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CONVERGENCE OF THE MATRIX TRANSFORMATION METHOD

FOR THE FINITE DIFFERENCE APPROXIMATION

OF FRACTIONAL ORDER DIFFUSION PROBLEMS

Béla J. Szekeres, Ferenc Izsák, Budapest

(Received November 3, 2015)

Abstract. Numerical solution of fractional order diffusion problems with homogeneous
Dirichlet boundary conditions is investigated on a square domain. An appropriate extension
is applied to have a well-posed problem on R

2 and the solution on the square is regarded
as a localization. For the numerical approximation a finite difference method is applied
combined with the matrix transformation method. Here the discrete fractional Laplacian
is approximated with a matrix power instead of computing the complicated approxima-
tions of fractional order derivatives. The spatial convergence of this method is proved and
demonstrated by some numerical experiments.
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1. Introduction

Numerical solution techniques for fractional order diffusion problems have been

intensively studied in the last decade. The corresponding mathematical models de-

scribe superdiffusion or subdiffusion, which were observed in several phenomena [3],

[8] due to the increasing accuracy of the measurement techniques. Since in these

models fractional order differential operators are used, they are tied closely with the

theory of the fractional calculus [15], [23], [24] which has a long history. Moreover,

a novel framework has been recently elaborated to generalize Fick’s law and the

fractional calculus, called the nonlocal calculus [6], [7].
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The majority of the numerical solution techniques is based on finite difference

discretizations. A stable method based on shifted finite differences was first developed

in [19]. Based on this work, higher-order methods [27], [30] were constructed and

analyzed and the results were extended to some related nonlinear problems [16]. The

analysis has been extended also to the finite volume discretization, see [10] and [29].

A nontrivial aspect of the modeling and the precise error analysis is the handling

of boundary conditions. The nonlocal nature of the fractional order diffusion opera-

tors [6] and the reduced regularity implies that the classical Dirichlet type boundary

condition may not make sense. An approach to solving this problem has been de-

veloped in [25] in the one-dimensional situation dealing both with the homogenous

Neumann and the Dirichlet type boundary conditions.

A difficulty in the practice of the numerical approximations is to compute the

involved finite differences in two (or three) space dimension [28], [30]. To alleviate this

procedure, the so-called matrix transform (or matrix transfer) method (MTM) was

proposed in [12], [13] and [17], and generalized in [14] for time and space-fractional

diffusion problems. This approach makes it possible to deal with the sparse matrix Â

corresponding to the standard Laplacian operator −∆: for the discretization of −∆α

we have to use Âα. Computational experiments confirmed the favor of this method.

A corresponding error analysis was carried out only for the finite element methods

with respect to the L2-norm, see [26].

The aim of the present work is twofold.

⊲ The first objective is to define a well-posed problem which corresponds to the

space-fractional diffusion equation and involves homogeneous Dirichlet type

boundary conditions.

⊲ Second, we intend to develop a convergence theory for the matrix transformation

method corresponding to the finite difference approximation and establish the

order of convergence in the L2-norm.

In the rest of the paper, after some preliminaries, an extension operator is in-

troduced corresponding to homogeneous Dirichlet type boundary conditions. It is

pointed out that in this way we arrive at a well-posed problem. We verify then the

approximation property of the matrix transform approach. Based on this, a corre-

sponding general semidiscrete numerical scheme is defined and the spatial conver-

gence of this method is proved. Whenever our final result concerns finite difference

approximation, the analysis is mainly based on spectral arguments and we use some

recent results of the numerical aspects of the semigroup theory. The work is closed

with some numerical experiments which confirm the presented convergence theory.

16



2. Mathematical preliminaries

We examine the fractional diffusion equation in R
2 using its divergence form.

2.1. Fractional Laplacian and its eigenspace. We define first the fractional

Laplacian operator on the domain Ω = (0, 1)×(0, 1) and the fractional Hilbert spaces

following [13].

Definition 1. Let {ϕj}j∈N and {λj}j∈N denote the eigenfunctions and the cor-

responding eigenvalues of the Laplace operator (−∆D) : L2(Ω) → L2(Ω), which is

defined on a bounded Lipschitz domain Ω with homogeneous Dirichlet boundary

conditions. These functions form a complete orthonormal set in L2(Ω). For α ∈ R
+

we introduce

Fα =

{
f =

∞∑

n=1

cnϕn, cn = 〈f, ϕn〉 :
∞∑

n=1

|cn|2|λn|α < ∞
}

so that the fractional Laplacian (−∆D)α/2 : Fα → L2(Ω) with homogeneous Dirich-

let boundary conditions is defined by

(2.1) (−∆D)α/2f :=
∑

j

λ
α/2
j cjϕj .

Since both the operator −∆D and the linear space Fα depend on Ω, this is not

shown for the sake of simplicity. Note that alternative definitions of the fractional

Laplacian are available. Corresponding to the pointwise approximation of the Lapla-

cian, in [5] for the case Ω = R
2 its fractional power is defined as

(2.2) −(−∆)α/2u(x) :=
Cα

2

∫

R2

u(x+ y) + u(x− y)− 2u(x)

|y|2+α
dy,

where Cα =

(∫

R2

1− cos ζ1
|ζ|2+α

dζ

)−1

.

According to [20], the right-hand side of (2.2) can be given as

div J(x), where J(x) =
Cα

α2
grad

∫

R2

u(y)

|x− y|α dy,

which is a divergence form corresponding to a nonlocal Fick’s law [7]. Accordingly,

we will use the following definition of the fractional Laplacian on R
2:

(2.3) −(−∆)α/2u(x) :=
Cα

α2
∆

(∫

R2

u(y)

|x− y|α dy

)
(x).
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Definition 2. For u ∈ Fα/2 with α ∈ R
+ let

‖u‖α/2 = (|u|20 + |u|2α/2)1/2,

where

|u|2α/2 =

∞∑

k,l=1

((kπ)2 + (lπ)2)α/2|uk,l|2

with the Fourier coefficients uk,l of u. Then H
α/2(Ω) := (Fα/2, ‖·‖α/2), see [4], [21].

R em a r k s. Usually, Hα/2(Ω) is only defined for α ∈ (0, 2) as this can be related

with the classical Sobolev spaces, see [21] and [22].

According to Definition 2, we frequently use ‖·‖0 for the L2(Ω)-norm.

Definition 3. For each N ∈ N
+ the linear space SN ⊂ L2(Ω) is defined by

SN = span{2 sin(kπx) sin(lπy) : x, y ∈ [0, 1], 1 6 k, l 6 N − 1, k, l ∈ N}

and the corresponding projection operator PN : L2(Ω) → SN by

PNf(x, y) =

N−1∑

k,l=1

fk,l2 sin(kπx) sin(lπy),

where

f(x, y) =

∞∑

k,l=1

fk,l2 sin(kπx) sin(lπy).

R em a r k s. Since PN is a projection, we obviously have ‖PN‖ 6 1 and PN |SN
is

the identity.

Also, since PN projects to the eigenfunctions of the operator (−∆D)α/2, we have

(2.4) (−∆)α/2PNf = PN (−∆)α/2f ∀ f ∈ Fα/2.

2.2. Discretization and Fourier interpolation. We define a uniform grid with

the gridsize h = 1/N and the corresponding interior gridpoints

Ωh := {(xk, yl) = (kh, lh) : 1 6 k, l 6 N − 1}.

In the error estimates we always assume that h < 1, because we are interested in the

fine-grid limit. The finite difference method results in a nodal approximation. We

can relate it to a continuous analytic solution by using the following interpolation.
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Definition 4. Let IN : R
(N−1)×(N−1) → SN denote the sine Fourier interpola-

tion given by

(IN f)(x, y) =

N−1∑

k,l=1

fk,l2 sin(kπx) sin(lπy),

where

fk,l = h2
N−1∑

m,n=1

f(m,n)2 sin(kπxm) sin(lπyn).

Here the entries of f in the interior gridpoints are denoted by f(m,n) for 1 6 m,n 6

N − 1.

R em a r k s. One can easily verify that for any u ∈ C(Ω) we have

(2.5) (IN (u|Ωh
))(x) = u(x) ∀x ∈ Ωh,

moreover, for any g ∈ C0(Ω) and Θ ∈ SN we have

(2.6) (g,Θ) = (IN (g|Ωh
),Θ),

where (·, ·) denotes the L2(Ω)-inner product and C0(Ω) denotes the continuous func-

tions on Ω with vanishing boundary values.

3. Results

Our objective is to find u : [0, T ] → C(Ω) such that

(3.1)





∂u

∂t
(t, x) = −µ(−∆D)α/2u(t, x), x ∈ Ω, t ∈ (0, T ),

u(t, x) = 0, x ∈ ∂Ω, t ∈ [0, T ),

lim
t→0

u(t, x) = u(0, x) = u0(x), x ∈ Ω.

Here Ω = (0, 1) × (0, 1), u0 ∈ Fα+1 are given and we assume that α ∈ (1, 2]. In

applications, this assumption is not restrictive; at the same time, it implies sufficient

smoothness.
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Lemma 1. If f ∈ F2 then f ∈ C0(Ω).

P r o o f. By virtue of the eigenfunction expansion

(3.2) f(x, y) =

∞∑

k,l=1

fk,l2 sin(kπx) sin(lπy)

the relation f ∈ F2 implies that
∞∑

k,l=1

f2
k,l(k

2 + l2)2 is convergent. Then using the

Cauchy-Schwartz inequality we have for all N ∈ N that

Ã

N∑

k,l=1

(fk,l(k2 + l2))2

Ã

N∑

k,l=1

1

(k2 + l2)4/3
>

N∑

k,l=1

|fk,l|(k2 + l2)

(k2 + l2)2/3
>

N∑

k,l=1

|fk,l|,

where the left-hand side and hence the right-hand side is finite. Therefore, the

series in (3.2) converges uniformly, which results in a continuous sum with vanishing

boundary values as stated. �

3.1. Extension corresponding to homogeneous Dirichlet boundary con-

ditions. The extension · : C0(Ω) → C(R2) is defined as follows: The reflection of

A ∈ Ω across the faces of Ω is denoted by A1, A2, A3, and A4 in a fixed order.

Consequently,

u(A1) = u(A2) = u(A3) = u(A4) := −u(A).

Following this procedure repeatedly on the boundary of the new unit squares and

using the equality u(Ai,j) = −u(Ai) = −u(Aj) = u(A) we have that the extension ·
is well-defined on R

2. See also Figure 1.

+−
A A1 A11A3

A2 A21 A112A23

A4

Figure 1. The extension procedure · and annihilation between A3 and A. Values equal to
u(A) are denoted by •, while their negatives by ◦. Here Ω is the shaded domain.
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R em a r k s. Note that this is an odd extension in the sense that the following

identities are valid for all x, y ∈ R:

(3.3)
u(1 + x, y) = −u(1− x, y), u(x, y) = −u(−x, y),

u(x, 1 + y) = −u(x, 1− y), u(x, y) = −u(x,−y).

A physical motivation of the extension procedure is that taking particles in Ω with

positive weight, their mirror images should be equipped with the negative weights,

since in this way, after a collision on ∂Ω, they will be annihilated making the bound-

ary an absorbing wall. This is also depicted in Figure 1 between A and A3.

Note that for any integers k and l the extension of the function sin kπx sin lπy

from Ω to R2 is given with the same formula, which is used without further reference.

3.1.1. The extended problem and its solution. Using the extension proce-

dure we pose the following extended problem for u:

(3.4)





∂u

∂t
(t, x) = −µ̃(−∆)α/2u(t, x), x ∈ R

2, t ∈ (0, T ),

lim
t→0

u(t, x) = u(0, x) = u0(x), x ∈ R
2,

where u0 ∈ C(Ω) and µ̃ > 0 are given.

To highlight the relation between (3.1) and (3.4) our main tool is the fact that the

definitions in (2.1) and (2.2) are equivalent in a sense. Using also the formulation

in (2.3), we state the following.

Theorem 1. Using the assumptions for (3.1), the following equality holds true

for all u ∈ Fα(Ω):

(−∆D)α/2u(x) =
1

2C̃α

α2

Cα
(−∆)α/2u(x), x ∈ Ω

with a constant C̃α ∈ R
+.

The technical proof is postponed to Appendix.

Lemma 2. Using the assumptions for (3.1), the solution of (3.4) is smooth in

the sense that for t > 0 we have u(t, ·) ∈ C∞(R2) and it satisfies the homogeneous

“boundary” condition: u(t, x, y) = 0 for (x, y) ∈ ∂Ω.

P r o o f. We first note that (3.4) is well-posed and its solution can be given as

u(t, x, y) = (Φt ∗ u0)(x, y),

where Φt denotes the fundamental solution of (3.4), see [18]. With a straightforward

21



generalization of Lemma 2.3 in [25] we obtain that Φt ∈ C∞(R2), which implies also

the required smoothness of u(t, ·).
Concerning the boundary conditions, we only show that u(t, x0, 1) = 0 for x0 ∈

(0, 1), the proofs for the remaining cases can be obtained similarly. Using the fact

that Φt is even in both of its variables and the equalities in (3.3), we obtain

u(t, x0, 1) = lim
εn→0−

u(t, x0, 1− εn) = lim
εn→0−

u0 ∗ Φt(x0, 1− εn)

= lim
εn→0−

∫

R

∫

R

u0(x0 − x, 1− εn − y)Φt(x, y) dy dx

= − lim
εn→0−

∫

R

∫

R

u0(x0 − x, 1 + εn + y)Φt(x, y) dy dx

= − lim
εn→0−

∫

R

∫

R

u0(x0 − x, 1 + εn + y)Φt(x,−y) dy dx

= − lim
εn→0−

(u0 ∗ Φt)(x0, 1 + εn) = − lim
εn→0−

u(t, x0, 1 + εn) = −u(t, x0, 1)

which gives that u(t, x0, 1) = 0. �

3.2. Analytic solution with sine Fourier expansion. Using Theorem 1 the

solution of (3.1) is nothing but the restriction of the solution of (3.4) to Ω. We also

need its Fourier expansion, which is given in the next theorem.

Theorem 2. Using the assumptions for (3.1), for all t > 0 there exists a unique

solution u(t, ·) of (3.1) such that u(t, ·) = u(t, ·)|Ω ∈ Fα, where µ̃ = µα2/(2C̃αCα).

Moreover, ‖u(t, ·)|Ω‖α/2 6 ‖u0|Ω‖α/2 and u(t, ·) satisfies the homogeneous Dirichlet
boundary conditions.

P r o o f. We seek the solution of (3.1) in the form

u(t, x, y) =
∞∑

k=1

∞∑

l=1

uk,l(t)2 sin(kπx) sin(lπy).

Taking the scalar product of (3.1) with the function 2 sin(kπx) sin(lπy) on Ω, we get

the system of differential equations
{
u′

k,l(t) = −µ((kπ)2 + (lπ)2)α/2uk,l(t),

uk,l(0) = u0,k,l,

where u0,k,l are the coefficients of the Fourier series of u0 and k, l ∈ N. Therefore,

we have that

u(t, x, y) =

∞∑

k=1

∞∑

l=1

u0,k,l exp{−tµ((kπ)2 + (lπ)2)α/2}2 sin(kπx) sin(lπy)

such that u(t, ·) ∈ Fα for any α > 0.
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To see uniqueness, we note that using Theorem 1 for the extension of any solution

of (3.1) we have

∂tu(t, x, y) = ∂tu(t, x, y) = −µ(−∆D)α/2u(t, x, y) = −µ
α2

2C̃αCα

(−∆)α/2u(t, x, y)

for all (x, y) ∈ Ω and by the extension procedure,

∂tu(t, x, y) = −µ̃(−∆)α/2u(t, x, y)

for all (x, y) ∈ R
2. On the other hand, this solution (as mentioned in Lemma 2) is

unique, which also implies the uniqueness of the solution of (3.1).

Since −tµ((kπ)2 + (lπ)2)α/2 6 0, we have that

‖(u(t, ·)|Ω)‖2α/2 =
∞∑

k=1

∞∑

l=1

[u0,k,l exp{−tµ((kπ)2 + (lπ)2)α/2}]2

+

∞∑

k=1

∞∑

l=1

((kπ)2 + (lπ)2)α/2[u0,k,l exp{−tµ((kπ)2 + (lπ)2)α/2}]2

6

∞∑

k=1

∞∑

l=1

[u0,k,l]
2 + ((kπ)2 + (lπ)2)α/2[u0,k,l]

2 = ‖(u0|Ω)‖2α/2

as stated. �

3.3. Numerical solution of (3.1). We analyze here the numerical solution of

(3.1) using the matrix transformation method (MTM). First we investigate an ap-

proximation with a spectral method using Fourier projection for the initial value.

Using this result, we will show that the MTM also gives a good approximation.

3.3.1. The spectral method. We will use the following approximation results,

which are stated in [4] for periodic boundary conditions, but can be adopted (with

a minimal change) to the case of Dirichlet boundary conditions.

Proposition 1. For all 0 6 η 6 s there is a constant C such that for all u ∈ H
s(Ω)

we have

(3.5) ‖u− PNu‖η 6 CNη−s|u|s;

moreover, if s > 1 then we also have

(3.6) ‖u− IN (u|Ωh
)‖η 6 CNη−s|u|s.
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First we define an approximation uN (t, ·) ∈ SN as the solution of the problem

(3.7)





∂uN

∂t
(t, x) = −µ(−∆D)α/2uN(t, x), x ∈ Ω, t ∈ (0, T ),

lim
t→0

uN(t, x) = uN(0, x) = IN (u0|Ωh
)(x), x ∈ Ω.

A corresponding error estimate is given as follows:

Theorem 3. Let uN be the solution of the problem in (3.7) and u the solution

of (3.1), using again the relevant assumptions here. Then there exists a constant C

independent of u0 such that for all t ∈ (0, T ) the following error estimation is valid:

‖u(t)− uN(t)‖0 6 Ch‖u0‖α+1, t ∈ [0, T0].

P r o o f. Let Lf := µ(−∆)α/2f and LNf = PNLf . Taking the scalar product

of (3.1) and (3.7) with a function Θ ∈ SN , we get the equalities

(∂tPNu,Θ) + (LPNu,Θ) = −(L(u− PNu),Θ),(3.8)

(∂tuN ,Θ) + (LuN ,Θ) = 0,(3.9)

where, indeed, the notation PN (u(s)), LPN(u(s)), and uN (s) should be used, which

for brevity is simplified throughout the proof. The difference of (3.8) and (3.9) gives

for e = uN − PNu and Θ = e the identity

(∂te, e) + (Le, e) = (L(u− PNu), e).

Since L is positive definite, we obtain

2‖e‖0∂t‖e‖0 = ∂t‖e‖20 =
∫

Ω

∂te
2 =

∫

Ω

2e∂te = 2(L(u− PNu), e)− 2(Le, e)

6 2(L(u− PNu), e) 6 2‖e‖0‖L(u− PNu)‖0,

which implies

∂t‖e‖0 6 ‖L(u− PNu)‖0.

Integrating both sides on [0, t] gives

(3.10) ‖e(t)‖0 6 ‖e0‖0 + t sup
(0,t)

‖L(u− PNu)‖0.

Using (3.7), (3.5), and (3.6) with η = 0, we get

(3.11) ‖e0‖0 = ‖uN(0)− PNu(0)‖0
6 ‖IN (u0|Ωh

)− u0‖0 + ‖u0 − PNu(0)‖0 6 CN−α‖u0‖α
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and (3.5) implies that

(3.12) ‖L(u− PNu)‖0 6 ‖u− PNu‖α 6 N−1‖u‖α+1.

Therefore, inserting (3.11) and (3.12) into (3.10) with the inequality in Theorem 2

gives the estimate

‖e(t)‖0 6 CN−α‖u0‖α + tN−1‖u‖α+1.

Combining this with the triangle inequality and using (3.5) with η = 0, we obtain

(3.13) ‖u(t)− uN(t)‖0 6 ‖u(t)− PNu(t)‖0 + ‖e‖0 6 2CN−α‖u0‖α + tN−1‖u‖α+1.

Finally, using that α > 1, we obtain 2CN−α‖u0‖α 6 2CN−1‖u0‖α+1, which com-

pared with (3.13) completes the proof of the theorem. �

3.3.2. The matrix transformation method. In this subsection, we establish

the order of convergence for the MTM. Here Âh ∈ R
(N−1)2×(N−1)2 denotes the

matrix corresponding to the standard five-point difference scheme of the Laplacian

(−∆) with homogeneous Dirichlet boundary conditions.

The eigenvectors of the matrix Âh and the corresponding eigenvalues in the order

of increasing values are given for k, l ∈ {1, 2, . . . , N − 1} by

(vk,l)i,j = 2 sin(kπih) sin(lπjh) and λk,l =
(2
h
sin

kπh

2

)2
+
(2
h
sin

lπh

2

)2
.

Since Âh is positive definite, we can take its singular value decomposition V TΛV .

Here the kth column of V is the kth eigenvector of Âh belonging to the kth eigenvalue

and the diagonal matrix Λ contains the corresponding eigenvalues.

The basic idea of the MTM is to use the matrix Â
α/2
h for the approximation of

the operator (−∆D)α/2. Accordingly, we define Â
α/2
h := V TΛα/2V and with this we

have to solve the semidiscretized problem

(3.14)





∂ÛN

∂t
(t) = −µÂ

α/2
h ÛN (t) ∀ t > 0,

ÛN (0) = u0(·)|Ωh
,

where ÛN(t) is a vector in R
(N−1)2 and its components are given at the gridpoints

of Ωh.

3.4. Convergence result. We also introduce the operator A
α/2
h : SN → SN by

A
α/2
h u(x, y) =

N−1∑

k,l=1

uk,l 2 sin(kπx) sin(lπy)
[( 2

h
sin

kπh

2

)2
+

(2
h
sin

lπh

2

)2]α/2
,

25



where

u(x, y) =

N−1∑

k,l=1

uk,l 2 sin(kπx) sin(lπy).

R em a r k. The operators Ah and Âh are equivalent in the following sense:

(3.15) [Ahu(x, y)]|Ωh
= Âh[u(x, y)|Ωh

] and IN{Âh[u(x, y)|Ωh
]} = Ahu(x, y)

for all u ∈ SN . To relate the operators (−∆) and Ah we need the following estimate.

Proposition 2. For arbitrary α ∈ (0, 2] and integers k, l with 1 6 k, l 6 N − 1

there is a mesh-independent constant Cα,0 so that the following estimation is valid:

[(kπ)2 + (lπ)2]α/2 −
[( 2

h
sin

kπh

2

)2
+
(2
h
sin

lπh

2

)2]α/2
6 Cα,0h

α((kπ)2α + (lπ)2α).

P r o o f. We first note that using the Taylor expansion of the function sin2 around

zero we have that ( 2

h
sin

kπh

2

)2
= (kπ)2 − h2 (kπ)4

12
cos ξk

is satisfied for all 1 6 k 6 N − 1 with some ξk ∈ [0, π].

Since sinx 6 x is satisfied for x > 0, we obviously get

B =
( 2

h
sin

kπh

2

)2
+
( 2

h
sin

lπh

2

)2
6 (kπ)2 + (lπ)2 = A

so that cos ξk > 0 should also be satisfied. Therefore, using the inequality Aα/2 −
Bα/2 6 (A − B)α/2 for α/2 ∈ (0, 1], we finally obtain the following estimate for all

1 6 k, l 6 N − 1:

[(kπ)2 + (lπ)2]α/2 −
[( 2

h
sin

kπh

2

)2
+
(2
h
sin

lπh

2

)2]α/2

6

(
h2 (kπ)4

12
cos ξk

)α/2
+
(
h2 (lπ)

4

12
cos ξl

)α/2

6

[( (kπ)4

12

)α/2

+
( (lπ)4

12

)α/2]
hα

=
1

12α/2
hα((kπ)2α + (lπ)2α),

which proves the statement. �

We can now quantify the difference between A
α/2
h and (−∆)α/2.
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Lemma 3. If u ∈ SN and α ∈ (0, 2], then we have

‖(−∆D)α/2u−A
α/2
h u‖0 6 CNhα|u|α+1.

P r o o f. If u ∈ SN with u(x, y) =
N−1∑
k,l=1

uk,l 2 sin(kπx) sin(lπy) then

(−∆D)α/2u(x, y) = Cα

N−1∑

k,l=1

uk,l((kπ)2 + (lπ)2)α/2 2 sin(kπx) sin(lπy),

A
α/2
h u(x, y) =

N−1∑

k,l=1

uk,l

(( 2

h
sin

kπh

2

)2
+
(2
h
sin

lπh

2

)2)α/2
2 sin(kπx) sin(lπy)

so that using Proposition 2 we obtain

‖(−∆D)
α/2u−A

α/2
h u‖20

=

N−1∑

k,l=1

u2
k,l

(
((kπ)2 + (lπ)2)α/2 −

((2
h
sin

kπh

2

)2
+
( 2

h
sin

lπh

2

)2)α/2)

6 Cα,0h
α

N−1∑

k,l=1

u2
k,l((kπ)2α + (lπ)2α) 6 Cα,0h

α
N−1∑

k,l=1

u2
k,l((kπ)2 + (lπ)2)α+1

= Cα,0h
α|u|2α+1,

as stated in the lemma. �

To use a key approximation theorem, we pose some assumptions following the

setting in [2].

Assumption 1. For the Banach spaces (Xn)n∈N and X , the operators Pn : X →
Xn and Jn : Xn → X satisfy the following conditions:

⊲ there exists a constant K > 0 such that ‖Pn‖, ‖Jn‖ 6 K for all n ∈ N,

⊲ PnJn = In, where In is the identity operator on the space Xn,

⊲ JnPnf → f for all f ∈ X for n → ∞.

Assumption 2. For the generators (An)n∈N and A of the strongly continuous

semigroups (Tn)n∈N and T on {Xn}n∈N and X , respectively, we have

⊲ ‖Tn(t)‖ 6 Meωt for all n ∈ N for some constants M > 1 and ω ∈ R.

On the Banach space (Y, ‖·‖Y ) with Y ⊂ D(A) dense we have the following condi-

tions:

⊲ ‖T (t)‖Y 6 Meωt with the above constants M > 1 and ω,
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⊲ for all g ∈ Y there exists a sequence (yn) with yn ∈ D(An) which satisfies

(3.16) ‖yn − Png‖Xn
→ 0 and ‖Anyn − PnAg‖Xn

→ 0 for n → ∞.

Theorem 4. Suppose that Assumptions 1 and 2 hold true and there exist con-

stants C > 0 and p ∈ N such that for all f ∈ Y the following inequality holds:

‖AnPnf − PnAf‖Xn
6 C

‖f‖Y
np

.

Then for all t > 0 there exists a constant C′ > 0 such that we have the error estimate

‖Tn(t)Pnf − PnT (t)f‖Xn
6 C′

‖f‖Y
np

and this convergence is uniform in t on compact intervals.

This statement is an easy consequence of Corollary 1.11 in [9], page 163 and the

detailed proof can be found in [2].

To use the above results we investigate the problem

(3.17)





∂UN

∂t
(t, x) = −µA

α/2
h UN(t, x), x ∈ Ω, t ∈ (0, T ),

UN(t) ∈ SN , t ∈ (0, T ),

lim
t→0

UN (t, x) = IN (u0|Ωh
)(x), x ∈ Ω, t ∈ (0, T ),

which is related with (3.14) to obtain the main result. We intend to use also Propo-

sition 2 and Theorem 3 and therefore, we need to assume some smoothness on the

initial condition and restrict the exponent of the Dirichlet Laplacian to preserve the

initial accuracy.

Theorem 5. Using the assumptions for (3.1), we have that the numerical solu-

tion ÛN in (3.14) satisfies the following error estimate:

‖u(t)− IN (ÛN (t))‖0 6 hC‖u0‖α+1, t ∈ [0, T ].

P r o o f. Using (3.17) and the interpolation property of IN in (2.5), we obviously
have that

(3.18) UN(0, x) = (IN (u0|Ωh
))(x) = u0(x) for x ∈ Ωh.
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Therefore, applying (3.17) at the gridpoints using (3.15) gives that

(3.19)
∂UN

∂t
(t, x) = −µA

α/2
h UN (t, x) = −µÂ

α/2
h UN(t, x)|Ωh

.

The equalities in (3.18) and (3.19) imply that (3.17) at the gridpoints coincides

with (3.14) so that

(3.20) UN (t)|Ωh
= ÛN (t) and vice versa IN (ÛN (t)) = UN (t).

If u ∈ SN then using Lemma 3, we get

‖(−∆)α/2u−A
α/2
h u‖0 6 Cαh|u|α+1.

We can now apply Theorem 4 with the following choice for the function spaces:

Xn = (SN , ‖·‖0), X = L2(Ω), Y = Fα+1(Ω)

and for the corresponding operators:

Pn = PN , Jn = SN →֒ L2(Ω), An = A
α/2
h , and A = (−∆)α/2,

where →֒ denotes the identical embedding, i.e. Jn(v) = v. Finally, we define semi-

groups Tn(t) ∈ SN and T (t) ∈ L2(Ω) to be the solution operators of (3.17) and (3.1),

respectively.

To verify Assumption 1, we first note that ‖PN‖ = 1, see the remark after the

definition of PN . The subspace SN is also equipped with the ‖·‖0-norm, so that
‖Jn‖ = 1. Since PN is a projection, we also have Pn(Jn(uk)) = PN (uk) = uk

for all uk ∈ SN . Finally, the orthogonal system {2 sin(kπx) sin(lπy) : x, y ∈ [0, 1],

k, l ∈ N
+} is complete and therefore, Jn(Pn(v)) → v for all v ∈ L2(Ω).

For the first estimate in Assumption 2, we note that

Tn(UN (0, ·)) = UN(t, ·) = exp{−µA
α/2
h t}UN(0, ·)

and therefore, ‖Tn‖ = ‖ exp{−µA
α/2
h t}‖ 6 1, since the matrix Ah is positive definite.

Using Theorem 2, we have that ‖u(t, ·)‖α 6 ‖u(0, ·)‖α for the solution of (3.1) so
that we obtain ‖T (t)‖Y 6 1.

Finally, with the choice yn = PNg the first item in (3.16) is obviously satisfied and

the other one is an easy consequence of (2.4) and Lemma 3:

‖AnPNg − PNAg‖0 = ‖(−∆D)α/2g −A
α/2
h g‖0 6 Cα,0h

α‖g‖α+1.
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Finally, using AnPnu = A
α/2
h PNu and (2.4) again with Lemma 3 gives that

‖AnPnu− PnAu‖0 = ‖Aα/2
h PNu− PN (−∆)α/2u‖0

= ‖Aα/2
h PNu− (−∆)α/2PNu‖0 6 Cα,0h

α‖u‖α+1

so that the assumption in Theorem 4 is satisfied. Therefore, Theorem 4 implies the

inequality

‖uN(t)− UN (t)‖0 6 C1h
α‖u0‖α+1.

According to Theorem 3, we also have

‖u(t)− uN (t)‖0 6 hC2‖u0‖α+1,

so that using (3.20) the triangle inequality and α > 1 implies

‖u(t)− IN )(ÛN (t))‖0 = ‖u(t)− UN (t)‖0
6 ‖u(t)− uN (t)‖0 + ‖uN(t)− UN(t)‖0
6 (C1 + C2)h‖u0‖α+1

as stated in the theorem. �

R em a r k s. Theorem 5 gives the spatial accuracy of the MTM method, which

is a consequence of the standard five-point stencil in the underlying finite difference

discretization. The accuracy of the full discretization depends on the time integration

to approximate ÛN (t).

The method presented here can also be applied to rectangular domains in any space

dimensions. In such a case we know the eigenvalues of the matrix Ah corresponding

to the Dirichlet Laplacian −∆D and the extension procedure in Section 3.1 can also

be applied. By using sharp estimates for the eigenvalues of Ah one could mimic

the presented analysis. At the same time, in this case additional strong smoothness

assumptions would be necessary to ensure that applying the fractional Dirichlet

Laplacian will lead to solutions with homogeneous boundary conditions since in

general, the extension procedure cannot be performed.

The treatment of inhomogeneous boundary conditions is still an open problem.

Even the correct formulation of a corresponding continuous problem is still under

discussion in the literature [1].
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4. Numerical experiments

We investigate the following test problem:

(4.1)





∂u

∂t
(t, x) = −0.01(−∆)1.4/2u(t, x), t ∈ (0, 1),

u(0, x, y) = [100(x(1− x) + (x(1 − x))2)(y(1− y) + (y(1− y))2)],

where x = (x, y) ∈ Ω = (0, 1) × (0, 1). Note that this is a restriction of the corre-

sponding problem in R
2 so that according to Lemma 2, the homogeneous Dirichlet

boundary condition is also satisfied. The sine Fourier series of the analytic solution

of (4.1) is

u(t, x, y) =

∞∑

k=1

∞∑

l=1

230400 sin(kπx) sin(lπy)
(1 + (−1)k+1))(1 + (−1)l+1))

(kl)5π
10

× exp[−0.01t((kπ)2 + (lπ)2)0.7].

The semidiscretization of (4.1) with MTM for the point values in Ωh is given by

(4.2)





∂ÛN

∂t
(t) = −0.01Â0.7

h ÛN (t), t ∈ (0, 1),

ÛN (0) = 100(x(1− x) + (x(1 − x))2)(y(1 − y) + (y(1 − y))2)|Ωh
.

To solve this ODE we used the implicit Euler and Crank-Nicolson method. Based

on these approximations, we can estimate the error ‖IN [ÛN(t)](·) − u(t, ·)‖0.
To compare (IN )[ÛN (t)](·) with u(t, ·) we cut off the Fourier series of u(t, ·) at the

first N terms in both variables; this results in an extra error term of order O(h2),

which does not harm the accuracy of the method, since u ∈ Fα+2.

h time step IE ‖·‖0 convergence order CN ‖·‖0 convergence order
0.2 0.2 0.0111 0.0083

0.1 0.1 0.0036 1.6245 0.0021 1.9822

0.05 0.05 0.0013 1.4695 5.3096 · 10−4 1.9837

0.025 0.025 5.0153 · 10−4 1.3741 1.328 · 10−4 1.9993

0.0125 0.0125 2.1783 · 10−4 1.2031 3.3203 · 10−5 1.9999

Table 1. Error and convergence for the test problem in (4.1) using the MTM with implicit
Euler (IE) and Crank-Nicolson (CN) methods.

In this case we obtain a second order convergence for the full discretization if

the Crank-Nicolson method is used for the time steps. We cannot expect this (full)

convergence order, if the implicit Euler method is applied. Accordingly, we obtain

an order near to one.
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5. Appendix

5.1. Equivalence of different forms of the fractional Laplacian. For the

proof of Theorem 1 we recall the Bessel functions Kν(z), Iν(z) and the modified

Struve function Lν(z); see the definitions in the work [11] at the points of 8.55, 8.43

and 8.407. We summarize these properties in the sequel.

Proposition 3. For all a ∈ R
+ and β, µ, ν ∈ C with Re β > 0, Reµ > − 1

2 , and

Re ν < 1
2 with ν 6= − 1

2 ,− 3
2 ,− 5

2 , . . . the following identities hold:

1.
∫
∞

0
(β2 + x2)ν−1/2 cos(ax) dx = π

−1/2(2β/a)ν cos(πν)Γ(ν + 1
2 )K−ν(aβ),

2.
∫
∞

0 (β2+x2)ν−1/2 sin(ax) dx = 1
2

√
π(2β/a)ν cos(πν)Γ(ν+ 1

2 )(I−ν (aβ)−Lν(aβ)),

3. Kν(x) = K−ν(x),

4.
∫
∞

0 xµKµ(ax) cos(bx) dx = 1
2

√
π(2a)µΓ(µ+ 1

2 )(b
2 + a2)−µ−1/2.

In the next statement, we use the notation∆ for the differential operator ∂xx+∂yy.

Proposition 4. For each α ∈ (1, 2] there exists a constant C̃α > 0 so that for all

k, l ∈ N and x, y ∈ R
2 we have

(−∆)

∫

R

∫

R

sin (kπs1) sin (lπs2)

[(x− s1)2 + (y − s2)2]α/2
ds1 ds2

= C̃α[(kπ)2 + (lπ)2]α/22 sin (kπx) sin (lπy).

P r o o f.

∫

R

∫

R

sin(kπs1) sin(lπs2)

[(x − s1)2 + (y − s2)2]α/2
ds1 ds2(5.1)

=

∫

R

sin (lπs2)

{∫

R

sin(kπs1)

[(x − s1)2 + (y − s2)2]α/2
ds1

}
ds2

=

∫

R

sin(lπs2)

{∫

R

sin(kπ(x+ s1))

[s21 + (y − s2)2]α/2
ds1

}
ds2

=

∫

R

sin(lπs2)

|y − s2|α
{∫

R

sin(kπ(x+ s1))

[(s1/(y − s2))2 + 1]α/2
ds1

}
ds2

=

∫

R

sin(lπs2)

|y − s2|α−1

{∫

R

sin(kπ(x+ s1|y − s2|))
[s21 + 1]α/2

ds1

}
ds2

=

∫

R

sin(lπs2)

|y − s2|α−1

{
sin(kπx)

∫

R

cos(kπs1|y − s2|)
[s21 + 1]α/2

ds1

− cos(kπx)

∫

R

sin(kπs1|y − s2|)
[s21 + 1]α/2

ds1

}
ds2
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= sin (kπx)

∫

R

sin(lπs2)

|y − s2|α−1
ds2

∫

R

cos(kπs1|y − s2|)
[s21 + 1]α/2

ds1

= 2 sin(kπx)

∫

R

sin(lπs2)

|y − s2|α−1
ds2

∫
∞

0

cos(kπs1|y − s2|)
[s21 + 1]α/2

ds1.

Using the first formula of Proposition 3 with parameters β = 1, a = kπ|y − v|, and
ν = (1− α)/2, we obtain

∫
∞

0

cos(kπs1|y − s2|)
[s21 + 1]α/2

ds1

=
1√
π

( 2

kπ

)(1−α)/2

cos
(

π

1− α

2

)
Γ
(
1− α

2

)
K(α−1)/2(kπ|y − s2|)

1

|y − s2|(1−α)/2
.

Inserting this into (5.1) gives the equality

(5.2)

∫

R

∫

R

sin (kπs1) sin (lπs2)

[(x− s1)2 + (y − s2)2]α/2
ds1 ds2 =

2√
π

sin (kπx)
( 2

kπ

)(1−α)/2

× cos
(

π

1− α

2

)
Γ
(
1− α

2

) ∫

R

sin(lπs2)

|y − s2|(α−1)/2
K(α−1)/2(kπ|y − s2|) ds2.

We also have

∫

R

sin(lπs2)

|y − s2|(α−1)/2
K(α−1)/2(kπ|y − s2|) ds2

=

∫ y

−∞

sin(lπs2)

|y − s2|(α−1)/2
K(α−1)/2(kπ|y − s2|) ds2

+

∫
∞

y

sin(lπs2)

|y − s2|(α−1)/2
K(α−1)/2(kπ|y − s2|) ds2

=

∫
∞

0

sin(lπ(y − s2))s
−(α−1)/2
2 K(1−α)/2(kπs2) ds2

+

∫
∞

0

sin(lπ(y + s2))s
−(α−1)/2
2 K(1−α)/2(kπs2) ds2

= 2 sin(lπy)

∫
∞

0

cos(lπs2)s
−(α−1)/2
2 K(1−α)/2(kπs2) ds2.

Using the fourth formula of Proposition 3 with the parameters µ = (1− α)/2, a = kπ,

b = lπ gives

∫

R

sin(lπs2)

|y − s2|(α−1)/2
K(α−1)/2(kπ|y − s2|) ds2

= 2 sin(lπy)Γ
(
1− α

2

)√
π

2
(2kπ)(1−α)/2((kπ)2 + (lπ)2)α/2−1
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and therefore, with the aid of (5.2) we obtain

∫

R

∫

R

sin(kπs1) sin(lπs2)

[(x− s1)2 + (y − s2)2]α/2
ds1 ds2

= sin(lπy) sin(kπx)[(kπ)2 + (lπ)2]α/2−122−α sin
(απ

2

)[
Γ
(
1− α

2

)]2
.

Applying the operator (−∆) to the last formula, we get the statement with the

constant

C̃α = 22−α sin
(απ

2

)[
Γ
(
1− α

2

)]2
.

�

P r o o f of Theorem 1. Let u(x, y) =
∞∑

k,l=1

uk,l 2 sin kπx sin lπy be the spectral

expansion of u ∈ Fα. The extension u defined on R
2 is automatically obtained just

by extending the domain of x and y in the same formula. Using (2.1), Proposition 4

and finally (2.3), we obtain that

(−∆D)α/2u(x, y) =

∞∑

k,l=1

uk,l[(kπ)2 + (lπ)2]α/22 sinkπx sin lπy

=
1

2C̃α

∞∑

k,l=1

uk,l(−∆)

(∫

R

∫

R

2 sin(kπs1) sin(lπs2)

[(x− s1)2 + (y − s2)2]α/2
ds1 ds2

)
(x, y)

=
1

2C̃α

(−∆)

(∫

R

∫

R

1

[(x− s1)2 + (y − s2)2]α/2

∞∑

k,l=1

uk,l 2 sin(kπs1) sin(lπs2) ds1 ds2

)
(x, y)

=
1

2C̃α

(−∆)

(∫

R

∫

R

u(s1, s2)

|(x, y)− (s1, s2)|α
ds1 ds2

)
(x, y)

=
1

2C̃α

α2

Cα
(−∆)α/2u(x, y)

as we stated in the theorem. �
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