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Abstract. A new weighted version of the Gompertz distribution is introduced. It is noted
that the model represents a mixture of classical Gompertz and second upper record value
of Gompertz densities, and using a certain transformation it gives a new version of the
two-parameter Lindley distribution. The model can be also regarded as a dual member of
the log-Lindley-X family. Various properties of the model are obtained, including hazard
rate function, moments, moment generating function, quantile function, skewness, kurtosis,
conditional moments, mean deviations, some types of entropy, mean residual lifetime and
stochastic orderings. Estimation of the model parameters is justified by the method of
maximum likelihood. Two real data sets are used to assess the performance of the model
among some classical and recent distributions based on some evaluation goodness-of-fit
statistics. As a result, the variance-covariance matrix and the confidence interval of the
parameters, and some theoretical measures have been calculated for such data for the
proposed model with discussions.

Keywords: continuous distribution; distributional properties; weight function; estima-
tion; estimated survival function
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1. Introduction

Selection of random samples with equal probabilities is preferred in order to obtain

valid estimators of the parameters. Although, there are situations where it is not

possible to do this selection. In such situations recorded data are biased because of

no well sampling frames and hence such data do not follow the usual probability dis-

tributions. Therefore, modeling such data needs a family of probability distributions

denoted as the family of weighted distributions, where the probability of a data value

is reweighted by a weight function to guarantee equal representation of all data. The

weighted distributions are found to be very useful in reliability, survival, forestry
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and ecological applications. The paper [38] was the first paper to apply them in

connection with sampling of wood cell, while [19] applied a weighted distribution to

analyze horizontal point sampling diameter increment data. Weighted distributions

were also used in [20] to recover the distribution of canopy heights from air-borne

laser scanner measurement. The weighted distribution is defined in [29] as follow.

For a nonnegative random variable X with density function f(x) and a nonneg-

ative weight function w(x) with finite nonzero expectation, the weighted random

variable X has the density function

fw(x) = w(x)f(x)/E[w(x)],

where E[w(x)] is the expected value of w(x) and represents a normalizing constant.

There are many weighted distributions introduced in the statistical literature, among

them the recent ones by the following authors. The paper [12] constructed a new class

of weighted exponential distribution using w(x) = 1 − e−αλx, α, λ > 0, [8] proposed

a two parameter weighted Lindley distribution with the size-bias weight function

w(x) = xc−1, c > 0, [14] introduced a class of weighted gamma distributions using

the same weight function as in [12], and [3] introduced a new weighted version of

the Lindley distribution. In this paper, we introduce a new weighted version of the

Gompertz distribution. The Gompertz distribution has the density function

(1.1) g(x) = λσeλx−σ(eλx
−1), x > 0; λ, σ > 0,

and its survival function is

G(x) = e−σ(eλx
−1).

The Gompertz distribution plays an important role in modeling reliability, survival

times, human mortality and actuarial data that have hazard rate with exponen-

tial increase. Therefore, it has received considerable attention from demographers

and actuaries. Some applications of the Gompertz distribution can be found in [30]

and [24]. The monograph [22] discussed the Gompertz distribution with a negative

rate of aging parameter. The paper [39] provided connections between the Gompertz

and other related distributions such as the Weibull and type I extreme value distri-

butions. Another version of Gompertz is the shifted Gompertz distribution discussed

by [5]. Recently, [17] provided an explicit expression of the expectation and variance

with limit distributions of extreme order statistics for the shifted Gompertz, and

[16] studied its parameter estimation via the least squares, maximum likelihood and

moments methods. The paper [6] proposed a generalization of the Gompertz distri-

bution that admits increasing, decreasing and bathtub hazard rate shapes by raising
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the cumulative distribution function of the classical Gompertz by an exponent. In

what follows we introduce a new weighted version of the Gompertz distribution, the

so-called weighted Gompertz (WGo) distribution.

Definition 1.1. A random variable X is said to follow a weighted Gompertz

distribution, if its probability density function (pdf) has the form

(1.2) f(x) =
λσ2

1 + λσ
(λ + eλx − 1)eλx−σ(eλx

−1), x > 0; λ, σ > 0.

Density function plots of the WGo distribution are displayed in Figure 1 for different

values of the parameters λ and σ.

The cumulative distribution function (cdf) of the WGo distribution is

(1.3) F (x) = 1−
(
1 +

σ(eλx − 1)

1 + λσ

)
e−σ(eλx

−1).

As a result of (1.2) and (1.3), the survival function and the hazard rate function of

the WGo distribution can be written as

(1.4) S(x) =
(
1 +

σ(eλx − 1)

1 + λσ

)
e−σ(eλx

−1)

and

h(x) =
λσ2(λ+ eλx − 1)eλx

1 + (λ+ eλx − 1)σ
.

Now, we give some motivations for the new WGo distribution:

Motivation 1.1. The pdf of the WGo distribution defined by (1.2) is obtained

by taking f(x) to be the density of the classical Gompertz distribution defined

by (1.1) with the weight function w(x) = λ + eλx − 1, x > 0, λ > 0, and the

expectation of w(x) is E[w(x)] = (1 + λσ)/σ.

Motivation 1.2. The pdf (1.2) can be rewritten as

f(x) =
λσ

1 + λσ
g(x) +

1

1 + λσ
k(x),

where g(x) is the density defined by (1.1) and k(x) is the pdf of the 2nd upper record

value of the classical Gompertz distribution given by

k(x) = λσ2(eλx − 1)eλx−σ(eλx
−1), x > 0; λ, σ > 0.

Thus, the density in (1.2) reveals that the WGo distribution is a two-component

mixture of the classical Gompertz and the 2nd upper record value of Gompertz

densities with mixing proportions λσ/(1 + λσ) and 1/(1 + λσ), respectively.
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Motivation 1.3. Using the log-Lindley family of distributions proposed by [9]

and the integral transformation

SG(x;λ, σ) =
σ2

1 + λσ

∫ G(x)

0

(λ− log t)tσ−1 dt,

where 0 < t < 1 and G(x) is the survival function of a distribution with density

function g(x), we get the log-Lindley-X family of distributions with the density

function

(1.5) f(x;λ, σ) =
σ2

1 + λσ
(λ − logG(x))(G(x))σ−1g(x).

The density defined by (1.5) can be viewed as a result of T −X family introduced

in [2].

Let G(x) be the survival function of the classical Gompertz with density (1.1),

then equation (1.5) gives the WGo density defined by (1.2). Therefore, the WGo

distribution can be regarded as a dual member of the family of log-Lindley-X family.

Motivation 1.4. Based on relations of reliability measures of weighted distri-

butions investigated by [13], we conclude the following. As the weight function

w(x) = λ + eλx − 1 is increasing and concave up, and the classical Gompertz with

density (1.1) has an increasing hazard rate, hence the hazard rate of WGo distribu-

tion defined by (1.5) is increasing. Also, Figure 2 confirms this result again.

Motivation 1.5. Under X having the WGo distribution defined by (1.2) and

the transformation Y = eλX − 1, the distribution of Y follows the two-parameter

Lindley distribution with the cdf and pdf

F (y) = 1−
(
1 +

σy

1 + λσ

)
e−σy, y > 0; λ, σ > 0,

and

f(y) =
σ2(λ+ y)

1 + λσ
e−σy,

respectively, which was not proposed before as only [33] and [4] introduced different

forms of the Lindley distribution with two parameters. Further, in the two equations

above, when λ = 1 we get the classical Lindley distribution that is used to study

stress strength reliability modeling (see [1]).

The rest of this paper is organized as follows. In Section 2, we present various

properties of the WGo distribution such as moment generating function, quantile
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function, skewness, kurtosis, conditional moments and mean deviations. Three popu-

lar entropies are investigated in Section 3, namely Shannon entropy, Rényi entropy

and Mathai-Haubold entropy and we get some numerical values for each one. Some

measures of residual lifetime and reversed residual lifetime of the WGo distribu-

tion are obtained in Section 4, such as density, survival and hazard rate functions

with mean and variance. In Section 5, stochastic ordering is used to compare WGo

random variables (rvs) and classical Gompertz rvs. Estimation of the distribution

parameters with the observed information matrix are verified in Section 6. Also,

the applicability of the WGo distribution is shown by considering two reliability

data sets, and related measures are obtained for both the data sets under the WGo

distribution.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

x

D
en
si
ty

F
u
n
ct
io
n

(a) λ=1

σ=0.1σ=0.3σ=0.5
σ=0.7σ=0.9

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

x

D
en
si
ty

F
u
n
ct
io
n

(b) λ=1

σ=1

σ=1.5

σ=3

σ=5

σ=10

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

x

D
en
si
ty

F
u
n
ct
io
n

(c) λ=1.5

σ=1
σ=1.5

σ=3

σ=5

σ=10

Figure 1. Plots of the density function (1.2) for some values of the parameters.
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Figure 2. Plots of the WGo hazard function for some values of the parameters.

2. Statistical properties of the model

In this section, we obtain some properties of the model, including the moments,

moment generating function, quantile function, skewness, kurtosis, conditional mo-

ments, and mean deviations.

2.1. Moments and moment generating function.

Proposition 2.1. Let X be a random variable with the WGo density func-

tion (1.2). Then the rth moment about the origin and the moment generating

function (mgf) of X are, respectively, given by

(2.1) E(Xr) =
∞∑

j=0

νj

( (λ− 1)

(j + 1)r+1
+

1

(j + 2)r+1

)
,

where

νj = (−1)r+j+1 eσσj+2

(1 + λσ)λr

Γ(r + 1)

Γ(j + 1)
, r = 1, 2, . . . ,

and

MX(t) =
eσσ−t/λ

1 + λσ

(
(λ− 1)σΓ

( t

λ
+ 1, σ

)
+ Γ

( t

λ
+ 2, σ

))
.

P r o o f. Using the definition of the moment about the origin with the series

expansion of e−σeλx

and after some algebraic manipulation, we obtain (2.1). Mean-
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while, the mgf of X is

MX(t) = E(etx) =
λσ2

1 + λσ

∫
∞

0

etx(λ+ eλx − 1)eλx−σ(eλx
−1) dx.

Letting y = σ(eλx − 1) implies

MX(t) =
σ

1 + λσ

∫
∞

0

(y + σ

σ

)t/λ

e−y
(
λ+

y + σ

σ
− 1

)
dy,

hence using the transformation u = (y + σ)/σ completes the proof.

�

In particular, using (2.1), the mean of the WGo distribution follows as

E(X) =
λσ2eσ

1 + λσ

∞∑

j=0

(−1)jσj

Γ(j + 1)

( λ− 1

λ2(j + 1)2
+

1

λ2(j + 2)2

)
.

Some numerical values for the mean and variance of the WGo distribution are dis-

played in Table 1 for some arbitrary choices of the distribution parameters. It is

observed that both of them decrease as the values of the parameters increase.

Parameters σ = 0.1

λ ↓ Mean Variance

1 2.74058 0.59728

1.5 1.80601 0.279711

2 1.34004 0.16425

2.5 1.06139 0.108953

3 0.8763 0.779791

3.5 0.744614 0.0587793

σ ↓ λ = 0.8

0.2 2.62243 0.810304

0.4 1.85985 0.642433

0.6 1.45995 0.517256

0.8 1.20476 0.423683

1 1.02575 0.352562

1.2 0.892672 0.297501

Table 1. Mean and variance for some arbitrary parameter values.

2.2. Quantile function. Quantiles are fundamental for estimation and simula-

tion of a distribution parameter, so we provide them for the WGo distribution in the
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next proposition. In it we give an explicit expression for quantile function Q(u) in

terms of the Lambert W function. For more details on W see [18].

Proposition 2.2. For a nonnegative continuous random variable X that follows

the WGo distribution, the quantile function Q(u) is given by

(2.2) X = Q(u) =
1

λ
ln
(
1− λ−

1

σ
−

1

σ
W [(u − 1)(1 + λσ)e−1−λ−σ]

)
, 0 < u < 1,

where W (·) is the Lambert function.

P r o o f. For any 0 < u < 1, we solve F (x) = u, x > 0, with respect to x, that is

(
1 +

σ(eλx − 1)

1 + λσ

)
e−σ(eλx

−1) = 1− u.

This equation can be written as

ln
(
1 +

σ(eλx − 1)

1 + λσ

)
− σ(eλx − 1) = ln(1 − u),

hence, from [18], we get the required proof. �

In particular, the median can be written as

Q(0.5) =
1

λ
ln
(
1− λ−

1

σ
−

1

σ
W

[
−

(1 + λσ)

2
e−1−λ−σ

])
.

2.3. Skewness and kurtosis based on quantiles. Skewness measures the de-

gree of the long tail while kurtosis is a measure of the degree of tail heaviness. Based

on quantile function Q(·). In [7] and [25] the skewness and kurtosis are defined,

respectively, as

SG =
Q(34 )− 2Q(12 ) +Q(14 )

Q(34 )−Q(14 )
,

and

KM =
Q(78 )−Q(58 )−Q(38 ) +Q(18 )

Q(68 )−Q(28 )
.

Therefore, Galton’s skewness and Moors’ kurtosis of the quantile function defined

by (2.2) can be obtained easily. Plots of those skewness and kurtosis for selected

values of σ as functions of λ, and for selected values of λ as functions of σ are shown

in Figures 3 and 4, respectively. These plots indicate that both measures increase

when σ increases and decrease when λ increases.
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Figure 3. Skewness and kurtosis for the WGo distribution as a function of λ, for some
values of σ.

0 1 2 3 4
0.0

0.1

0.2

0.3

0.4

0.5

0.6

S
k
ew

n
es
s

(c)

σ

λ=0.4

λ=0.6
λ=0.8 λ=0.9

0 1 2 3 4
0.0

0.1

0.2

0.3

0.4

0.5

0.6

K
u
rt
os
is

(d)

σ

λ=0.4

λ=0.6

λ=0.8
λ=0.9

Figure 4. Skewness and kurtosis for the WGo distribution as a function of σ, for some
values of λ.

At some places of the next section, we will make use of the following lemma.

Lemma 2.1. Let

J(z; r, λ, σ) =

∫ z

0

xrf(x) dx

=
λσ2eσ

1 + λσ

∞∑

j=0

(−1)jσj

j!

∫ z

0

xr(λ− 1 + eλx)eλ(j+1)x dx, r = 1, 2, . . . .
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Then we have

J(z; r, λ, σ) =
σ2eσ

1 + λσ

∞∑

j=0

(−1)j−r−1σj

λrΓ(j + 1)

×
( 1

(j + 1)r+1
(Γ(r + 1)− Γ(r + 1,−(j + 1)zλ))

+
1

(j + 2)r+1
(Γ(r + 1)− Γ(r + 1,−(j + 2)zλ))

)
.

2.4. Mode, conditional moments, and mean deviations. By differentiating

the pdf of the WGo distribution with respect to x as

f ′(x) = f(x)
(
λ− σλeλx +

λeλx

λ+ eλx − 1

)
,

and since f(x) ≻ 0, the mode is the solution of the equation with respect to x

λ(λ+ eλx − 1) + λeλx(1− σ(λ + eλx − 1)) = 0.

The above expression can be solved numerically via Mathematica Package.

In connection with lifetime distribution, it is important to determine the condi-

tional moments E(Xr | X > t), r = 1, 2, . . ., which are of interest in the predictive

inference.

Proposition 2.3. The conditional moment of the WGo distribution is

E(Xr | X > t) =
1 + λσ

1 + λσ + σ(eλt − 1)
eσ(e

λt
−1)(E(Xr)− J(t; r, λ, σ)),

where E(Xr) is defined by (2.1) and J(t; r, λ, σ) is given by Lemma 2.1.

P r o o f. The proof follows by applying the identity

E(Xr | X > t) =
1

S(t)

(
E(Xr)−

∫ t

0

xrf(x) dx

)
.

�

The mean deviations provide useful information about the characteristics of a pop-

ulation, namely the amount of dispersion, and it can be obtained from the first in-

complete moment. The mean deviations of X about the mean µ = E(X) and about

the median M can be expressed as δ = 2µF (µ) − 2m(µ) and µ = µ − 2m(M),

where F (µ) is obtained from (1.3) and m(z) = J(z; 1, λ, σ), where J(z; 1, λ, σ) can

be obtained from Lemma 2.1 for r = 1.
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3. Entropies

Entropy is a measure of randomness of systems which is widely used in areas like

physics, molecular imaging of tumors and sparse kernel density estimation. Three

popular entropy measures are the Shannon entropy [34], Rényi entropy [31] and the

Mathai-Haubold entropy [23] defined by

ηx = E(− log f(x)),(3.1)

IR(γ) =
1

1− γ
log

(∫

R

fγ(x) dx

)
,(3.2)

and

(3.3) JMH(δ) =

∫
R
(f(x))2−δ dx− 1

δ − 1
,

respectively, where γ > 0, γ 6= 1, δ 6= 1, and δ < 2. The JMH(δ) entropy is an

inaccuracy measure through disturbance or distortion of systems, and recall that

1− δ represents the strength of information in the distribution of interest.

Some recent applications of such entropies are as follows. Shannon entropy is used

to classify emergent behavior in a simulation of laser dynamics [10]; Rényi entropy

is used to estimate the number of components of a multicomponent nonstationary

signal [37] and to identify cardiac autonomic neuropathy in diabetes [15]; and Mathai-

Haubold entropy is employed to study the queuing theory [35].

The next three theorems give explicit expressions of those entropies for the WGo

distribution.

Theorem 3.1. The Shannon entropy for the WGo distribution is given by

ηx = log
(1 + λσ

λσ2

)
+

λσ + 2

λσ + 1
−

1

λσ + 1
(1− eλσEi(−λσ) + log λ+ λσ logλ)− λµx,

where µx is the mean of the WGo distribution and En(z) =
∫
∞

1
e−ztt−n dt is known

as the generalized exponential integral function.

P r o o f. By the definition of the Shannon entropy, we get

ηx = log(1 + λσ)− log(λσ2)− σ + σE(eλx)− E(log(λ+ eλx − 1))− λµx.

Making use of y = λ+ eλx − 1, we conclude that

E(log(λ+ eλx − 1)) =
1

1 + λσ
(1 − eλσEi(−λσ) + logλ+ λσ logλ).
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Also, substituting y = σ(eλx − 1), we obtain

E(eλx) =
σ

1 + λσ

∫
∞

0

(
λ− 1 +

(y + σ

σ

))(y + σ

σ

)
e−y dy = 1 +

λσ + 2

σ(λσ + 1)
.

Applying all the above results, we get

ηx = log
(1 + λσ

λσ2

)
+

λσ + 2

λσ + 1
−

1

λσ + 1
(1− eλσEi(−λσ) + log λ+ λσ logλ)− λµx,

which completes the proof. �

Some numerical values for the Shannon entropy are displayed in Table 2. It can be

observed that this entropy decreases with increasing λ and σ and can have negative

values.
Parameters σ = 0.5 λ = 1

λ ↓ S. Entropy σ ↓ S. Entropy

1 0.894545 0.2 1.07895

2 0.202791 0.4 0.957871

3 −0.212271 0.6 0.831738

4 −0.51055 0.8 0.710468

5 −0.743321 1.0 0.5968

6 −0.93398 1.2 0.491146

Table 2. Shannon entropy for several arbitrary parameter values.

Theorem 3.2. Let X have the pdf given by (1.2). Then the Rényi entropy of X

is given by

IR(γ) =
(2γ − 1)

1− γ
log(λσ) −

1

1− γ
log γ −

γ

1− γ
log(1 + λσ)

+
1

1− γ
log

( γ∑

j=0

γ−1∑

k=0

(
γ

j

)(
γ − 1

k

)
(−1)2(j+k)

( 1

γ

)j( 1

σγ

)k+j

Γ(j + k + 1)

)
.

P r o o f. Since

I(γ) =
( λσ2

1 + λσ

)γ
∫

∞

0

(λ+ eλx − 1)γeλγxe−σγ(eλx
−1) dx,

and due to y = e−σγ(eλx
−1), it follows that

I(γ) =
(λσ)2γ−1

γ(1 + λσ)γ

( λσ2

1 + λσ

)γ
∫ 1

0

(
1−

log y

σγλ

)γ(
1−

log y

σγ

)γ−1

dy.

By expanding the binomial terms above, we get the desired proof. �
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Some numerical values for the Rényi entropy are given in Table 3. It can be

noted that this entropy can take negative values which may be interpreted as loss of

information in physical systems. It can also be observed that this entropy decreases

with increasing λ and σ.

Parameters σ = 0.5, γ = 2 λ = 1, γ = 2

λ ↓ S. Entropy σ ↓ S. Entropy

1 0.81093 0.2 0.946249

2 0.133531 0.4 0.862895

3 −0.277632 0.6 0.755189

4 −0.575364 0.8 0.638495

5 −0.80866 1.0 0.521297

6 −1.00017 1.2 0.407844

Table 3. Rényi entropy for several arbitrary parameter values.

Theorem 3.3. The Mathai-Haubold entropy of the WGo distribution is

JMH(δ) =
1

δ − 1

(
λ2−δ

1 + λσ

2−δ∑

j=0

1−δ∑

k=0

(
2− δ

j

)(
1− δ

k

)
(−1)2(j+k)

( 1

λ

)j

×
( 1

σ

)j+k−1( 1

2− δ

)j+k+1

Γ(j + k + 1)− 1

)
.

P r o o f. Since

∫
∞

0

f2−δ(x) dx =
λσ2

1 + λσ

∫
∞

0

(λ+ eλx − 1)2−δeλ(2−δ)xe−σ(2−δ)xe−σ(2−δ)(eλx
−1) dx,

and by virtue of the transformation y = e−σ(2−δ)(eλx
−1), it follows that

∫
∞

0

f2−δ(x) dx

=
σλ2−δ

(1 + λσ)(2 − δ)

∫ 1

0

(
1−

1

σλ(2 − δ)
ln y

)2−δ(
1−

1

σ(2 − δ)
ln y

)1−δ

dy.

By expanding the binomial terms in the above integral, the proof is obtained. �

Some numerical values for the Mathai-Haubold entropy are summarized in Table 4.

It is seen that this entropy decreases with increasing λ and σ.
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Parameters σ = 0.5, δ = 1.5 λ = 1, δ = 1.5

λ ↓ M-H.Entropy σ ↓ M-H.Entropy

1 2.26599 0.2 2.65148

2 1.30286 0.4 2.38062

3 0.871031 0.6 2.16228

4 0.61286 0.8 1.98142

5 0.436806 1.0 1.82743

6 0.307142 1.2 1.6968

Table 4. Mathai-Haubold entropy for several arbitrary parameter values.

4. Residual life and reversed residual life functions

Residual life and reversed residual life random variables are used extensively in

reliability analysis and the risk theory. Consequently, we investigate some of their

related statistical functions, such as the survival function, mean and variance in

connection with the WGo distribution.

4.1. Residual lifetime function. The residual life is the period from time until

the time of failure and is defined by the conditional random variable R(t) := X − t |

X > t, t > 0.

Proposition 4.1. The survival function of the residual lifetime R(t) for the WGo

distribution is

(4.1) SR(t)
(x) =

(1 + λσ + σ(eλ(x+t) − 1))

(1 + λσ + σ(eλt − 1))
e−σeλt(eλx

−1), x > 0.

P r o o f. The proof follows from the identity SR(t)
(x) = S(x+ t)/S(t), where

S(·) is defined by equation (1.4). �

Corollary 4.1. Based on (4.1), the pdf and the hazard rate function of R(t) are,

respectively, given as

fR(t)
(x) =

λσ2(λ+ eλ(x+t) − 1)

(1 + λσ + σ(eλt − 1))
eλ(x+t)−σeλt(eλx

−1),

and

hR(t)
(x) =

λσ2(λ + eλ(x+t) − 1)

1 + (λ+ eλ(x+t) − 1)σ
eλ(x+t).

In reliability theory, the mean and variance residual lifetime have been studied in

recent years (see [11]).
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Proposition 4.2. The mean and variance of R(t) for the WGo distribution are

K(t) =
1

S(t)
(E(X)− J(t; 1, σ, λ)) − t, t > 0,

and

V (t) =
1

S(t)
(E(x2)− J(t; 2, λ, σ))− t2 − 2tK(t)− (K(t))2,

respectively, where E(X) and E(X2) can be obtained using (2.1), and J(t; 2, σ, λ) is

defined by Lemma 2.1 for r = 2.

P r o o f. The proof results by using the definitions of K(t) and V (t) given as

K(t) = E(R(t)) =
1

S(t)

∫
∞

t

xf(x) dx− t

and

V (t) = var(R(t)) =
2

S(t)

∫
∞

t

xS(x) dx− 2tK(t)− (K(t))2,

respectively. �

Some numerical values of the mean residual life are displayed in Table 5 for a set

of arbitrary choices of the parameters λ and σ at the time points t = 1, 2, 4, 6, 7. This

table shows that the mean residual life decreases with increasing the time points t,

and decreases with increasing λ and σ.

Parameters σ = 0.01

λ ↓ t → 1 2 4 6 7

1.0 4.0296 3.03717 1.21365 0.239331 0.905942

1.2 3.1905 2.20376 0.57221 0.061932 0.0187301

1.4 2.59143 1.61394 0.247748 0.016054 0.0039607

1.5 2.35192 1.38093 0.159531 0.0082261 0.0018357

1.6 2.14244 1.17954 0.101942 0.0042328 −7

Parameters λ = 0.5

σ ↓ t → 1 2 4 6 7

0.1 4.57473 3.63642 2.00249 0.907294 0.577058

0.3 2.66164 1.89771 0.837132 0.326663 0.19997

0.4 2.22679 1.5372 0.645554 0.246649 0.150418

0.5 1.91626 1.29066 0.524451 0.197985 0.120506

0.7 1.49803 0.974603 0.380451 0.141855 0.0861845

Table 5. Mean residual life function for several arbitrary parameter values.
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4.2. Reversed residual life function. The reversed residual life is the time

elapsed from the failure of a component given that its life satisfies X 6 t, and is

defined as the conditional random variable R(t) := t−X | X 6 t.

Proposition 4.3. The survival function of the reversed residual lifetime R(t) for

the WGo distribution is

(4.2) SR(t)(x) =
1 + λσ − (1 + λσ + σ(eλ(t−x) − 1))e−σ(eλ(t−x)

−1)

1 + λσ − (1 + λσ + σ(eλt − 1))e−σ(eλt−1)
, 0 6 x < t.

P r o o f. The proof follows from the expression SR(t)(x) =
F (t−x)
F (t) , where F (·) is

defined by (1.3). �

Corollary 4.2. Using (4.2), the pdf and the hazard rate function of R(t) are

fR(t)(x) =
λσ2(λ+ eλ(t−x) − 1)eλ(t−x)−σ(eλ(t−x)

−1)

1 + λσ − (1 + λσ + σ(eλt − 1))e−σ(eλt
−1)

and

hR(t)(x) =
λσ2(λ+ eλ(t−x) − 1)eλ(t−x)−σ(eλ(t−x)

−1)

1 + λσ − (1 + λσ(eλ(t−x) − 1))e−σ(eλ(t−x)
−1)

,

respectively.

Parameters σ = 0.01

λ ↓ t → 1 2 4 6 7

1.0 0.344729 0.469449 0.562217 1.09024 1.9722

1.2 0.325766 0.417113 0.544483 1.81141 2.81137

1.4 0.307385 0.373143 0.627414 2.41108 3.41108

1.5 0.298445 0.354272 0.729905 2.65097 3.65097

1.6 0.289689 0.337442 0.877506 2.86086 3.86086

Parameters λ = 0.5

σ ↓ t → 1 2 4 6 7

0.1 0.398499 0.955288 0.993448 1.42368 1.84595

0.3 0.408641 0.703175 1.28671 2.50893 3.45589

0.4 0.41375 0.7278 1.44399 2.9476 3.93636

0.5 0.418882 0.752808 1.60246 3.29467 4.29251

0.7 0.429206 0.803733 1.90635 3.79379 4.79372

Table 6. Mean reversed residual life function for several arbitrary parameter values.
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Proposition 4.4. The mean and the variance of R(t) for the WGo distribution

are given by

L(t) = t−
J(t; 1, λ, σ)

F (t)

and

W (t) = 2tL(t)− (L(t))2 − t2 +
J(t; 2, λ, σ)

F (t)
,

respectively.

P r o o f. The proof comes directly using the definitions of L(t) and W (t) given

by

L(t) = E(R(t)) = t−
1

F (t)

∫ t

0

xf(x) dx

and

W (t) = var(R(t)) = 2tL(t)− (L(t))2 −
2

F (t)

∫ t

0

xF (x) dx,

respectively. In Table 6 we give some numerical values for the mean reversed life

with arbitrary choices of the parameters λ and σ at the time points t = 1, 2, 4, 6, 7.

It can be seen that the mean reversed residual life increases with increasing the time

points t and increases with increasing λ and σ.

5. Stochastic ordering

Stochastic ordering quantifies the concept of one random variable being smaller

than another, that is, a measure to judge the comparative behavior of random vari-

ables. In this regard, common practice of comparison is done by cumulative distribu-

tion function, hazard function, likelihood ratio function and their related functions.

The orders considered here are the likelihood ratio 6lr, stochastic order 6st, haz-

ard rate order 6hr, and mean residual life order 6mrl, which in general imply the

implications

(5.1) X 6lr Y ⇒ X 6hr Y ⇒ X 6mrl⇒ X 6st Y

(see [32]) where X and Y are two continuous random variables.

The next theorems give some results on stochastic ordering of the WGo distribu-

tion.
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Theorem 5.1. Let X ∼ WGo(λ, σ1) and Y ∼ WGo(λ, σ2). If σ2 < σ1. Then

X 6lr Y and hence X 6hr Y , X 6mrl Y and X 6st Y .

P r o o f. The density ratio is given as

fX(x)

fY (x)
=

σ2
1(1 + λσ2)

σ2
2(1 + λσ1)

e−(eλx
−1)(σ1−σ2).

Taking the derivative of the above expression with respect to x, we get

d

dx

[fX(x)

fY (x)

]
= (σ2 − σ1)λe

λx fX(x)

fY (x)
.

Since σ2 < σ1, then
d
dx

[ fX (x)
fY (x)

]
< 0. Hence, fX (x)

fY (x) is decreasing in x. That is X 6lr Y .

The remaining statements follow from the implication in (5.1), which completes the

proof. �

Theorem 5.2. Let X ∼ Go(λ, σ1) and Y ∼ WGo(λ, σ2). If σ2 < σ1, then

X 6lr Y and hence X 6hr Y , X 6mrl Y and X 6st Y .

P r o o f. The density ratio is given as

fX(x)

fY (x)
=

σ1(1 + λσ)

σ2
2(λ + eλx − 1)

e−(eλx
−1)(σ1−σ2).

Taking the derivative with respect to x for the above expression, we obtain

d

dx

[fX(x)

fY (x)

]
=

(
(σ2 − σ1)λe

λx −
λeλx

λ+ eλx − 1

)fX(x)

fY (x)
,

since for σ2 < σ1 we have
d
dx

[fX (x)
fY (x)

]
< 0, hence fX (x)

fY (x) is decreasing in x. That is

X 6lr Y and the remaining statements follow from the implication in (5.1). �

The above theorem shows the flexibility of WGo distribution is better than that

of the classical Gompertz distribution.
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6. Estimation and data applications

6.1. Estimation with inference. In this section, the method of maximum like-

lihood is considered to estimate the unknown parameters of the WGo distribution.

Let x1, x2, . . . , xn be a random sample of size n from the WGo distribution with

parameters λ and σ. Then the corresponding log-likelihood function is

(6.1) l = n log(λ) + 2n log(σ)− n log(1 + λσ)

+ λ
n∑

i=1

xi − σ
n∑

i=1

(eλxi − 1) +
n∑

i=1

log(λ + eλxi − 1).

Differentiating (6.1) with respect to λ and σ, respectively, we have

∂l

∂λ
=

n

λ
−

nσ

1 + λσ
+

n∑

i=1

xi − σ

n∑

i=1

xie
λxi +

n∑

i=1

1 + xie
λxi

λ+ eλxi − 1
,(6.2)

∂l

∂σ
=

2n

σ
−

nλ

1 + λσ
−

n∑

i=1

(eλxi − 1).(6.3)

The maximum likelihood estimators (MLEs) λ̂ and σ̂ of the parameters λ and σ,

respectively, can be obtained by solving the above nonlinear equations numerically

for λ and σ using the statistical software Mathematica package. For the interval

estimation and hypotheses tests on the model parameters, we require the observed

information matrix. The corresponding 2 × 2 observed information matrix In =

In(λ, σ) is

In = −

(
Iλλ Iλσ

Iσλ Iσσ

)
.

The elements of In are given by

Iλλ = −
n

λ2
+

nσ2

(1 + λσ)2
− σ

n∑

i=1

x2
i e

λxi +

n∑

i=1

x2
i e

λxi(λ+ eλxi − 1)− (1 + xie
λx
i )2

(λ+ eλxi − 1)2
,

Iλσ = Iσλ = −
n

(1 + λσ)2
−

n∑

i=1

xie
λxi ,

and

Iσσ = −
2n

σ2
+

nλ2

(1 + λσ)2
,

hence the variance covariance matrix would be I−1
n (λ, σ), where I−1

n (λ, σ) is the

inverse of In(λ, σ). The approximate (1 − δ)100% confidence intervals (CIs) for the

parameters λ and σ are λ̂± Zδ/2

√
var(λ̂) and σ̂ ± Zδ/2

√
var(σ̂), respectively, where
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var(λ̂) and var(σ̂) are the variances of λ̂ and σ̂, which are given by the diagonal

elements of I−1
n (λ, σ), and Zδ/2 is the upper (δ/2) percentile of the standard normal

distribution.

6.2. Real data applications. Two reliability data sets are used to assess the

performance of the WGo distribution among some classical and recent continuous

distributions based on a set of goodness-of-fit tests. The compared distributions are

⊲ Muth (Mu) distribution [26] with density function

g(x) = (eαx − α)eαx−1/α(eαx
−1), x > 0, α ∈ (0, 1].

⊲ Generalized Lindley (GL) distribution [27] with density function

g(x) =
γα2

1 + α
(1 + x)

(
1−

1 + α+ αx

1 + α
e−αx

)γ−1

e−αx, x > 0, α > 0, γ > 0.

⊲ Exponentiated exponential (EE) distribution with density function

g(x) = αλe−λx(1− e−λx)α−1, x > 0, α > 0, λ > 0.

⊲ Linear exponential (LE) distribution with density function

g(x) = (α + βx)e−αx−x2β/2, x > 0, α > 0, β > 0.

⊲ Gompertz (Go) distribution with density function

g(x) = λσeλx−σ(eλx
−1), x > 0, σ > 0, λ > 0.

⊲ Shifted Gompertz (SGo) distribution [5] with density function

g(x) = βe−βx−αe−βx

(1 + α(1− e−βx)), x > 0, α > 0, β > 0.

⊲ Gamma (Ga) distribution with density function

g(x) =
1

Γ(α)βα
xα−1e−x/β, x > 0, α > 0, β > 0.

⊲ Gomperz-Makeham (GK) distribution [21] with density function

g(x) = (αeβx + λ)e−λx−(α/β)(eβx−1), x > 0, α > 0, β > 0, λ > 0.
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⊲ Weighted exponential (WE) distribution [12] with density function

g(x) =
α+ 1

α
λe−λx(1− e−αλx), x > 0, α > 0, λ > 0.

⊲ Weighted Lindley (WL) distribution [8] with density function

g(x) =
θc+1

(θ + c)Γ(c)
xc−1(1 + x)e−θx, x > 0, c > 0, θ > 0.

⊲ New weighted Lindley (NWL) distribution [3] with density function

g(x) =
λ2(1 + α)2

αλ(1 + α) + α(2 + α)
(1 + x)(1 − e−λαx)e−λx, x > 0, α > 0, λ > 0.

The first data set shows the breaking stress of carbon fibers of 50 mm in length

(see [28]) listed in Table 7. The second data set is given in Table 8 and represents

the strength of 1.5 cm glass fibers measures at the National Physical Laboratory in

England (see [36]).

3.70 2.74 2.73 2.50 3.60 3.11 3.27 2.87 1.47 3.11 3.56

4.42 2.41 3.19 3.22 1.69 3.28 3.09 1.87 3.15 4.90 1.57

2.67 2.93 3.22 3.39 2.81 4.20 3.33 2.55 3.31 3.31 2.85

1.25 4.38 1.84 0.39 3.68 2.48 0.85 1.61 2.79 4.70 2.03

1.89 2.88 2.82 2.05 3.65 3.75 2.43 2.95 2.97 3.39 2.96

2.35 2.55 2.59 2.03 1.61 2.12 3.15 1.08 2.56 1.80 2.53

Table 7. Breaking stress of carbon fibers data.

0.55 0.74 0.77 0.81 0.84 0.93 1.04 1.11 1.13 1.24 1.25

1.27 1.28 1.29 1.30 1.36 1.39 1.42 1.48 1.48 1.49 1.50

1.50 1.51 1.52 1.53 1.54 1.55 1.55 1.58 1.59 1.60 1.61

1.61 1.61 1.61 1.62 1.62 1.63 1.64 1.66 1.66 1.66 1.67

1.68 1.68 1.69 2.00 2.01 2.24

Table 8. Strength of 1.5 cm glass fibers data.

For each data set, we estimate the unknown parameters of each distribution by

the maximum-likelihood method, and with those estimates, we obtain the values of

Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), Consis-

tent Akaike Information Criterion (CAIC) and Hannan-Quinn Information Criterion

(HQIC). Further, we get the Kolmogorov-Smirnov (K-S) statistic with its corre-

sponding p-value, Cramer-von Mises (W ∗) and Anderson-Darling (A∗) goodness-of-

fit statistics. The results obtained are presented in Tables 9–12. As we can see, the

289



smallest values of the AIC, BIC, CAIC, HQIC, K-S, W ∗, and A∗ and the largest

value of the p-value are obtained for the WGo distribution. Therefore, we conclude

that the WGo distribution provides the best fit among the compared distributions.

This conclusion is confirmed again by Figures 5 and 6, where the estimated densities

and estimated survival functions for the considered distributions of both data sets

are plotted based on the density and the survival function of each distribution and

replacing the parameters with their MLEs given in Tables 9 and 11.
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Figure 5. Estimated densities and survival functions for the considered distributions for
breaking stress of carbon fibers data.
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Figure 6. Estimated densities and survival functions for the considered distributions for
strength of 1.5 cm glass of fibers data.

290



Consequently, the variance-covariance matrices of the MLEs of the WGo model

for breaking stress and glass fibers data sets are
(

0.00706446 −0.00514303

−0.00514303 0.00406333

)

and (
0.0572936 −0.00421193

−0.00421193 0.000329407

)
,

respectively. Note that the diagonal entries of these matrices are the variances of

the MLEs of the WGo parameters λ and σ of each of the data sets while the values

−0.00514303 and −0.00421193 represent the covariances between the MLEs of λ

and σ for the first and second data sets, respectively. Also, the 90% and 95%

confidence intervals for the WGo parameters λ and σ are given in Table 13 for

both the data sets.

Table 14 gives some descriptive statistics for both the data sets and it is noted that

the two data sets have negative skewness and positive kurtosis. Meanwhile, some

of the corresponding theoretical measures of the WGo distribution of both the data

sets are summarized in Table 15, where the parameters of the WGo are replaced by

their corresponding MLEs for each data set using Tables 9 and 11. From Tables 14

and 15 it can be concluded that the considered measures of the WGo distribution

are close to the sample measures given by Table 14 for both the data sets.

Distributions Estimates AIC BIC CAIC HQIC

Mu(α) 0.05676 — — 364.986 367.175 365.851 365.048

GL(α, γ) 1.2460 7.0410 — 191.594 195.973 191.784 193.324

EE(α, λ) 9.19917 1.00755 — 194.745 199.124 194.935 196.475

LE(α, β) 1.562 ·10−19 0.23815 — 200.417 204.796 202.147 200.607

Go(λ, σ) 0.08047 4.27515 — 257.638 262.017 257.828 259.368

SGo(α, β) 11.4174 1.09324 — 189.253 193.632 189.444 190.984

Ga(α, β) 7.48803 0.368528 — 186.335 190.714 186.526 188.066

GK(α, β, λ) 0.037281 1.07068 5.113 ·10−9 182.177 188.746 182.564 184.772

WE(α, β) 4.907 ·10−7 0.724757 — 228.008 232.387 228.198 229.738

WL(c, θ) 6.99868 2.79513 — 186.049 190.238 186.049 187.589

NWL(α, β) 0.0000152 0.96886 — 217.452 221.831 217.642 219.182

WGo(λ, σ) 0.75910 0.20431 — 177.023 181.402 177.213 178.753

Table 9. The MLEs of the parameters for some models fitted to the breaking stress of
carbon fibers data and the values of AIC, BIC, CAIC, and HQIC statistics.
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Distributions K-S p-value −logL W ∗ A∗

MU 0.712623 0.0000 181.493 14.228 90.6943

GL 0.146994 0.115416 93.797 0.330919 1.8593

EE 0.15495 0.0840311 95.372 0.376008 2.1188

LE 0.226512 0.0022894 98.2084 1.01888 5.20603

Go 0.361949 6.177 · 10−8 126.819 3.01643 14.485

SGo 0.136481 0.17097 92.6266 0.289118 1.65346

Ga 0.13284 0.194487 91.1675 0.248153 1.32674

GK 0.111974 0.379499 88.0884 0.14077 0.95967

WE 0.250166 0.0005168 112.004 1.54251 8.09264

WL 0.131825 0.201544 90.9291 0.24376 1.30117

NWL 0.227033 0.0022191 106.726 1.21146 6.51955

WGo 0.097974 0.550746 86.5114 0.090301 0.61579

Table 10. The values of K-S, p-value, −logL, W ∗ and A∗ statistics for some models fitted
to the breaking stress of carbon fibers data.

Distributions Estimates AIC BIC CAIC HQIC

Mu(α) 0.882517 — — 86.8127 88.7445 86.8943 87.5509

GL(α, γ) 3.08433 24.9005 — 51.2492 55.1128 51.4992 52.7256

EE(α, λ) 29.6639 2.6983 — 52.3535 56.2171 52.6035 53.8299

LE(α, β) 2.15 ·10−32 0.91598 — 80.8089 84.6726 81.0589 82.2853

Go(λ, σ) 0.077567 8.77178 — 138.053 141.917 138.303 139.53

SGo(α, β) 31.6607 2.74601 — 51.1369 55.005 51.386 52.6133

Ga(α, β) 16.2198 0.088889 — 41.8238 45.6874 42.0738 43.3002

GK(α, β, λ) 0.017439 3.296 3.582 ·10−10 36.2874 42.0829 36.798 38.502

WE(α, λ) 6.282 ·10−6 1.38718 — 107.093 110.957 107.343 108.57

WL(c, θ) 15.8894 11.4243 — 41.7278 45.5914 41.9778 43.2042

NWL(α, λ) 2.947 ·10−8 1.75647 — 100.713 104.576 100.963 102.189

WGo(λ, σ) 2.42682 0.044765 — 31.9246 35.7883 32.1746 33.401

Table 11. The MLEs of the parameters for some models fitted to the strength 1.5 cm glass
fibers data and the values of AIC, BIC, CAIC, and HQIC statistics.

7. Concluding remarks

A weighted version of the Gompertz distribution is introduced by making use of

a new weighted function. This version represents a mixture of classical Gompertz
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Distribution K-S p-value −logL W ∗ A∗

MU 0.509217 6.523 · 10−12 42.4063 5.2078 42.4063

GL 0.221037 0.013701 23.6246 0.670228 3.5518

EE 0.222876 0.0126063 24.1767 0.688759 3.64489

LE 0.329031 0.000032 38.4045 1.81703 9.02137

Go 0.411066 6.542 · 10−8 23.5685 3.18956 15.2271

SGo 0.217577 0.0159946 18.9119 0.659491 3.51528

Ga 0.221848 0.0132077 18.9119 0.533687 2.84555

GK 0.191839 0.0468544 15.1437 0.308231 1.77064

WE 0.250166 0.0000192 51.5466 2.07798 10.5031

WL 0.221575 0.0133722 18.8639 0.532304 2.83704

NWL 0.320534 0.0000562 48.3563 1.89421 9.68732

WGo 0.178637 0.077163 13.9623 0.26702 1.54241

Table 12. The values of K-S, p-value, −logL, W ∗ and A∗ statistics for some models fitted
to the strength 1.5 cm glass fibers data.

CI λ σ

90% [0.651392, 0.866822] [0.122624, 0.286007]

95% [0.620856, 0.897357] [0.0994652, 0.309165]

CI λ σ

90% [2.12007, 2.73357] [0.0215358, 0.068055]

95% [2.03311, 2.82053] [0.014942, 0.0746488]

Table 13. Confidence intervals for the breaking stress and glass fibers data, respectively.

Data Mean Median SD Skewness Kurtosis MD- MD- Shannon
mean median Entropy

Breaking 2.75955 2.835 0.891455 −0.13046 0.17421 0.683223 0.678939 4.021619

stress data

Strength 1.4417 1.52 0.3268 −0.63760 0.727899 0.244383 0.228824 3.595379

of 1.5 cm

data
MD:= Mean deviation

Table 14. Descriptive statistics of both data sets.

and second upper record value of Gompertz densities, gives a new version of the

two-parameter Lindley distribution using a certain transformation, and can be also

regarded as a member of the log-Lindley-X family. Properties, estimation of the
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Data Mean Median SD MD-mean MD-median Shannon

Entropy

Breaking stress data 2.74354 2.82545 0.94329 0.759559 0.756782 4.53298

Strength of 1.5 cm data 1.43556 1.47933 0.34316 0.268458 0.26612 5.55912

Table 15. Some measures of the WGo distribution for both data sets.

parameters and inference of this version are obtained. Flexibility of the model with

respect to other models is illustrated by fitting two real data sets and using some

goodness-of-fit statistics. Some of the obtained theoretical measures of the model

have been computed for the data and compared with the corresponding descriptive

measures. Some issues for future research may be considering different estimation

methods of the unknown parameters of the model and a studying the corresponding

step-stress model.
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