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Abstract. We obtain the boundedness of Calderón-Zygmund singular integral operators T
of non-convolution type on Hardy spaces Hp(X ) for 1/(1 + ε) < p 6 1, where X is a space
of homogeneous type in the sense of Coifman and Weiss (1971), and ε is the regularity
exponent of the kernel of the singular integral operator T . Our approach relies on the
discrete Littlewood-Paley-Stein theory and discrete Calderón’s identity. The crucial feature
of our proof is to avoid atomic decomposition and molecular theory in contrast to what was
used in the literature.
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1. Introduction and statements of results

In the 1970’s, in order to extend the theory of Calderón-Zygmund singular integrals

on R
n to a more general setting, R.Coifman and G.Weiss introduced spaces of

homogeneous type which are equipped with a quasi-metric defined as follows.

For a set X , we say that a function ̺ : X × X → [0,∞) is a quasi-metric on X if

it satisfies that

(i) ̺(x, y) = 0 if and only if x = y;

(ii) ̺(x, y) = ̺(y, x) for all x, y ∈ X ;

(iii) there exists a constant A ∈ [1,∞) such that for all x, y and z ∈ X ,

̺(x, y) 6 A[̺(x, z) + ̺(z, y)].

Any quasi-metric ̺ defines a topology, for which the balls B(x, r) = {y ∈ X :

̺(x, y) < r} for all x ∈ X and all r > 0 form a basis.
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The following spaces of homogeneous type are variants of those introduced by

Coifman and Weiss in [2].

Definition 1. Let θ ∈ (0, 1]. A space of homogeneous type, (X , ̺, µ)θ , is a set X

together with a quasi-metric ̺ and a nonnegative measure µ on X , and there exists

a constant C0 > 0 such that for all 0 < r < diamX and all x, y, z ∈ X ,

µ(B(x, r)) ∼ r and |̺(x, y)− ̺(z, y)| 6 C0̺(x, z)
θ[̺(x, y) + ̺(z, y)]1−θ.

In the following, let (X , ̺, µ)θ be a space of homogeneous type as in Definition 1.

The Hölder spaces on X are defined as follows.

Definition 2. Let Cη
0 (X ), η > 0, be the space of all continuous functions on X

with compact support and

‖f‖Cη = sup
x,y∈X ; x 6=y

|f(x)− f(y)|

̺(x, y)η
<∞.

Remark 1. For η ∈ (0, θ], Cη
0 (X ) is not empty. To see this, we can consider the

function g(x) = f(̺(x, x0)) with any fixed x0 ∈ X , where f is a C1 function defined

on R with a compact support. It is easy to check that g ∈ Cη
0 (X ) with 0 < η 6 θ 6 1.

Remark 2. The dual space of Cβ(R) is not a functional space for 0 < β 6 1.

However, it suffices to replace Cβ(R) by the closure C̊β(R) for the Cβ(R) norm of

functions in Cγ(R) where γ > β, and this closure does not depend on γ. Following

this argument we define the function space C̊η
0 (X ) as the closure for the Cη

0 (X ) norm

of functions in Cs
0(X ) where s > η, and let (C̊η

0 (X ))′ be the dual space of C̊η
0 (X ).

Here these two spaces do not depend on s. For more detail, see [11].

We now introduce the Calderón-Zygmund operator on X . For convenience, in the

following, we use C to denote all constants only dependent on X , which may vary

from line to line.

Definition 3 ([2]). A continuous function K : X ×X \ {(x, y) : x = y} → C is

said to be a Calderón-Zygmund singular integral kernel on X if there exist ε ∈ (0, θ]

and constants C > 0 such that

|K(x, y)| 6 C̺(x, y)−1 for all x 6= y;

|K(x, y)−K(x′, y)| 6 C̺(x, x′)ε̺(x, y)−(1+ε) for ̺(x, x′) 6
1

2A
̺(x, y);

|K(x, y)−K(x, y′)| 6 C̺(y, y′)ε̺(x, y)−(1+ε) for ̺(y, y′) 6
1

2A
̺(x, y).

The smallest such constant C is denoted by ‖K‖CZ. And ε is said to be the regularity

exponent of the kernel K.
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Definition 4 ([2]). A continuous linear operator T : C̊η
0 (X ) → (C̊η

0 (X ))′ for all

η ∈ (0, θ] is said to be a Calderón-Zygmund singular integral operator on X , if T is

associated with a Calderón-Zygmund kernel K so that

〈Tf, g〉 =

∫∫
K(x, y)f(y)g(x) dµ(y) dµ(x)

for all f and g ∈ C̊η
0 (X ) with disjoint supports.

Remark 3 ([2]). Any Calderón-Zygmund singular integral operator which is

bounded on L2(X ) is also bounded on Lp(X ) for 1 < p < 1; and is of weak type (1, 1).

We call an operator T a Calderón-Zygmund operator if T is a Calderón-Zygmund

singular integral operator and is bounded on L2.

From Remark 3 a question arises: Under what conditions a Calderón-Zygmund

singular integral operator is bounded on L2? This question was answered by the

well-known T1 theorems of G.David and J. L. Journé, and G.David, J. L. Journé

and S. Semmes in the standard case of Rn and in spaces of homogeneous type, re-

spectively.

To introduce the generalization of the T 1 theorem to spaces of homogeneous type,

we first need to define T (1): The difficulty is that 1 is not a function in C̊η
0 (X ),

hence T (1) is not a distribution in (C̊η
0 (X ))′, but is a distribution modulo constant

function. The definition is based on the following lemma (see [12]).

Lemma 1. Let S be a distribution in (C̊η
0 (X ))′. Suppose that there exists R > 0

such that the restriction of S to the open set {x ∈ X : ̺(x, x0) > R}, where x0 is

a fixed point in X , is a continuous function such that S(x) = O(̺(x, x0))
−1−γ as

̺(x, x0) → ∞. If γ > 0, then the integral

∫

X

S(x) dµ(x) = 〈S, 1〉

converges.

We first write 1 = ϕ1(x)+ϕ2(x), where ϕ1 ∈ C̊η
0 (X ) for some η > 0 and ϕ1(x) = 1

for ̺(x, x0) 6 R. Then 〈S, 1〉 is defined by

〈S, ϕ1〉+ 〈S, ϕ2〉 = 〈S, ϕ1〉+

∫

X

S(x)ϕ2(x) dµ(x)

since the integral converges absolutely. It is easy to check that 〈S, 1〉 is independent

of the decomposition.
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Before defining T 1, we define

C̊η
0,0(X ) =

{
f ∈ C̊η

0 (X ) :

∫

X

f(x) dµ(x) = 0

}
.

If f ∈ C̊η
0,0(X ), we define 〈T 1, f〉 = 〈1, T ∗f〉. Indeed, if the support of f is

contained in {x ∈ X : ̺(x, x0) 6 R}, then

T ∗(f)(x) =

∫

X

[K(y, x)−K(x0, x)]f(y) dµ(y) = O(̺(x, x0)
−1−ε)

for ̺(x, x0) > R and ε > 0.

Now T 1 is a continuous linear form on C̊η
0,0(X ) ⊂ C̊η

0 (X ). We extend T 1 to a distri-

bution S ∈ (C̊η
0 (X ))′ as follows: let ϕ ∈ C̊η

0 (X ) be a function with
∫
X ϕ(x) dµ(x) = 1,

then for all f ∈ C̊η
0 (X ), f can be written uniquely as f = λϕ + g, where λ =∫

f(x) dµ(x) and g ∈ C̊η
0,0(X ). Now we choose S such that 〈S, f〉 = λ〈S, ϕ〉+〈T 1, g〉,

then T 1 = S on C̊η
0,0(X ), and is a distribution modulo the constant. T ∗1 can be

defined in a similar way.

For δ ∈ (0, θ], x0 ∈ X and r > 0, we define A(δ, x0, r) to be the set of all ϕ ∈ C̊δ
0 (X )

supported in B(x0, r) satisfying ‖ϕ‖∞ < 1 and ‖ϕ‖Cδ < r−δ. To introduce T 1

theorem on X , we also need the following definition of weak boundedness.

Definition 5. An operator T is weakly bounded if there exist δ ∈ (0, θ] and

C <∞ such that for all x0 ∈ X , r > 0 and ϕ, ψ ∈ A(δ, x0, r),

|〈Tϕ, ψ〉| 6 Cµ(B(x0, r)).

Remark 4. It is easy to see that weak boundedness is obviously implied by L2

boundedness. And Calderón-Zygmund singular integral operator whose is antisym-

metrical kernel, i.e., K(x, y) = −K(y, x), has the weak boundedness property.

In 1985, using Coifman’s idea on decomposition of the identity operator, G.David,

J. L. Journé and S. Semmes developed the Littlewood-Paley analysis on spaces of

homogeneous type and used it to give a proof of the following T 1 theorem in this

general setting.

Theorem A ([4]). Let T be a Calderón-Zygmund singular integral operator on X .

Then a necessary and sufficient condition for the extension of T as a continuous linear

operator on L2(X ) is that the following conditions are all satisfied: (a) T 1 ∈ BMO;

(b) T ∗1 ∈ BMO; (c) T is weakly bounded. Here

BMO(X ) =

{
f ∈ L1

loc(X ) : sup
r>0, x∈X

1

µ(B(x, r))

∫

B(x,r)

|f(y)− fB| dµ(y) <∞

}
,

where fB = µ(B(x, r))−1 ∫
B(x,r)

f(y) dµ(y).
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Deng and Han gave a new T 1 theorem for the general spaces of homogeneous type

as follows.

Theorem B ([5]). Let T be a Calderón-Zygmund singular integral operator on

X with T 1 = T ∗1 = 0, and T is weakly bounded. Then T is bounded on Lp for

1 < p < ∞ and Hp for 1/(1 + ε) < p 6 1, where ε is the regularity exponent of the

kernel of the singular integral operator T.

In the above theorem, the conditions T 1 = 0 and T ∗1 = 0 are sufficient conditions.

A natural problem is when these conditions are also necessary. The following theorem

answers this problem.

Theorem 1 ([5]). Let T be a Calderón-Zygmund operator on X , then T is

bounded on Hp(X ) for all 1/(1 + ε) < p 6 1 if and only if T ∗1 = 0.

We remark here that the main tool used in the literature to prove Theorem 1 is

the molecular theory of the Hardy space Hp(X ), see [3], [5].

In this paper, we will use a different approach to prove Theorem 1 without using

atomic decomposition or molecular theory of Hp(X ). Moreover, we can get

Theorem 2. If T is a Calderón-Zygumnd operator on X , then T is bounded

from Hp(X ) to Lp(X ) for all 1/(1 + ε) < p 6 1.

The main ideas are using almost estimates, the discrete Littlewood-Paley-Stein

theory and discrete Calderón’s identity together with the maximal and Littlewood-

Paley characterizations of the Hardy spaces Hp(X ) to get the boundedness of the

para-product which will be defined later (see Definition 8).

Our new approach includes the following steps.

Step 1. The discrete Calderón’s identity, almost orthogonality estimates and the

Hp boundedness.

To recall the classical continous Calderón’s identity, we begin with introducing the

approximation to identity on the space of homogeneous type.

Definition 6 ([10]). A sequence {Sk}k∈Z of linear operators is said to be an

approximation to the identity of order ε ∈ (0, θ] on X if there exists C > 0 such that

for all k ∈ Z and all x, x′, y and y′ ∈ X , Sk(x, y), the kernel of Sk, is a function from

X × X into C satisfying

(1) |Sk(x, y)| 6 C
2−kε

(2−k + ̺(x, y))1+ε
;

(2) |Sk(x, y) − Sk(x
′, y)| 6 C

( ̺(x, x′)

2−k + ̺(x, y)

)ε 2−kε

(2−k + ̺(x, y))1+ε

for ̺(x, x′) 6 (2A)−1(2−k + ̺(x, y));
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(3) |Sk(x, y) − Sk(x, y
′)| 6 C

( ̺(y, y′)

2−k + ̺(x, y)

)ε 2−kε

(2−k + ̺(x, y))1+ε

for ̺(y, y′) 6 (2A)−1(2−k + ̺(x, y));

(4) |[Sk(x, y)− Sk(x, y
′)]− [Sk(x

′, y)− Sk(x
′, y′)]|

6 C
( ̺(x, x′)

2−k + ̺(x, y)

)ε( ̺(y, y′)

2−k + ̺(x, y)

)ε 2−kε

(2−k + ̺(x, y))1+ε

for ̺(x, x′) 6 (2A)−1(2−k + ̺(x, y)) and ̺(y, y′) 6 (2A)−1(2−k + ̺(x, y));

(5)
∫
X Sk(x, y) dµ(y) = 1;

(6)
∫
X Sk(x, y) dµ(x) = 1.

Next let us recall the definition of the space of test functions on spaces of homo-

geneous type.

Definition 7 ([8]). Fix 0 < γ, β < θ. A function f defined on X is said to be

a test function of type (x0, r, β, γ) with x0 ∈ X and r > 0, if f satisfies the following

conditions:

(i) |f(x)| 6 C
rγ

(r + ̺(x, x0))1+γ
;

(ii) |f(x)− f(y)| 6 C
( ̺(x, y)

r + ̺(x, x0)

)β rγ

(r + ̺(x, x0))1+γ

for ̺(x, y) 6 (2A)−1[r + ̺(x, x0)];

(iii)
∫
X
f(x) dµ(x) = 0.

If f is a test function of type (x0, r, β, γ), we write f ∈ G(x0, r, β, γ), and the norm

of f in G(x0, r, β, γ) is defined by

‖f‖G(x0,r,β,γ) = inf{C : (i) and (ii) hold}.

Now fix x0 ∈ X and let G(β, γ) = G(x0, 1, β, γ). It is easy to see that

G(x1, r, β, γ) = G(β, γ)

with an equivalent norm for all x1 ∈ X and r > 0. Furthermore, it is easy to check

that G(β, γ) is a Banach space with respect to the norm in G(β, γ). Also, let the

dual space (G(β, γ))′ consist of all linear functionals L from G(β, γ) to C with the

property that there exists C > 0 such that for all f ∈ G(β, γ),

|L(f)| 6 C‖f‖G(β,γ).

We denote by 〈h, f〉 the natural pairing of elements h ∈ (G(β, γ))′ and f ∈ G(β, γ).

Clearly, for all h ∈ (G(β, γ))′, 〈h, f〉 is well defined for all f ∈ G(x0, r, β, γ) with

x0 ∈ X and r > 0.
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It is well-known that even when X = R
n, G(β1, γ) is not dense in G(β2, γ) if

β1 > β2, which will cause us some inconvenience. To overcome this defect, in what

follows, for a given ε ∈ (0, θ], we let G̊(β, γ) be the completion of the space G(ε, ε) in

G(β, γ) when 0 < β, γ < ε.

We also need the following construction given by Christ in [1], which provides

an analogue of the grid of Euclidean dyadic cubes on spaces of homogeneous type.

A similar construction was independently given by Sawyer and Wheeden in [14].

Lemma 2. For every integer k ∈ Z+, there exists a collection of open subsets

{Qk
τ ⊂ X : τ ∈ Ik}, where Ik denotes some index set depending on k, and c1, c2 > 0,

are such that

(i) µ({X \
⋃
Qk

τ}) = 0;

(ii) if l > k, then for all τ ′ ∈ Il and τ ∈ Ik either Q
l
τ ′ ⊂ Qk

τ or Q
l
τ ′ ∩Qk

τ = ∅;

(iii) if l < k, for each τ ∈ Ik, there is a unique τ
′ ∈ Il such that Q

k
τ ⊂ Ql

τ ′ ,

diam(Qk
τ ) 6 c12

−k, and each Qk
τ contains some ball B(zkτ , c22

−k).

In the following, we say that a cube Q ⊂ X is a dyadic cube in X if Q = Qk
τ

for some k ∈ Z+ and τ ∈ Ik, and denote it by diamQ ∼ 2−k. Denote by Qk,ν
τ ,

ν = 1, 2, . . . , N(k, τ), the set of all cubes Qk+j
τ ′ ⊂ Qk

τ where j is a fixed large positive

integer, and denote by yk,ντ a point in Qk,ν
τ .

We now recall the discrete Calderón reproducing formulae on spaces of homoge-

neous type in [9].

Lemma 3. Let ε ∈ (0, θ] for k ∈ Z, let {Sk}k∈Z be an approximation to the

identity of order ε, Dk = Sk − Sk−1, let {Qk,ν
τ : τ ∈ Ik, ν = 1, . . . , N(k, τ)} be the

dyadic cubes of X defined in Lemma 2 with j ∈ N large enough. Then there are two

families of linear operators {D̃k}k∈Z, {Dk}k∈Z on X such that for all f ∈ G(β, γ)

with β, γ ∈ (0, ε) and any point any yk,ντ ∈ Qk,ν
τ ,

(1) f(x) =

∞∑

k=−∞

∑

τ∈Ik

N(k,τ)∑

ν=1

µ(Qk,ν
τ )D̃k(x, y

k,ν
τ )Dk(f)(y

k,ν
τ )

=
∞∑

k=−∞

∑

τ∈Ik

N(k,τ)∑

ν=1

µ(Qk,ν
τ )Dk(x, y

k,ν
τ )Dk(f)(y

k,ν
τ ),

where the series converge in the norm of both the space G(β′, γ′) with 0 < β′ < β

and 0 < γ′ < γ and the space Lp(X) with p ∈ (1,∞).

By an argument of duality, Han in [9] also established the following discrete

Calderón reproducing formulae on spaces of distributions, (G̊(β, γ))′ with β, γ ∈

(0, ε).
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Lemma 4. With all the notation as in Lemma 3, for all f ∈ (G̊(β, γ))′ with

β, γ ∈ (0, ε), (1) holds in (G̊(β′, γ′))′ with β < β′ < ε and γ < γ′ < ε.

Applying the above lemma, it was proved in [5] that Hp(X ) can be characterized

by discrete Littlewood-Paley square functions

Proposition 1. Let θ′ ∈ (0, θ), let Dk and Q
k,ν
τ be the same as in Lemma 3. Then

for 1/(1 + θ′) < p 6 1, f ∈ Hp(X ) if and only if f ∈ (G̊(β, γ))′ with β, γ ∈ (0, θ′)

and

‖f‖Hp ∼

∥∥∥∥
{ ∞∑

k=−∞

∑

τ∈Ik

N(k,τ)∑

ν=1

|Dk(f)|
2χQk,ν

τ
(·)

}1/2∥∥∥∥
p

<∞.

Remark 5. Hp(X ) also can be characterized by classical continuous Littlewood-

Paley square functions, i.e.,

‖f‖Hp(X ) ∼

∥∥∥∥
{ ∞∑

k=−∞

|Dk(f)(·)|
2

}1/2∥∥∥∥
p

.

These two kinds of definition of Hp(X ) are both independent of the choice of the

approximation to identity, see [5] for the proof.

Proposition 1 and the almost orthogonality estimates provide a direct proof of the

following Hp(X ) boundedness.

Theorem 3. If T is a Calderón-Zygmund operator with regularity exponent

ε > 0 and T 1 = T ∗1 = 0, then T is bounded on Hp(X ) for 1/(1 + ε) < p 6 1.

The proof of this theorem is elementary. The basic idea is to apply the orthogo-

nality estimates stated as follows.

Lemma 5. Let Dk be the same as in Lemma 3. If T satisfies the conditions in

Theorem 3, then

|DkT (Dl)(x, y)| 6 C2−|k−l|ε′ 2−(k∧l)ε′

(2−(k∧l) + ̺(x, y))1+ε′
,

where ε′ ∈ (0, ε), and the constant depends only on ε′ and Dk.

Remark 6. We remark that the conditions T 1 = T ∗1 = 0 are crucial in deriving

Lemma 5. The classical orthogonality estimates are

|DkT (Dl)(x, y)| 6 C2−|k−l|L 2−(k∧l)M

(2−(k∧l) + ̺(x, y))1+M
,

for any L,M and the constant C depends only on L,M and Dk. See [4], [10], [5] for

details of its proof.
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We also need the following lemma, which can be found in [7], pages 147–148, for

R
n and [5], page 93, for spaces of homogeneous type.

Lemma 6. Let k, η ∈ Z+ with η 6 k. If for any dyadic cube Qk,ν
τ ⊂ X ,

|fQk,ν
τ

(x)| 6 (1 + 2η̺(x, yk,ντ ))−1−ε,

where x ∈ X , yk,ντ is any point in Qk,ν
τ and ε > 0, then

∑

τ∈Ik

N(k,τ)∑

ν=1

|λQk,ν
τ

||fQk,ν
τ

(x)| 6 C2(k−η)

[
M

(∑

τ∈Ik

N(k,τ)∑

ν=1

|λQk,ν
τ

|χQk,ν
τ

)r
(x)

]1/r
,

where r > 1/(1 + ε), C is independent of x, k and η, λQk,ν
τ
is any constant only

depending on Qk,ν
τ . Here and in the sequel, M is the Hardy-Littlewood maximal

operator on X , which is defined by

M(f)(x) = sup
r>0

1

µ(B(x, r))

∫

B(x,r)

|f(y)| dµ(y).

We now return to the proof of Theorem 3. By Proposition 1, we only need to show

that for 1/(1 + ε) < p 6 1, f ∈ L2(X ) ∩Hp(X ), we have

∥∥∥∥
{ ∞∑

k=−∞

∑

τ∈Ik

N(k,τ)∑

ν=1

|Dk(Tf)|
2χQk,ν

τ
(·)

}1/2∥∥∥∥
p

< ‖f‖Hp(X ).

Note that T is bounded on L2(X ). Therefore, by Lemma 4, we can rewriteDk(Tf)

as

Dk(Tf) = Dk

(
T

∞∑

k′=−∞

∑

τ∈Ik′

N(k′,τ)∑

ν=1

µ(Qk′,ν
τ )Dk′(·, yk

′,ν
τ )Dk′ (f)(yk

′,ν
τ )

)

=

∞∑

k′=−∞

∑

τ∈Ik′

N(k′,τ)∑

ν=1

µ(Qk′,ν
τ )DkTDk′(·, yk

′,ν
τ )Dk′(f)(yk

′,ν
τ ).

Using the orthogonality estimates yields

|Dk(Tf)| 6 C
∞∑

k′=−∞

∑

τ∈Ik′

N(k′,τ)∑

ν=1

2−|k−k′|ε
′ 2−(k∧k′)ε′µ(Qk′,ν

τ )

(2−(k∧k′) + ̺(·, y))1+ε′
Dk′(f)(yk

′,ν
τ ),

where ε′ ∈ (0, ε).
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Then by applying Lemma 6, we have

∞∑

k=−∞

|Dk(Tf)|
2

6 C

∞∑

k=−∞

[ ∞∑

k′=−∞

2−|k−k′|ε′
{
M

( ∑

τ∈Ik′

N(k′,τ)∑

ν=1

Dk′ (f)(yk
′,ν

τ )χ
Qk′,ν

τ

)r}1/r]2
.

Finally, by the Fefferman-Stein vector valued maximal function inequality in [6]

on L2(X ), we obtain

∥∥∥∥
{ ∞∑

k=−∞

|Dk(Tf)|
2

}1/2∥∥∥∥
p

6 C

∥∥∥∥
{ ∞∑

k=−∞

[ ∞∑

k′=−∞

2−|k−k′|ε′
{
M

( ∑

τ∈Ik′

N(k′,τ)∑

ν=1

Dk′ (f)(yk
′,ν

τ )χ
Qk′,ν

τ
(·)

)r}1/r]2}1/2∥∥∥∥
p

6 C

∥∥∥∥
( ∞∑

k′=−∞

∑

τ∈Ik′

N(k′,τ)∑

ν=1

|Dk′(f)(yk
′,ν

τ )|2χ
Qk′,ν

τ
(·)

)1/2∥∥∥∥
p

6 C‖f‖Hp .

Since L2(X ) ∩ Hp(X ) is dense in Hp(X ), the above estimates give the proof of

Theorem 3.

Step 2. A new discrete Calderón’s identity for BMO(X ).

Proposition 2. Let θ′ ∈ (0, θ), 1/(1 + θ′) < p 6 1. Then for any f ∈ L2(X ) ∩

Hp(X ), there exists some f̃ ∈ L2(X )∩Hp(X ) with ‖f‖2 ∼ ‖f̃‖2 and ‖f‖Hp ∼ ‖f̃‖Hp

and

(2) f =
∞∑

k=−∞

∑

τ∈Ik

N(k,τ)∑

ν=1

µ(Qk,ν
τ )Dk(·, y

k,ν
τ )Dk(f̃)(y

k,ν
τ )

where Qk,ν
τ , yk,ντ , Dk are the same as in Lemma 3, and the series converges in L

2(X )∩

Hp(X ).

P r o o f. We begin with the classical Calderón’s identity on L2(X ):

f =
∞∑

k=−∞

DkDk(f).
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Using Coifman’s idea of decomposition of identity yields

f(x) =

∞∑

k=−∞

∫

X

DkDk(x, y)(f)(y) dµ(y)

=

∞∑

k=−∞

∑

τ∈Ik

N(k,τ)∑

ν=1

∫

Qk,ν
τ

DkDk(x, y)(f)(y) dµ(y)

=

∞∑

k=−∞

∑

τ∈Ik

N(k,τ)∑

ν=1

µ(Qk,ν
τ )Dk(x, y

k,ν
τ )Dk(f)(y

k,ν
τ ) +R(f)(x).

It was proved by Deng and Han in [5] that R is a Calderón-Zygmund operator

on X . Note that R(1) = R∗(1) = 0, hence by Theorem 3, R is bounded on Hp(X ).

Moreover, there exists δ > 0 such that ‖R(f)‖2 6 C2−Nδ‖f‖2 and ‖R(f)‖Hp 6

C2−Nδ‖f‖Hp .

See [4], [5], [10] for details of the proofs. Now for any f ∈ L2(X ) ∩Hp(X ), we set

f̃ =
∞∑

n=0
Rn(f). This implies

f(x) =
∞∑

k=−∞

∑

τ∈Ik

N(k,τ)∑

ν=1

µ(Qk,ν
τ )Dk(x, y

k,ν
τ )Dk(f̃)(y

k,ν
τ ).

We remark that R is also bounded on BMO(X ) with the inequality ‖R(f)‖BMO 6

C2−Nδ‖f‖BMO. For any f ∈ L2(X ) ∩H1(X ), the same proof implies

f̃(x) =

∞∑

n=0

Rn

( ∞∑

k=−∞

∑

τ∈Ik

N(k,τ)∑

ν=1

µ(Qk,ν
τ )Dk(·, y

k,ν
τ )Dk(f̃)(y

k,ν
τ )

)
(x),

where the series converges in H1(X ). Therefore, for any h ∈ BMO(X ),

〈f̃ , h〉 =

〈 ∞∑

n=0

Rn
∞∑

k=−∞

∑

τ∈Ik

N(k,τ)∑

ν=1

µ(Qk,ν
τ )Dk(·, y

k,ν
τ )Dk(f̃)(y

k,ν
τ ), h

〉

=

〈 ∞∑

k=−∞

∑

τ∈Ik

N(k,τ)∑

ν=1

µ(Qk,ν
τ )Dk(·, y

k,ν
τ )Dk(f̃)(y

k,ν
τ ), h̃

〉

=

〈
f̃ ,

∞∑

k=−∞

∑

τ∈Ik

N(k,τ)∑

ν=1

µ(Qk,ν
τ )Dk(·, y

k,ν
τ )Dk(h̃)(y

k,ν
τ )

〉

where h̃ =
∞∑
n=0

Rn(h) ∈ BMO(X ) with ‖h‖BMO ∼ ‖h̃‖BMO.
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We now obtain the discrete Calderón’s identity for BMO functions: for any h ∈

BMO(X ), there exists h̃ ∈ BMO(X ) such that

h =

∞∑

k=−∞

∑

τ∈Ik

N(k,τ)∑

ν=1

µ(Qk,ν
τ )Dk(·, y

k,ν
τ )Dk(h̃)(y

k,ν
τ )

where the series converges in (H1,BMO) sense. �

Step 3. The discrete para-product operators.

We now introduce the discrete para-product operators.

Definition 8. Let ε ∈ (0, θ] for k ∈ Z, let {Sk}k∈Z be an approximation to

the identity of order ε, Dk = Sk − Sk−1, Dk, Q
k,ν
τ and let yk,ντ be the same as in

Lemma 3. For the convenience, let

Λ = {λ = (k, τ, ν) : k ∈ Z, τ ∈ Ik, ν = 1, . . . , N(k, τ)},

and Qλ, yλ are used to denote the associated Q
k,ν
τ and yk,ντ .

Then the discrete para-product πb for b ∈ BMO(X ) is defined by

πb(f)(x) =
∑

λ∈Λ

µ(Qλ)Dk(x, yλ)Dk (̃b)(yλ)Sk(f)(yλ)

and

π∗
b (f)(x) =

∑

λ∈Λ

µ(Qλ)Sk(x, yλ)Dk(̃b)(yλ)Dk(f)(yλ),

where h̃ is the same as in Proposition 2.

Note that for b ∈ BMO(X ), πb is a Calderón-Zygmund operator on X . Then for

b ∈ BMO(X ) and g ∈ C̊η
0,0(X ), by Proposition 2 we have

〈Tb(1), g〉 =

〈∑

λ∈Λ

µ(Qλ)Dk(x, yλ)Dk (̃b)(yλ)Sk(1)(yλ), g

〉

=

〈∑

λ∈Λ

µ(Qλ)Dk(x, yλ)Dk (̃b)(yλ)(yλ), g

〉
= 〈b, g〉.

Therefore, we have πb(1) = b. Similarly, we can get π∗
b (1) = 0. Then using an

idea of the proof of the T 1 theorem given by David and Journé, one can decompose

a Calderón-Zygmund singular integral operator T into

T = T̃ + πT1 + π∗
T∗1,
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where T̃ is a Calderón-Zygmund singular integral operator. Moreover, note that

〈T 1, g〉 = 〈T̃1, g〉+ 〈πT1(1), g〉+ 〈π∗
T∗1(1), g〉 = 〈T̃ 1, g〉+ 〈T 1, g〉,

so we have T̃1 = 0. And similarly we get T̃ ∗1 = 0. Moreover, if T is bounded on

L2(X ), then T 1 and T ∗1 are bounded on BMO(X ) and T̃ , πT1 and π
∗
T∗1 are all

bounded on L2(X ).

Note that Theorem B implies that T̃ is bounded on Hp(X ), since L2 boundedness

of T̃ implies its weak boundedness. Therefore, to prove Theorem 1 we only need

to show that πb is bounded on H
p(X ), to prove Theorem 2 we only need to show

that π∗
b and πb are bounded from Hp(X ) to Lp(X ) for all 1/(1 + ε) < p 6 1 and

b ∈ BMO(X ).

Lemma 7. Let b ∈ BMO(X ). Then πb is bounded on H
p(X ), π∗

b and πb are

bounded from Hp(X ) to Lp(X ) for all 1/(1 + ε) < p 6 1.

P r o o f. We first show that πb is bounded on H
p(X ) for all 1/(1 + ε) < p 6 1

and b ∈ BMO(X ).

By the Littlewood-Paley characterization of Hp(X ) in Proposition 1, we only need

to prove that

∥∥∥∥
{ ∑

λ=(k,τ,ν)∈Λ

|Dk(πb(f))(yλ)|
2χQλ

(·)

}1/2∥∥∥∥
p

p

6 Cp‖f‖
p
Hp .

Using the almost orthogonality, we get

∥∥∥∥
{∑

λ∈Λ

|Dk(πb(f))(yλ)|
2χQλ

(·)

}1/2∥∥∥∥
p

p

=

∥∥∥∥
{∑

λ∈Λ

∣∣∣∣Dk

( ∑

λ′∈Λ′

µ(Qλ′)Dk′(·, yλ′)Dk′ (̃b)(yλ′)Sk′ (f)(yλ′)

)
(yλ)

∣∣∣∣
2

χQλ
(·)

}1/2∥∥∥∥
p

p

6 C

∥∥∥∥
{ ∑

λ′∈Λ′

|Dk′ (̃b)(yλ′)Sk′ (f)(yλ′)|2χQλ′
(·)

}1/2∥∥∥∥
p

p

.

Set

Ωl =
{
x ∈ X : sup

k
|Sk(f)(x)|

2 > 2l
}

and

Bl =
{
Q′ is a dyadic cube in X : µ(Q′∩Ωl) >

1

2
µ(Q′) and µ(Q′∩Ωl+1) 6

1

2
µ(Q′)

}
.
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Then by Remark 5, i.e., the maximal characterization of the Hardy space given

in [5], we get ∑

l

2lpµ(Ωl) 6 ‖f‖pHp .

Then

∑

λ′∈Λ′

|Dk′ (̃b)(yλ′)Sk′(f)(yλ′ )|2χQλ
(·)

=
∑

k′

∑

l

∑

Q̃∈Bl

∑

Q′⊂Q̃,Q′∈Bl

|Dk′ (̃b)(yQ′)Sk′ (f)(yQ′)|2χQ′(·),

where Q̃ are maximal dyadic cubes in Bl and yQ′ is any point in Q′. This leads to

the estimate

∥∥∥∥
∑

λ′∈Λ′

{|Dk′ (̃b)(yλ′)Sk′ (f)(yλ′)|2χQλ
(·)}1/2

∥∥∥∥
p

p

6
∑

l

∑

Q̃∈Bl

∥∥∥∥
∑

Q′⊂Q̃,Q′∈Bl

∑

k′

{|Dk′ (̃b)(yQ′)Sk′ (f)(yQ′)|2χQ′(·)}1/2
∥∥∥∥
p

p

,

where the inequality (a + b)p 6 ap + bp for 0 < p 6 1 is used. Using the Hölder

inequality to control the Lp norm by the L2 norm for functions with compact support,

we get

∥∥∥∥
∑

Q′⊂Q̃,Q′∈Bl

∑

k′

{|Dk′ (̃b)(yQ′)Sk′(f)(yQ′)|2χQ′(·)}1/2
∥∥∥∥
p

p

6 Cµ(Q̃)1−p/2

( ∑

Q′⊂Q̃,Q′∈Bl

∑

k′

µ(Q′)|Dk′ (̃b)(yQ′)|2|Sk′ (f)(yQ′)|2
)p/2

.

This yields

∑

l

∑

Q̃∈Bl

∥∥∥∥
∑

Q′⊂Q̃,Q′∈Bl

∑

k′

{|Dk′ (̃b)(yQ′)|2|Sk′ (f)(yQ′)|2χQ′(·)}1/2
∥∥∥∥
p

p

6
∑

l

∑

Q̃∈Bl

Cµ(Q̃)1−p/2

( ∑

Q′⊂Q̃,Q′∈Bl

∑

k′

µ(Q′)|Dk′ (̃b)(yQ′)|2|Sk′(f)(yQ′)|2
)p/2

6
∑

l

( ∑

Q̃∈Bl

Cµ(Q̃)

)1−p/2( ∑

Q′⊂Q̃,Q′∈Bl

∑

k′

µ(Q′)|Dk′ (̃b)(yQ′)|2|Sk′(f)(yQ′)|2
)p/2

.
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Note that if Q′ ∈ Bl, then

Q′ ⊂ Ω̃l =
{
x ∈ X : MχΩl

(x) >
1

2

}

and since yQ′ is any fixed point in Q′ ∈ Bl, where µ(Q
′ ∩Ωl+1) 6 µ(Q′)/2 so we can

take yQ′ ∈ Ωl+1, then |Sk′ (f)(yQ′)| 6 2l+1. Therefore,

( ∑

Q′⊂Q̃,Q′∈Bl

∑

k′

µ(Q′)|Dk′ (̃b)(yQ′)|2|Sk′(f)(yQ′)|2
)p/2

6 C2lp
( ∑

Q′⊂Q̃,Q′∈Bl

∑

k′

µ(Q′)|Dk′ (̃b)(yQ′)|2
)p/2

6 C2lp
( ∑

Q̃∈Bl

µ(Q̃)

)p/2

6 C2lpµ(Ω̃l)
p/2

6 C2lpµ(Ωl)
p/2

where we have used the fact that b ∈ BMO and a result concerning the Carleson

measure ([5], page 118, Theorem 4.13)

∑

Q′⊂Q̃

∑

k′

µ(Q′)|Dk′ (̃b)(yQ′)|2 6 Cµ(Q̃).

Substituting all these estimates into the above inequality we get

∥∥∥∥
∑

λ′∈Λ′

{|Dk′ (̃b)(yλ′ )Sk′(f)(yλ′)|2χQλ
(·)}1/2

∥∥∥∥
p

p

6
∑

l

( ∑

Q̃∈Bl

Cµ(Q̃)

)1−p/2

2lpµ(Ωl)
p/2

6 C
∑

l

2lpµ(Ω̃)1−p/2µ(Ωl)
p/2 6 C

∑

l

2lpµ(Ωl) 6 C‖f‖pHp .

This shows that πb is bounded on H
p(X ).

We now prove that π∗
b is bounded from Hp(X ) to Lp(X ). A similar result for πb

can be obtained by the same method. We first note that π∗
b is bounded on L

2, thus

‖π∗
bf‖

p
p 6

∑

l

∑

Q̃∈Bl

∥∥∥∥
∑

Q⊂Q̃,Q∈Bl

µ(Q)Sk(·, yQ)Dk(b)(yQ)Dk(f)(yQ)

∥∥∥∥
p

p

.

Set

Ωl =

{
x ∈ X :

{∑

k

∑

Q

|Dk(f)(yQ)|
2χQ(x)

}1/2
> 2l

}
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and

Bl =
{
Q is a dyadic cube in X : µ(Q ∩ Ωl) >

1

2
µ(Q) and µ(Q ∩ Ωl+1) 6

1

2
µ(Q)

}
,

using the Hölder inequality yields

∑

l

∑

Q̃∈Bl

∥∥∥∥
∑

Q⊂Q̃,Q∈Bl

µ(Q)Sk(·, yQ)Dk(b)(yQ)Dk(f)(yQ)

∥∥∥∥
p

p

6 Cµ(Q̃)1−p/2

(∥∥∥∥
∑

l

∑

Q⊂Q̃,Q∈Bl

µ(Q)Sk(·, yQ)Dk(b)(yQ)Dk(f)(yQ)

∥∥∥∥
2

2

)p/2
.

Therefore,we have

∑

l

∑

Q̃∈Bl

∥∥∥∥
∑

Q⊂Q̃,Q∈Bl

µ(Q)Sk(·, yQ)Dk(b)(yQ)Dk(f)(yQ)

∥∥∥∥
p

p

6 C
∑

l

∑

Q̃∈Bl

µ(Q̃)1−p/2

(∥∥∥∥
∑

Q⊂Q̃,Q∈Bl

µ(Q)Sk(·, yQ)Dk(b)(yQ)Dk(f)(yQ)

∥∥∥∥
2

2

)p/2

6 C
∑

l

( ∑

Q̃∈Bl

µ(Q̃)

)1−p/2(∥∥∥∥
∑

Q⊂Q̃,Q∈Bl

µ(Q)Sk(·, yQ)Dk(b)(yQ)Dk(f)(yQ)

∥∥∥∥
2

2

)p/2
.

We claim that

∥∥∥∥
∑

Q⊂Q̃,Q∈Bl

µ(Q)Sk(·, yQ)Dk(b)(yQ)Dk(f)(yQ)

∥∥∥∥
2

2

6 C22lµ(Ω̃l),

which implies

‖π∗
bf‖

p
p 6 C22lµ(Ωl) 6 C

∥∥∥∥
∑

k

∑

Q

|Dk(f)(yQ)|
2χQ(·)}

1/2

∥∥∥∥
p

p

6 C‖f‖pHp .

To show the claim, we use the duality argument to get

∥∥∥∥
∑

Q∈Bl

µ(Q)Sk(·, yQ)Dk(b)(yQ)Dk(f)(yQ)

∥∥∥∥
2

× sup
‖h‖261

∣∣∣∣
〈 ∑

Q∈Bl

µ(Q)Sk(·, yQ)Dk(b)(yQ)Dk(f)(yQ), h

〉∣∣∣∣
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6 sup
‖h‖261

∑

Q∈Bl

µ(Q)Sk(h)(yQ)Dk(b)(yQ)Dk(f)(yQ)

6 sup
‖h‖261

( ∑

Q∈Bl

|µ(Q)Sk(h)(yQ)|
2|Dk(b)(yQ)|

2

)1/2( ∑

Q∈Bl

µ(Q)|Dk(f)(yQ)|
2

)1/2

6 C

( ∑

Q∈Bl

µ(Q)|Dk(f)(yQ)|
2

)1/2
,

where the last inequality follows from the fact that b ∈ BMO(X ) and from the

Carleson measure estimate. To complete the proof of the claim, we have

C22lµ(Ω̃) >

∫

Ω̃l\Ωl+1

{∑

k

∑

Q

|Dk(f)(yQ)|
2χQ(x)

}
dµ(x)

>
1

2

∑

Q∈Bl

µ(Q)|Dk(f)(yQ)|
2.

This finishes the proof of Lemma 7. �
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