(‖ε‖2 + ‖ξ‖2)− ρz2
1 (42)

where ξ = (ξ1, . . . , ξn)T .

Remark 3.1. Dynamic gain L increases a freedom degree of switched uncertain nonlin-
ear system. Merged with common Lyapunov idea and observer construction technique,
it can effectively dominate all the possible uncertainties. In addition, it will play a key
role in the proof that all signals of closed-loop switched system are bounded. However,
the introduction of L gives rise to complicated control design and stability analysis.

3.2. Stability analysis

In this subsection, Let x̂ = (x̂1, . . . , x̂n)T . Our objective is that starting from any initial
condition (η(0), x̂(0)) ∈ Rn × Rn and L(0) = 1, there is an adaptive output-feedback
controller such that

(i) the solution (η(t), x̂(t), L(t)) of closed-loop system well-defined on [0,∞) is unique
and globally bounded;

(ii) limt→+∞(η(t), x̂(t)) = 0 and limt→+∞ L(t) = L̄ ∈ R+.

Now, we will show that the solution (η(t), x̂(t), L(t)) exists and is unique on the
maximal interval [0, tf ) for 0 < tf ≤ +∞. This can be done by a contradiction argument.
Firstly, we claim L(t) is bounded on [0, tf ). Suppose limt→tf L(t) = +∞. Since L̇(t) ≥
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0, ∀t ≥ 0, L(t) is a monotone nondecreasing function. Hence, there is a finite time
T ∈ [0, tf ) such that L(t) ≥ (ρ+ Θ̄)/ρ, ∀t ∈ [T, tf ). This together with (42) yields

V̇ ≤ −ρ(‖ε‖2 + ‖ξ‖2)− ρz2
1 , ∀t ∈ [T, tf ). (43)

As a result,

+∞ = L(tf )− L(T ) =
∫ tf

T

L̇(t)dt ≤ −
∫ tf

T

V̇ (t)
ρ

dt ≤ V (T )
ρ

< +∞,

which is a contradiction. This implies that L(t) is bounded on [0, tf ) and limt→tf L(t) =
L̄.

In the following, we will show the boundedness of z on [0, tf ). Consider the Lyapunov
function V (z) = zTPz for the z-dynamic system of (11). A simple calculation leads to

V̇ (z) = LzT (PA+ATP )z +
2
Ln

zTPBu− L̇

L
zT (PD +DP )z

≤ −L
2
‖z‖2 + 2Lb2n‖P‖2ξ2n ≤ −

1
2
‖z‖2 + 2b2n‖P‖2LL̇. (44)

Thus, for ∀t ∈ [0, tf ), one gives

zT (t)Pz(t) ≤ zT (0)Pz(0) + b2n‖P‖2L̄2,

from which, it follows that for ∀t ∈ [0, tf )

‖z(t)‖2 ≤ 1
λmin(P )

(
zT (0)Pz(0) + b2n‖P‖2L̄2

)
,∫ t

0

‖z(s)‖2 ds ≤ 2(zT (0)Pz(0) + b2n‖P‖2L̄2). (45)

This implies the boundedness of z(t) and
∫ t
0
‖z(s)‖2 ds on [0, tf ).

Then, we will claim that ε is bounded on [0, tf ). To this end, we introduce the change
of coordinates

ε̄i =
xi − x̂i
L∗i

, i = 1, . . . , n

where L∗ is a positive constant satisfying

L∗ = max
k∈M

{
L̄,Θk + 3

}
. (46)

As a consequence, the error dynamic system (11) is transformed into

ε̄ = L∗Aε̄+ L∗aε̄1 − LΛ1aε̄1 + Λ2ax1 + F ∗k (47)

where ε̄ = (ε̄1, . . . , ε̄n), Λ1 = diag{1, L/L∗, . . . , (L/L∗)n−1},
Λ2 = diag{L/L∗, . . . , (L/L∗)n} and F ∗k = (f1,k/L∗, · · · , fn,k/L∗n)T .
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Choosing the Lyapunov function of (47) on [0, tf ) of the form V (ε̄) = ε̄TP ε̄, one
obtains

V̇ (ε̄) = −L∗‖ε̄‖2 + 2L∗ε̄TPaε̄1 − 2Lε̄TPΛ1aε̄1 + 2ε̄TPΛ2ax1 + 2ε̄TPF ∗k . (48)

By completion of square and L/L∗ ≤ 1, it follows that

2L∗ε̄TPaε̄1 ≤ L∗2‖Pa‖2ε̄21 + ‖ε̄‖2,
2Lε̄TPΛ1aε̄1 ≤ L2‖PΛ1a‖2ε̄21 + ‖ε̄‖2,

2ε̄TPΛ2ax1 ≤
L2‖PΛ2a‖2

c2k
ξ21 + ‖ε̄‖2,

2ε̄TPF ∗k ≤ 2θk‖P‖‖ε̄‖

(
n
|ξ1|L
ckL

∗ + n

n∑
i=2

( L
L∗

)i
|zi|+ n

√
n‖ε̄‖

)
≤ 1

2
ξ21 +

1
4

n∑
i=2

z2
i

+
(

2θ2kn
2‖P‖2L2

c2kL
∗2 + 2θkn

√
n‖P‖+ 4θ2kn

2(n− 1)
( L
L∗

)2i

‖P‖2
)
‖ε̄‖2

≤ 1
2
ξ21 +

1
4

n∑
i=2

z2
i + Θk‖ε̄‖2, (49)

Substituting (49) into (48) on [0, tf ) yields

V̇ (ε̄) ≤(L∗ −Θk − 3)‖ε̄‖2 +
1
4

n∑
i=2

z2
i +

(1
2

+
L2‖PΛ2a‖2

c2k

)
ξ21 +

(
L∗2‖Pa‖2

+ L2‖PΛ1a‖2
)
ε̄21 ≤ −‖ε̄‖2 +

1
4
‖z(t)‖2 +

(1
2

+
L2‖PΛ2a‖2

c2k

)
ξ21

+
(
L∗2‖Pa‖2 + L2‖PΛ1a‖2

)(2L2ξ21
L∗2c2k

+
2L2z2

1

L∗2

)
≤− ‖ε̄‖2 +

1
4
‖z(t)‖2 + Θ̃ξ21 + Θ̃z2

1 ≤ −‖ε̄‖2 +
1
4
‖z(t)‖2 + Θ̃L̇ (50)

where

Θ̃ = max
k∈M

{1
2

+
L̄2‖PΛ2a‖2

c2k
+ 2L̄2 ‖Pa‖2

c2k
+ 2L̄2 ‖PΛ1a‖2

c2k
, 2L̄2‖Pa‖2 + 2L̄2‖PΛ1a‖2

}
.

From (50), it can be concluded that for ∀t ∈ [0, tf )

ε̄T (t)P ε̄(t) ≤ ε̄T (0)P ε̄(0)−
∫ t

0

‖ε̄(s)‖2 ds+ Θ̃(L(t)− L(0)) +
1
4

∫ t

0

‖z(s)‖2 ds,

which implies

‖ε̄(t)‖2 ≤ 1
λmin(P )

(
ε̄T (0)P ε̄(0) + Θ̃L̄+

1
4

∫ t

0

‖z(s)‖2 ds
)
,∫ t

0

‖ε̄(s)‖2 ds ≤ ε̄T (0)P ε̄(0) + Θ̃L̄+
1
4

∫ t

0

‖z(s)‖2 ds. (51)
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Since z(t) and
∫ t
0
‖z(s)‖2 ds are bounded on [0, tf ), it can be seen from (51) that ε̄(t)

and
∫ t
0
‖ε̄(s)‖2 ds are bounded on [0, tf ). By the boundedness of L(t) and the definition

of ε̄i, εi, i = 1, . . . , n, it can be easily concluded that ε(t) and
∫ t
0
‖ε(s)‖2 ds are bounded

on [0, tf ).
Up to now, the bondedness of (z(t), ε(t), L(t)) have been proved on maximal inter-

val [0, tf ). With the definition of zi and εi, i = 1, . . . , n in mind, one obtains that
(η(t), x̂(t), L(t)) is bounded on maximal interval [0, tf ).

Moreover, it can be shown that tf = +∞. This can be also done by a contradiction
argument. Suppose tf < +∞. Then tf would be a finite-escape time, which means
that at least one component of the solution (x(t), x̂(t), L(t)) would tend to infinity when
t → tf . However, the continuity of the solution guarantees (x(t), x̂(t), L(t)) is bounded
at t = tf owing to the boundedness of (x(t), x̂(t), L(t)) on [0, tf ). This is an apparent
contradiction. As a consequence, the solution of the closed-loop system is bounded over
[0,+∞).

On the other hand, by the boundedness of (z(t), ε(t), L(t)) on [0,+∞), it can be
deduced that ż(t) and ε̇(t) are bounded on [0,+∞). Noting that

∫ +∞
0
‖z(t)‖2 dt <

+∞ and
∫ +∞
0
‖ε(t)‖2 dt < +∞, by Barbalat’s lemma, one has limt→+∞ z(t) = 0 and

limt→+∞ ε(t) = 0. From the definition of L(t), zi and εi, i = 1, . . . , n, it follows that
limt→+∞ η(t) = limt→+∞ x(t) = 0, limt→+∞ x̂(t) = 0 and limt→+∞ L(t) = L̄ ∈ R+.

4. AN ILLUSTRATIVE EXAMPLE

Consider the following switched uncertain nonlinear system:

η̇1 = g1η2 + φ1,σ(t)(t, η, d(t)),
η̇2 = g2u+ φ2,σ(t)(t, η, d(t)),
y = c1,σ(t)η1 + c2,σ(t) sin η1 (52)

where σ(t) : [0,+∞)→M = {1, 2}, φ11(t, η, d(t)) = θ11η1 + d11(t)η1 sin2 η2,
φ1,2(t, η, d(t)) = θ21d21(t)η1 sin η1, φ21(t, η, d(t)) = θ12η2 sin η1 + d12(t)θ13 ln(1 + θ14η

2
2),

φ22(t, η, d(t)) = θ22η2
1+η4

1
+ d22(t)η1 with θ11, θ12, θ13, θ14, θ21, θ22 being unknown constants

and d11, d12, d21, d22 being uncertain bounded parameters. 0.2 ≤ λ11, λ21 ≤ 1, 1.1 ≤
λ12, λ22 ≤ 2 and 0.9 ≤ g1, g2 ≤ 1.8. It can be shown that the switching nonlinear
system (52) satisfies Assumptions 2.1-2.3. Hence, by Theorem 3.1, a dynamic high-gain
observer and output-feedback controller can be designed as follows:

˙̂x1 = x̂2 − 2Lx̂1,

˙̂x2 = 0.92u− L2x̂1,

u = 0.9−2(−12.436Lx̂2 − 426.828L2y),

L̇ =
x̂2

1

L2
+
y2

L2
+
(
x̂2

L2
+ 34.322

y

L

)2

. (53)

In the simulation, we choose g1 = g2 = 1, θ11 = 1.5, θ12 = 0.8, θ13 = 0.5, θ14 = 0.7,
θ21 = 0.4, θ22 = 0.2 d11 = sin t, d12 = 0.6, d21 = 0.5, d22 = 0.3, and c11 = 0.2,
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Fig. 1. The responses of the closed-loop system (52) – (53).

c21 = 1, c12 = 1.1, c22 = 0.5. With the initial condition (η1(0), η2(0)) = (0.1,−0.3)
and (x̂1(0), x̂2(0), L(0)) = (0, 0, 1), Fig. 1 demonstrates the effectiveness of the proposed
control scheme.



280 ZHIBAO SONG, JUNYONG ZHAI AND HUI YE

5. CONCLUSION

This paper has discussed the problem of global output-feedback regulation for a class of
switched uncertain nonlinear systems under arbitrary switchings. This problem has been
solvable using the suitable observer and controller, which can be explicitly constructed.
It can be indicated that an appropriate choice of dynamic high gain will enable us to
achieve global asymptotic regulation of the closed-loop switched system. A remaining
problem to be investigated is how to design an adaptive output-feedback controller for
a class of high-order switched uncertain nonlinear systems with weaker assumptions.
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