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Abstract. In this paper, the upper and lower bounds for the quotient of spectral ra-
dius (Laplacian spectral radius, signless Laplacian spectral radius) and the clique number
together with the corresponding extremal graphs in the class of connected graphs with n

vertices and clique number ω (2 6 ω 6 n) are determined. As a consequence of our results,
two conjectures given in Aouchiche (2006) and Hansen (2010) are proved.
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1. Introduction

Throughout this paper, G is a simple undirected graph with n vertices. The

maximum vertex degree of G is denoted by ∆(G). Let A(G) and D(G) be the adja-

cency matrix and the vertex degree matrix of G, respectively. Then, the Laplacian

matrix of G is L(G) = D(G) − A(G), and the signless Laplacian matrix of G is

Q(G) = D(G) + A(G). Denote by λ(G), µ(G) and q(G), respectively, the spectral

radius, Laplacian spectral radius and signless Laplacian spectral radius of G. That

means λ(G), µ(G) and q(G) are equal to the maximum eigenvalues of A(G), L(G)

and Q(G), respectively.

As usual, Kn, Pn and Kp,n−p denote, respectively, the complete graph, the path

and a complete bipartite graph on n vertices. Denote by Kin,ω the graph obtained

The second author is supported by NSFC project 11571123, the Training Program for
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by joining one vertex of Kω to one end vertex of a path Pn−ω by a bridge. From the

definition, Kin,2 ∼= Pn. Let Tn,ω define the complete ω-partite graph with almost

equal parts, which is famous as Turán graph (see [4], [8]). Let Γ(n, ω) be the class

of connected graphs with n vertices and clique number ω. When ω = 1, Γ(n, ω) is

trivial, and hence we always suppose that 2 6 ω 6 n in the following.

As early as in 1985, Brualdi and Hoffman in [2] investigated the maximum spec-

tral radius of the adjacency matrix of a (not necessarily connected) graph in the set

of all graphs with a given number of vertices and edges. Their work was followed

by other authors, in the connected graph case as well as in the general case. Re-

cently, the research on extremal graphs with maximum or minimum spectral radii

(Laplacian spectral radii, signless Laplacian spectral radii) in Γ(n, ω) received much

attention (see [3], [4], [5], [8], [10], [13], [14], [15]). Furthermore, some researchers

were also concerned with the quotient of spectral radius (signless Laplacian spectral

radius) and clique number of graphs. For instance, the following two conjectures

were proposed not long ago.

Conjecture 1.1 ([1]). If G ∈ Γ(n, ω) with n > 3, then λ(G)/ω is minimum for

Kin,3.

Conjecture 1.2 ([6]). If G ∈ Γ(n, ω) with n > 4, then q(G)/ω 6 n/2.

Conjecture 1.2 was proved to be true for n > 10 by He et al. in [8], while Conjec-

ture 1.1 is still open. Motivated by Conjectures 1.1 and 1.2, we consider the lower

and upper bounds for the quotient of spectral radius (Laplacian spectral radius, sign-

less Laplacian spectral radius) and the clique number of connected graphs, and we

obtain better bounds for Conjectures 1.1 and 1.2.

Theorem 1.1. If G ∈ Γ(n, ω) with n > 5 and ω > 2, then

λ(Kin,3)

3
+

(ω − 3)2

ω3
6

λ(G)

ω
6

λ(Tn,2)

2
− (w − 2)2

ω2
,

where the left equality holds if and only if G ∼= Kin,3, and the right equality holds

if and only if G ∼= Tn,2.

G1 G3

G2

Figure 1. The graphs G1, G2 and G3.

In the following, let G1, G2 and G3 be the graphs as shown in Figure 1.
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Remark 1.1. From Table 1, one can easily see that the lower bound is tight for

Ki6,4 and G1, and the upper bound is tight for K6,6 − e and G2 in Theorem 1.1.

G
λ(Kin,3)

3
+

(ω − 3)2

ω3

λ(G)

ω

λ(Tn,2)

2
− (w − 2)2

ω2

Ki6,4 0.7584 0.7741 1.2500
G1 0.7452 0.7463 2.1250
K6,6 − e 0.8703 2.9271 3.0000
G2 0.7428 1.2555 1.3889

Table 1.

Theorem 1.2. If G ∈ Γ(n, ω) with n > 6 and ω > 2, then

q(Kin,3)

3
+

(ω − 2)(ω − 3)

ω3
6

q(G)

ω
6

n

2
−
(

1− 2

ω

)

,

where the left equality holds if and only if G ∼= Kin,3, and the right equality holds

if and only if either G ∼= Kp,n−p for some positive integer p or G is isomorphic to

a complete 3-partite graph with two vertices in each part.

Remark 1.2. From Table 2, one can easily see that our lower (for Ki6,4 and G1)

and upper (for K6,6 − e and G2) bounds are tight in Theorem 1.2.

G
q(Kin,3)

3
+

(ω − 2)(ω − 3)

ω3

q(G)

ω

n

2
−
(

1− 2

ω

)

Ki6,4 1.5831 1.5981 2.5000
G1 1.5530 1.5538 4.1667
K6,6 − e 1.5530 5.8708 6.0000
G2 1.5518 2.5863 2.6667

Table 2.

It is well-known (see [12]) that for any graph with n vertices, µ(G) 6 n with

equality holding if and only if G, namely, the complement graph of G, is disconnected.

Thus, we can conclude that
µ(G)

ω
6

n

ω

with equality holding if and only if G is disconnected. It is interesting to consider

the upper bound for µ(G)/ω when G is connected. For the lower bound of µ(G)/ω,

we have

Theorem 1.3. If G ∈ Γ(n, ω) with 2 6 ω 6 n− 1, then

(1.1)
µ(G)

ω
> 1 +

1

ω
+

n− ω − 1

(n− ω)ω3

with equality holding if and only if ω = n− 1.
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Remark 1.3. From Table 3, one can easily see that the lower bound is tight for

Ki6,4 and G3 in Theorem 1.3.

G
µ(G)

ω
1 +

1

ω
+

n− ω − 1

(n− ω)ω3

Ki6,4 1.2715 1.2578
G3 1.2746 1.2630

Table 3.

2. Some useful preliminaries

The following lemma suggests that Kin,ω uniquely achieves the minimum spectral

radius and the signless Laplacian spectral radius among Γ(n, ω) when ω > 2.

Lemma 2.1 ([8], [14], [15]). If G ∈ Γ(n, ω) with ω > 2, then λ(G) > λ(Kin,ω),

and q(G) > q(Kin,ω) with each equality holding if and only if G ∼= Kin,ω.

The following lemma determines the extremal graph with maximum spectral ra-

dius and signless Laplacian spectral radius among Γ(n, ω) when ω > 2.

Lemma 2.2. Suppose that G ∈ Γ(n, ω).

(i) ([13]). If 2 6 ω 6 n, then λ(G) < λ(Tn,ω) unless G ∼= Tn,ω.

(ii) ([3], [8]). If ω = 2, then q(G) < q(Kp,n−p) unless G ∼= Kp,n−p.

(iii) ([3], [8]). If 3 6 ω 6 n, then q(G) < q(Tn,ω) unless G ∼= Tn,ω.

Lemma 2.3. For any ω > 2, we have

(i) λ(Tn,ω) 6 n− n/ω, where the equality implies that n/ω is a positive integer.

(ii) ([7], [8]). q(Tn,ω) 6 2n − 2n/ω, where the equality implies that either n/ω is

a positive integer or ω = 2.

P r o o f. We only need to show (i). From the definition, Tn,ω is a Turán graph

with k parts of size d + 1 and ω − k parts of size d, where d = ⌊n/ω⌋, n = k + ωd,

and 0 6 k < ω. It is proved that [4]

(2.1) λ(Tn,ω) =
1

2

(

n− 2(n− k)

ω
− 1 +

√

(n+ 1)2 − 4k
(n− k

ω
+ 1

)

)

.

Since
(

n− 2k

ω
+ 1

)2

−
(

(n+ 1)2 − 4k
(n− k

ω
+ 1

))

=
4k(ω − 1)(ω − k)

ω2
> 0,

by (2.1) we have λ(Tn,ω) 6 n−n/ω, where the equality implies that k = 0 and hence

n/ω is a positive integer. �
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Lemma 2.4 ([14]). For any integers ω > 3 and n > 4,

λ(Kin,ω) > ω − 1 +
1

ω2
+

1

ω3
.

Let G be a connected graph, and uv ∈ E(G). The graph G∗

u,v
is obtained from G

by subdividing the edge uv, i.e., adding a new vertex w and edges wu, wv in G−uv.

An internal path, say v1v2 . . . vs+1, s > 1, is a path joining v1 and vs+1 (which need

not be distinct) so that v1 and vs+1 have degrees greater than 2, while all other

vertices v2, v3, . . . , vs are of degree 2. Let Wn be a tree on n vertices obtained from

a path Pn−2 = v1v2 . . . vn−2 by adding two new vertices vn−1 and vn, and two new

edges v2vn−1 and vn−3vn.

Lemma 2.5. Let uv be an edge of the connected graph G. If uv belongs to an

internal path of G, then

(i) ([9]) λ(G∗

u,v
) < λ(G) if G 6∼= Wn;

(ii) ([11]) q(G∗

u,v
) < q(G).

3. Proofs of Theorems 1.1–1.3

A vertex with degree one is called a pendent vertex. When n > 5, let Hn+1 be the

graph of order n+ 1 obtained from Kin,3 by adding one new vertex and adding one

new edge between this new vertex and the vertex with degree two of Kin,3, which is

adjacent with the unique pendent vertex of Kin,3.

P r o o f of Theorem 1.1. We first prove the lower case. Taking Lemma 2.1 into

consideration, we may suppose that ω 6= 3 and divide the proof into two cases.

Case 1 : n = 5. When ω = 2, by Lemma 2.1 we get

(3.1)
λ(Ki5,3)

3
< 0.739 < cos

π

6
=

λ(P5)

2
6

λ(T )

2
.

When 4 6 ω 6 5, by Lemma 2.1, Lemma 2.4 and the upper bound in (3.1), it is

easy to check that

λ(G)

ω
>

λ(Kin,ω)

ω
> 1− 1

ω
+

1

ω3
> 0.739 +

(ω − 3)2

ω3
>

λ(Ki5,3)

3
+

(ω − 3)2

ω3
.

Case 2 : n > 6. By Lemmas 2.1 and 2.5, we have

(3.2)
λ(Kin,3)

3
<

λ(Hn+1)

3
<

λ(Hn)

3
< . . . <

λ(H7)

3
< 0.752.
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When ω = 2, since G is connected, by Lemma 2.1 and the upper bound in (3.2),

λ(T )

2
>

λ(Pn)

2
= cos

π

n+ 1
> 0.9 > 0.752 + 0.125 >

λ(Kin,3)

3
+

1

8
.

When ω = 4, by Lemma 2.1, Lemma 2.4 and the upper bound in (3.2),

λ(G)

4
>

λ(Kin,4)

4
> 1− 1

4
+

1

64
+

1

256
> 0.769 > 0.752 +

1

64
>

λ(Kin,3)

3
+

1

64
.

When ω > 5, since

1− 1

ω
+

1

ω3
− 0.752− (ω − 3)2

ω3
=

ω2(31ω − 250) + 250(3ω − 4)

125ω3
> 0,

by Lemma 2.1, Lemma 2.4 and the upper bound in (3.2),

λ(G)

ω
>

λ(Kin,ω)

ω
> 1− 1

ω
+

1

ω3
> 0.752 +

(ω − 3)2

ω3
>

λ(Kin,3)

3
+

(ω − 3)2

ω3
.

Thus, the lower bound of Theorem 1.1 holds. Now, we turn to prove the upper

bound of Theorem 1.1. When ω = 2, the result follows from Lemma 2.2. When

ω > 3, by Lemmas 2.2 and 2.3, it suffices to show that

n

ω
− n

ω2
<

√
n2 − 1

4
− (ω − 2)2

ω2
(as λ(Tn, 2) > 0.5

√

n2 − 1 by (2.1)),

which is equivalent to

(3.3)
n

ω
− n

ω2
+

(ω − 2)2

ω2
<

√
n2 − 1

4
.

Note that f1(x) = n/x−n/x2+(x− 2)2/x2 is a decreasing function on x > 3. Thus,

f1(ω) 6 f1(3) =
n

3
− n

9
+

1

9
=

2n+ 1

9
.

If n > 6, since f1(ω) 6 f1(3) = (2n+ 1)/9 < (8n− 1)/32 <
√
n2 − 1/4,

(3.3) holds.

If n = 5, since f1(ω) 6 f1(3) = 11/9 <
√
24/4, (3.3) also holds. �

Remark 3.1. When n > 13 and ω > 2, since (2n+ 3)/9 < (16n− 1)/64 <√
n2 − 1/4, it can be proved similarly to the proof of Theorem 1.1 that

λ(G)

ω
6

λ(Tn,2)

2
−
(

1− 2

ω

)

,

where the equality holds if and only if G ∼= Tn,2.
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P r o o f of Theorem 1.2. We first prove the lower bound. By Lemma 2.5, we get

q(Ki6,3)

3
< 1.552, and(3.4)

q(Kin,3)

3
<

q(Hn+1)

3
< . . . <

q(H8)

3
< 1.557 for n > 7.

When ω = 2, by Lemma 2.1 and the upper bounds in (3.4), we have

q(G)

2
>

q(Pn)

2
= 1 + cos

π

n
> 1 + cos

π

6
> 1.866 >

q(Kin,3)

3
.

When ω = 3, by Lemma 2.1 it follows that

q(G)

ω
>

q(Kin, 3)

3

with equality holding if and only if G ∼= Kin,3.

Otherwise, ω > 4. For ω = n, G ∼= Kn and hence by the upper bounds in (3.4) we

have

q(G)

ω
= 2− 2

n
> 1.557 +

1

n
>

q(Kin, 3)

3
+

(n− 2)(n− 3)

n3
for n > 7,

and

q(G)

ω
= 2− 2

6
> 1.552 +

1

18
>

q(Ki6, 3)

3
+

1

18
for n = 6.

Now we have to prove our result for 4 6 ω 6 n− 1. By Lemma 2.1, we have

q(G)

ω
>

q(Kin,ω)

ω
>

q(Kiω+1,ω)

ω
=

2ω − 1 +
√
4ω2 − 12w + 17

2ω
.

Now it suffices to show that

2ω − 1 +
√
4ω2 − 12w + 17

2ω
>

q(Kin,3)

3
+

(ω − 2)(ω − 3)

ω3
,

that is, by the upper bounds in (3.4), it suffices to show that

(3.5)
2ω − 1 +

√
4ω2 − 12w + 17

2ω
> 1.557 +

(ω − 2)(ω − 3)

ω3
.

For 4 6 ω 6 7, we can check directly that the result in (3.5) holds. For ω > 8,

2ω − 1 +
√
4ω2 − 12w + 17

2ω
> 1.769 > 1.557 +

1

ω
> 1.557 +

(ω − 2)(ω − 3)

ω3
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as f2(x) = 1− 1/2x+
√

1− 3/x+ 17/(4x2) is an increasing function on x > 8.

Therefore (3.5) holds and hence this completes the proof of the lower bound.

Now, we turn to proving the upper bound of Theorem 1.2.

By Lemma 2.2, we can get our required result for ω = 2. When ω > 3, combining

Lemmas 2.2 and 2.3, it suffices to show that

q(G)

ω
6

q(Tn,ω)

ω
6

2n

ω
− 2n

ω2
6

n

2
−
(

1− 2

ω

)

,

that is,

(3.6)
n

2
− 1− 2n

ω
+

2n

ω2
+

2

ω
> 0.

Note that f3(x) = n/2− 1− 2n/x+2n/x2 +2/x is an increasing function on x > 3.

Thus, f3(ω) > f3(3) = n/2 − 1 − 2n/3 + 2n/9 + 2/3 = (n− 6)/18 > 0, and hence

(3.6) holds.

Furthermore, if the equality holds in the upper bound of Theorem 1.2, then the

equality of (3.6) holds, which implies that n = 6, ω = 3 and G is isomorphic to

a complete 3-partite graph with two vertices in each part by Lemma 2.3 (as f3(ω) =

f3(3) = 0). Conversely, if G is isomorphic to a complete 3-partite graph with two

vertices in each part, then it can be directly checked that the equality holds in the

upper bound of Theorem 1.2. �

To prove Theorem 1.3, we need to introduce some more notation: Let D1 be

a graph of order ω+2 obtained from a complete graph Kω by attaching two pendent

vertices at two different vertices in the clique, and let D2 be a graph of order ω + 2

obtained from a complete graph Kω by attaching two pendent vertices at one vertex

in the clique.

P r o o f of Theorem 1.3. If ω = n − 1, then µ(G) = n as G is connected.

Therefore, the equality holds in (1.1). Otherwise, ω 6 n− 2. Then Kiω+2,ω ⊆ G or

D1 ⊆ G or D2 ⊆ G. It is easy to see that µ(D2) = ω + 2, and we have to determine

the values of µ(Kiω+2,ω) and µ(D1).

One can easily see that µ(Kiω+2,ω) satisfies the system of equations























(µ− ω)x1 = −(ω − 1)x2 − x3,

(µ− 1)x2 = −x1,

(µ− 2)x3 = −x1 − x4,

(µ− 1)x4 = −x3.

Thus, µ(Kiω+2,ω) satisfies f4(x) = 0, where

f4(x) = x3 − (ω + 4)x2 + (3ω + 4)x− (ω + 2).
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Note that f4(x) → ∞ as x → ∞ and f4(ω + 1 + 1/w2) = −(ω − 1)(ω4 + 2ω3+

ω + 1)/ω6 < 0. Therefore, we have

µ(Kiω+2,ω) > ω + 1 +
1

w2
.

One can easily see that µ(D1) satisfies the following system of equations:



































(µ− ω)x1 = −(ω − 2)x2 − x3 − x4,

(µ− 2)x2 = −x1 − x3,

(µ− ω)x3 = −(ω − 2)x2 − x1 − x5,

(µ− 1)x4 = −x1,

(µ− 1)x5 = −x3.

Thus, µ(D1) satisfies f5(x) = 0, where

f5(x) = x2 − (ω + 2)x+ ω.

Since f5(x) → ∞ as x → ∞ and f5(ω + 1 + 1/w2) = −(ω4 − ω3 − 1)/ω4 < 0, we

have

µ(D2) > µ(D1) > ω + 1 +
1

ω2
.

Recall that ω 6 n− 2. Thus,

µ(G)

ω
> 1 +

1

ω
+

1

ω3
> 1 +

1

ω
+

n− ω − 1

(n− ω)ω3
.

This completes the proof. �

Remark 3.2. From the proof of Theorem 1.3, one can easily see that

µ(G)

ω
> 1 +

1

ω
+

1

ω3

for 2 6 ω 6 n− 2.
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