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G-MATRICES, J-ORTHOGONAL MATRICES,

AND THEIR SIGN PATTERNS

Frank J. Hall, Atlanta, Miroslav Rozložník, Praha

(Received July 31, 2015)

This paper is dedicated to the memory of Professor Miroslav Fiedler; it was an

honor to work with him. He was an exceptionally kind person, a wonderful friend,

a tremendous inspiration, and a great mathematician.

Abstract. A real matrix A is a G-matrix if A is nonsingular and there exist nonsingular
diagonal matrices D1 and D2 such that A

−T = D1AD2, where A−T denotes the trans-
pose of the inverse of A. Denote by J = diag(±1) a diagonal (signature) matrix, each of
whose diagonal entries is +1 or −1. A nonsingular real matrix Q is called J-orthogonal
if QTJQ = J . Many connections are established between these matrices. In particular,
a matrix A is a G-matrix if and only if A is diagonally (with positive diagonals) equivalent
to a column permutation of a J-orthogonal matrix. An investigation into the sign pat-
terns of the J-orthogonal matrices is initiated. It is observed that the sign patterns of the
G-matrices are exactly the column permutations of the sign patterns of the J-orthogonal
matrices. Some interesting constructions of certain J-orthogonal matrices are exhibited. It
is shown that every symmetric staircase sign pattern matrix allows a J-orthogonal matrix.
Sign potentially J-orthogonal conditions are also considered. Some examples and open
questions are provided.
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1. Introduction

In [9], a new type of matrix was introduced and studied. A real matrix A is a G-

matrix if A is nonsingular and there exist nonsingular diagonal matrices D1 and D2

This research is supported by the Grant Agency of the Czech Republic under the project
108/11/0853.
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such that

(1.1) A−T = D1AD2,

where A−T denotes the transpose of the inverse of A. Denote by J = diag(±1)

a diagonal (signature) matrix, each of whose diagonal entries is +1 or −1. As in [12],

a nonsingular real matrix Q is called J-orthogonal if

(1.2) QTJQ = J,

or equivalently, if

(1.3) Q−T = JQJ.

A (J1, J2)-orthogonal matrix is defined as a nonsingular real matrix Q such that

(1.4) QTJ1Q = J2,

where J1 = diag(±1) and J2 = diag(±1) are signature matrices having the same

inertia [12]. J-orthogonal matrices were studied for example in the context of the

group theory [4] or generalized eigenvalue problems [5]. Numerical properties of sev-

eral orthogonalization techniques with respect to symmetric indefinite bilinear forms

have been analyzed recently in [13]. Although J-orthogonality has many numerical

connections, this particular paper has more of a combinatorial matrix theory point

of view.

In Section 2 we lay the foundation of the paper. We show that a matrix A is

a G-matrix if and only if A is diagonally (with positive diagonals) equivalent to

a (J1, J2)-orthogonal matrix. Hence, as we shall see, a matrix A is a G-matrix if and

only if A is diagonally (with positive diagonals) equivalent to a column permutation

of a J-orthogonal matrix.

In Section 3 we review sign pattern matrices and recall from [9] some results on

the sign patterns of the G-matrices and the sign patterns of the nonsingular Cauchy

(generalized Cauchy) matrices. Section 4 is concerned with the connection of the

sign patterns of the G-matrices and the sign patterns of the J-orthogonal matrices.

In particular, we observe that the sign patterns of the G-matrices are exactly the

column permutations of the sign patterns of the J-orthogonal matrices.

In Section 5 we give some interesting constructions of certain J-orthogonal ma-

trices. We also show that every symmetric staircase sign pattern matrix allows

a J-orthogonal matrix and we discuss the situation for nonsymmetric staircase sign

patterns. Further considerations are made in Section 6, including sign potentially
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J-orthogonal conditions. This paper particularly begins an exploration of the sign

patterns of the J-orthogonal matrices.

2. G-matrices and J-orthogonal matrices

It was shown in [9] that G-matrices enjoy interesting properties and that many

well known special matrices are G-matrices. Two very basic, but useful, properties

are the following:

If A is an n × n G-matrix and D is an n × n nonsingular diagonal matrix, then

both AD and DA are G-matrices, see [9], Theorem 2.4.

If A is an n× n G-matrix and P is an n× n permutation matrix, then both AP

and PA are G-matrices, see [9], Theorem 2.5.

Obviously, for any nonsingular diagonal matrix A of order at least 2, the ma-

trices D1 and D2 are not unique up to scalar multiples. However, it follows from

Sylvester’s law of inertia that D1 and D2 in (1) always have the same inertia, and

thus have the same number of positive entries. We now establish several interesting

structural properties of G-matrices and characterize the G-matrices A for which the

matrices D1 and D2 in (1) are unique up to scalar multiples. For the notion of fully

indecomposable matrices, we refer the reader to [2].

Theorem 2.1. Let A be a nonsingular real matrix in block upper triangular form

A =



A11 . . . A1m

. . .
...

0 Amm


 ,

where all the diagonal blocks are square. Then A is a G-matrix if and only if each

Aii, i = 1, . . . ,m, is a G-matrix and all the strictly upper triangular blocks Aij are

equal to 0. Furthermore, if A is a G-matrix that has a row (or a column) with no 0

entry, then A is fully indecomposable.

P r o o f. Assume that A satisfies A−T = D1AD2. Note that D1AD2 is block

upper triangular and the conformally partitioned A−T is block lower triangular. It

follows that the strictly upper triangular blocks of A are equal to 0. The rest is

clear. �

We now characterize those G-matrices A for which the matrices D1 and D2 in (1)

are unique up to scalar multiples.

Theorem 2.2. Let A be a fully indecomposable G-matrix. Then the diagonal

matrices D1 and D2 satisfying A
−T = D1AD2 are unique up to scalar multiples.
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P r o o f. Replacing A with a matrix permutationally equivalent to A if necessary,

without loss of generality, we may assume that all the diagonal entries of A are

nonzero. Write D1 = diag(x1, . . . , xn) and D2 = diag(y1, . . . , yn). It follows that xi

and yi determine each other, for each i = 1, . . . , n. Since A is fully indecomposable,

we know that A is irreducible. Hence, for each i 6= j, the presence of a directed path

from i to j in the directed graph of A [2] shows that xi and yj determine each other.

If we assume that the (1, 1)-entry of D1 is 1, then all the entries of D1 and D2 are

uniquely determined. Therefore, D1 and D2 are unique up to scalar multiples. �

The following result is then clear.

Theorem 2.3. Let A be a G-matrix such that A = A1 ⊕ . . . ⊕ Am, where Ai

is fully indecomposable and is of order ni, i = 1, . . . ,m. Suppose that D̂1 and

D̂2 are two diagonal matrices satisfying A−T = D̂1AD̂2. Then all the D1 and

D2 satisfying A−T = D1AD2 are given by D1 = (c1In1
⊕ . . . ⊕ cmInm

)D̂1 and

D2 = (c−1

1 In1
⊕. . .⊕c−1

m Inm
)D̂2, where c1, . . . , cm are arbitrary nonzero real numbers.

As is well known, Cauchy matrices are matrices of the form C = [cij ], where

cij = 1/(xi + yj) for some numbers xi and yj . We shall restrict ourselves to square,

say n× n, Cauchy matrices. Of course, such matrices are defined only if xi + yj 6= 0

for all pairs of indices i, j, and it is well known that C is nonsingular if and only if all

the numbers xi are mutually distinct and all the numbers yj are mutually distinct.

By Observation 1 in [7], every nonsingular Cauchy matrix is a G-matrix.

For generalized Cauchy matrices of order n, additional parameters u1, . . . , un,

v1, . . . , vn are considered:

Ĉ =
( uivj
xi + yj

)
.

Note that then Ĉ = D1CD2, where D1 = diag(ui), D2 = diag(vj), so that Ĉ is

a G-matrix.

As mentioned in the introduction, in the recent decades and particularly in nu-

merical mathematics, the class of problems appeared where the scalar products were

indefinite, see for example [12], [4], [5] or [13].

Of course, every orthogonal matrix is a J-orthogonal matrix, where J is the iden-

tity matrix of the same order as Q. And clearly, from (1.3), every J-orthogonal

matrix is a G-matrix. On the other hand, a G-matrix can always be transformed to

a J-orthogonal matrix.

Definition 2.4. We say that two real matrices A and B are positive-diagonally

equivalent if there are diagonal matrices D1 and D2 with all diagonal entries positive

such that B = D1AD2.
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Theorem 2.5. A matrix A is a G-matrix if and only if A is positive-diagonally

equivalent to a (J1, J2)-orthogonal matrix.

P r o o f. Let A be a G-matrix, i.e., A−T = D1AD2 for some nonsingular diagonal

matrices D1 and D2. Consequently, A
TD1A = D−1

2 . Write D1 = |D1|1/2J1|D1|1/2
and D−1

2 = |D2|−1/2J2|D2|−1/2. Thus,

(|D1|1/2A)TJ1(|D1|1/2A) = |D2|−1/2J2|D2|−1/2,

which can be written as

(|D1|1/2A|D2|1/2)TJ1(|D1|1/2A|D2|1/2) = J2.

For Q = |D1|1/2A|D2|1/2, this is QTJ1Q = J2, so that Q is (J1, J2)-orthogonal.

Note that due to A = |D1|−1/2Q|D2|−1/2, A is positive-diagonally equivalent to

a (J1, J2)-orthogonal matrix.

Conversely, if Q is (J1, J2)-orthogonal, then it is a G-matrix and any positive-

diagonally equivalent matrix is a G-matrix as well. �

We now have the following.

Theorem 2.6. A matrix A is a G-matrix if and only if A is positive-diagonally

equivalent to a column permutation of a J-orthogonal matrix.

P r o o f. As mentioned in [12], the matrices J1 and J2 in (1.4) have the

same inertia, so that J2 = PJ1P
T for some permutation matrix P , and hence

(QP )TJ1(QP ) = J1. It follows that the (J1, J2)-orthogonal matrices are the column

permutations of the J1-orthogonal matrices. Considering this and Theorem 2.5 we

get the statement of our theorem. �

3. Sign pattern matrices

In qualitative and combinatorial matrix theory, we study properties of a matrix

based on combinatorial information, such as the sign of entries in the matrix. An

m×n matrix whose entries are from the set {+,−, 0} is called a sign pattern matrix
(or sign pattern). For a real matrix B, sgn(B) is the sign pattern matrix obtained

by replacing each positive, negative, or zero entry of B, respectively, by +, −, or 0.
For a sign pattern matrix A, the sign pattern class of A is defined by

Q(A) = {B : sgn(B) = A}.

We denote the set of n× n sign pattern matrices by Qn.
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A sign pattern matrix P is called a permutation sign pattern (generalized per-

mutation sign pattern) if exactly one entry in each row and column is equal to +

(+ or −) and all the other entries are 0. A permutation similarity of the n× n sign

pattern A has the form PTAP , where P is an n×n permutation matrix. A signature

pattern is a diagonal sign pattern matrix, each of whose diagonal entries is + or −.
A sign pattern B is signature equivalent to the sign pattern A provided B = S1AS2,

where S1 and S2 are signature patterns. A signature similarity of the n × n sign

pattern A has the form SAS, where S is an n× n signature pattern.

Suppose P is a property referring to a real matrix. A sign pattern A is said to

require P if every matrix in Q(A) has property P ; A is said to allow P if some

real matrix in Q(A) has property P . The reader is referred to [3] or [11] for more

information on sign pattern matrices.

As in [9], we let Gn denote the class of all n × n sign pattern matrices A that

allow a G-matrix, that is, there exists a nonsingular matrix B ∈ Q(A) such that

B−T = D1BD2 for some nonsingular diagonal matrices D1 and D2. The following

assertion is Theorem 3.1 of [9]: The class Gn is closed under

(i) multiplication (on either side) by a permutation pattern, and

(ii) multiplication (on either side) by a signature pattern.

The use of these operations in Gn then produces “equivalent” sign patterns.

Also as in [9], next let Cn (GCn) be the class of all sign patterns of the n × n

nonsingular Cauchy (generalized Cauchy) matrices. It should be clear that Cn (GCn)

is closed under operation (i) (operations (i) and (ii)) above. The classes Cn and GCn

are two particular sub-classes of Gn.

The class Cn is the same as the class of n×n sign patterns permutation equivalent

to a sign pattern of the form




++++++++

+++++++−
+++++++−
++++++−−
+++++−−−
+++−−−−−
++−−−−−−
−−−−−−−−




,

where the part above (below) the staircase is all + (−) [9], Theorem 3.2. In this

form, whenever there is a minus, then to the right and below there are also minuses.

Note that this form includes the all + and all − patterns.
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4. G-matrix/J-orthogonal matrix sign patterns

Of course, when J = In, a J-orthogonal matrix is an orthogonal matrix. An old

question raised by M. Fiedler in 1964, [8], is the following: what are the sign patterns

which allow an orthogonal matrix? Since that time, much research has been done on

these sign patterns, [11]. Letting POn denote the class of n × n sign patterns that

allow an orthogonal matrix, we give the connection with G-matrices.

Proposition 4.1. An n × n sign pattern A allows a G-matrix with associated

diagonal matrices having positive diagonal entries if and only if A ∈ POn.

P r o o f. Let A be an n × n sign pattern. Suppose there exist a nonsingular

matrix B ∈ Q(A) and nonsingular diagonal matrices D1, D2 with + diagonal entries

such that B−T = D1BD2. Let E1 = D1
1/2, E2 = D2

1/2. Then

(E1BE2)
−1 = (E1BE2)

T.

So, E1BE2 is an orthogonal matrix in Q(A). Conversely, if C is an orthogonal matrix

in Q(A), then C−T = C = InCIn. �

Remark 4.2. In [6] the class Tn of all n × n sign patterns A for which there

exists a nonsingular matrix B ∈ Q(A) where B−1 ∈ Q(AT) was studied. There it

was asked if the class Tn is the same as the subclass POn. This question is still

unanswered.

A more general question than characterizing POn is the following: what are the

sign patterns which allow a J-orthogonal matrix? Specifically, it is of interest to find

sign patterns which allow a J-orthogonal matrix, but do not allow an orthogonal

matrix. We shall let Jn denote the class of all sign patterns of the n×n J-orthogonal

matrices, that is, the class of n× n sign patterns that allow a J-orthogonal matrix.

From Theorem 2.6 we immediately have the following connection with G-matrices.

Theorem 4.3. The sign patterns of the n×n G-matrices are exactly the column

permutations of the sign patterns in Jn.

Now, the all + (also, all −) n×n sign pattern is the sign pattern of a nonsingular

Cauchy matrix, which is a G-matrix. Thus:

Theorem 4.4. The all + (also, all −) n × n sign pattern allows a J-orthogonal

matrix (but of course not an orthogonal matrix, unless n = 1).
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Remark 4.5. In general, every sign pattern in Cn (GCn) is the sign pattern of

a nonsingular Cauchy (generalized Cauchy) matrix, which is a G-matrix. So, every

such sign pattern is a column permutation of a sign pattern in Jn. This implicitly

provides many sign patterns that allow a J-orthogonal matrix, but not an orthogonal

matrix.

Finally in this section, we digress to the (J1, J2)-orthogonal matrices and utilize

Theorem 2.5.

Theorem 4.6. The sign patterns of the G-matrices are the same as the sign

patterns of the (J1, J2)-orthogonal matrices.

In particular, we have the following.

Corollary 4.7. If A ∈ GCn (in particular, if A ∈ Cn), then A allows a (J1, J2)-

orthogonal matrix.

From [9] we know that every 2× 2 (+,−) sign pattern is a matrix in GC2 and that

every 3× 3 (+,−) sign pattern is a matrix in GC3. Hence:

Corollary 4.8. For n 6 3, every n × n (+,−) sign pattern allows a (J1, J2)-

orthogonal matrix.

5. Construction of certain J-orthogonal matrices

It follows from Theorem 4.4 that there exists a 2×2 matrix with all + sign pattern

that is a J-orthogonal matrix. It is also clear that the all + sign pattern does not

allow an orthogonal matrix with respect to the standard inner product, where J = I2.

For example, the symmetric matrix Q2 =
(√

2 1

1
√
2

)
is J-orthogonal with respect to

the matrix J2 =
(

1 0

0 −1

)
due to

QT
2 J2Q2 = Q2J2Q2 = J2,

but there is no 2 × 2 matrix Q2 with all positive entries that satisfies Q
T
2 Q2 = I2.

We arrive at the following result.

Theorem 5.1. If we take the 2×2 sign pattern matrix A2 =
(

+ +

+ +

)
and for each

n = 1, 2, . . . define recursively the 2n+1 × 2n+1 sign pattern matrix

(5.1) A2n+1 =

(
A2n −A2n

−A2n A2n

)

then each sign pattern matrix A2n allows a J-orthogonal matrix and does not allow

an orthogonal matrix.
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P r o o f. As was already pointed out the statement is true for n = 1. Inductively,

if there exists a 2n × 2n matrix Q2n such that Q
T
2nJ2nQ2n = J2n and we define

Q2n+1 =

(√
2Q2n −Q2n

−Q2n

√
2Q2n

)

then QT
2n+1J2n+1Q2n+1 = J2n+1 , i.e. the matrix Q2n+1 is J-orthogonal with respect

to the matrix J2n+1 given as

J2n+1 =

(
J2n 0

0 −J2n

)
.

It is also clear from the definition that sgn(Q2n+1) = A2n+1 . Moreover, the sign

pattern A2n+1 does not allow orthogonality since its first two rows or columns are

equal. �

Remark 5.2. Note that Q2 =
(√

2 −1

−1
√
2

)
is also J-orthogonal with respect to

the matrix J2 =
(

1 0

0 −1

)
. We could alternatively take the matrix A2 as A2 =

(
+ −
− +

)
as the starting point in Theorem 5.1. Then, the sign pattern A2 also allows

a J-orthogonal matrix, but does not allow an orthogonal matrix. The sign pattern

matrices A2n+1 can still be defined as in (5.1). The proof of Theorem 5.1 works

in the same way and we generate a different sequence of sign patterns that allow

J-orthogonality but not orthogonality.

We now return to the staircase patterns.

Theorem 5.3. Each symmetric staircase sign pattern matrix allows a J-orthogo-

nal matrix.

P r o o f. Let us recall that each symmetric staircase sign pattern matrix A

corresponds to the symmetric Cauchy matrix C = [cij ] with cij = 1/(xi + xj), where

the numbers xi are ordered so that x1 > x2 > . . . > xn. It follows then from [10]

that if we define the diagonal matrix D as D = diag(di) with

(5.2) di = 2xi

∏

k 6=i

xi + xk

xi − xk
,

then indeed C−T = DCD. If we write D = |D| diag(sign(di)), then the matrix
Q = |D|1/2C|D|1/2 is J-orthogonal with respect to the matrix J = diag(sign(di))

satisfying QTJQ = QJQ = J . It is clear from the construction that the sign pattern

of Q coincides with the sign pattern A as sgn(Q) = sgn(C) = A. �
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Remark 5.4. The i-th diagonal entry of J defined in Theorem 5.3 is actually

equal to the sign of di from (5.2). If we denote by mi the number of negative signs

in the i-th row of the staircase sign pattern matrix corresponding to the numbers

x1 > x2 > . . . > xn, then mn > . . . > m2 > m1 > 0. It is clear that xi + xk < 0

for k = n−mi + 1, . . . , n and xi − xk < 0 for k = 1, . . . , i − 1. Taking into account

all negative terms in (5.2) we get that the sign of di is equal to (−1)mi+i−1 for

i = 1, . . . , n.

Remark 5.5. The all + n × n sign pattern corresponds to the situation with

mi = 0 for i = 1, . . . , n. Consequently, the signs in J alternate according to (−1)i−1

for i = 1, . . . , n. The all− n×n sign pattern corresponds to the situation withmi = n

for i = 1, . . . , n. Consequently, the signs in J alternate according to (−1)n+i−1 for

i = 1, . . . , n.

Example 5.6. The symmetric sign patterns




+ + + +

+ − − −
+ − − −
+ − − −


 ,




+ + + +

+ + + +

+ + − −
+ + − −


 ,




+ + + +

+ + + +

+ + + +

+ + + −


 ,




+ − − −
− − − −
− − − −
− − − −


 ,




+ + − −
+ + − −
− − − −
− − − −


 ,




+ + + −
+ + + −
+ + + −
− − − −




allow J-orthogonal matrices but do not allow orthogonal matrices.

Remark 5.7. One can consider also nonsymmetric staircase sign patterns. Let

us recall that each nonsymmetric staircase sign pattern matrix A corresponds to the

(nonsymmetric) Cauchy matrix C = [cij ] with cij = 1/(xi + yj), where the numbers

xi and yj are ordered so that x1 > x2 > . . . > xn > 0 and y1 > y2 > . . . > yn.

It follows then from [10] that if we define the diagonal matrices D1 and D2 as

D1 = diag(ui) and D2 = diag(vj) with

(5.3) ui = (xi + yi)
∏

k 6=i

xi + yk
xi − xk

, vj = (xj + yj)
∏

k 6=j

yj + xk

yj − yk
,

then indeed C−T = D1CD2. If we write D1 = |D1|J1 and D2 = |D2|J2 where J1 =

diag(sign(ui)) and J2 = diag(sign(vj)) there exists a permutation matrix P such that

it provides the transformation J2 = PJ1P
T. Then the matrix Q = |D1|1/2C|D2|1/2P

is J-orthogonal with respect to J1 satisfying Q
TJ1Q = J1. The sign pattern of Q is

equal to a column permutation of the sign pattern A as sgn(Q) = sgn(CP ) = AP .

662



It is easy to see from the construction that the i-th diagonal entry of J1 is actually

equal to the sign of ui from (5.3). If we denote by mi the number of negative signs

in the i-th row of the staircase sign pattern matrix corresponding to the numbers

x1 > x2 > . . . > xn > 0 and y1 > y2 > . . . > yn, then mn > . . . > m2 > m1 > 0. It

is clear that xi+yk < 0 for k = n−mi+1, . . . , n and xi−xk < 0 for k = 1, . . . , i−1.

Taking into account all negative terms in (5.3) we get that the sign of ui is equal

to (−1)mi+i−1 for i = 1, . . . , n. Similarly the j-th diagonal entry of J2 is equal

to the sign of vj from (5.3). If we denote by nj the number of negative signs in

the j-th columns of the staircase sign pattern matrix corresponding to the numbers

x1 > x2 > . . . > xn > 0 and y1 > y2 > . . . > yn, then nn > . . . > n2 > n1 > 0. It is

clear that yj + xk < 0 for k = n− nj + 1, . . . , n and yj − yk < 0 for k = 1, . . . , j − 1.

Taking into account all negative terms in (5.3) we get that the sign of uj is equal to

(−1)nj+j−1 for j = 1, . . . , n.

Example 5.8. Note that there exist also nonsymmetric staircase sign patterns

such as 


+ + − −
+ + − −
+ + − −
+ + − −


 ,




+ + + +

+ + + +

− − − −
− − − −




that allow J-orthogonal matrices but do not allow orthogonal matrices. In such

cases we have (mi −ni) mod 2 = 0 and this leads to J2 = J1 in Remark 5.7 with the

permutation matrix P equal to the identity P = I4.

Example 5.9. Note that the nonsymmetric staircase sign patterns




+ + + +

+ + + −
+ + + −
+ + + −


 ,




+ + + +

+ + + +

+ + + +

+ − − −


 ,




+ − − −
+ − − −
+ − − −
− − − −


 ,




+ + + −
− − − −
− − − −
− − − −




also allow J-orthogonal matrices but do not allow orthogonal matrices. The situation

is more complicated for these four sign patterns as P = [e1, e3, e2, e4] 6= I4 but we

still have sgn(Q) = sgn(CP ) = AP = A.
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6. Sign potentially J-orthogonal conditions

First, we develop some conditions for J-orthogonal matrices which extend the sign

potentially orthogonal (SPO) conditions. As in [6], we use the symbol # to denote

an ambiguous quantity, namely, # = (+) + (−). We define a generalized sign pattern

matrix A = (aij) as a (+,−, 0,#) matrix, and the sign pattern class of such an n×n

matrix is given by

Q(A) = {B = (bij) ∈ Mn(R) : aij = # or aij = sgn(bij)}.

Note that every sign pattern matrix is also a generalized sign pattern matrix. We

denote the set of n×n generalized sign pattern matrices by Qn. We say two patterns

A,A′ ∈ Qn are compatible if, for all i, j ∈ {1, 2, . . . , n}, either aij = a′ij , or one of aij
and a′ij is #. Equivalently, A and A

′ are compatible if and only if Q(A)∩Q(A′) 6= ∅.
We write A

c↔ A′ when A and A′ are compatible. For example,

(
# 0

+ −

)
c↔
(− #

+ #

)
.

Let A be an n × n sign pattern matrix. If A ∈ Jn, then there exists B ∈ Q(A)

such that
BTJB = J,

(BTJ)(BJ) = I,

(BJ)(BTJ) = I,

BJBT = J.

With a slight abuse of notation, we will identify J with sgn(J). Thus the sign

potentially J-orthogonal (SPJO) conditions are that

ATJA
c↔ J

and

AJAT c↔ J

for some (+,−) signature pattern J .

These are necessary conditions for A ∈ Jn. If these conditions do not hold, then

A 6∈ Jn. When J = I, we get the normal SPO conditions for orthogonal matrices,

see for example [6]. The SPJO conditions are not sufficient for an n×n sign pattern

matrix to allow J-orthogonality.
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Example 6.1. Let

A =




+ + 0 0

+ + 0 0

+ + + +

+ + + +


 .

It is easily checked that A satisfies the SPJO conditions with J = diag(+,−,+,−).

Other signature patterns also work, such as J = diag(+,+,+,−). However, suppose

that A allows a J-orthogonal matrix. Since every J-orthogonal matrix is a G-matrix,

A then allows a G-matrix. But then by Theorem 2.1, A would have to be block-

diagonal, which is a contradiction. Thus, A /∈ J4.

For sign vectors c, x ∈ {+,−, 0}n, we have that cTx c↔ 0 if at least one of the

following holds:

(1) for each i, we have ci = 0 or xi = 0, or

(2) there are indices i, j with ci = xi 6= 0 and cj = −xj 6= 0.

For a set of sign vectors S ⊆ {+,−, 0}n, the orthogonal complement of S is

S⊥ = {c ∈ {+,−, 0}n : cTx
c↔ 0 for all x ∈ S}.

Specifically, if c, x ∈ {+,−}n, we have only the second condition.

Theorem 6.2. If A is an n × n (+,−) sign pattern matrix and n > 6, then A

satisfies the SPJO conditions.

P r o o f. Let A = (aij) be an n×n (+,−) sign pattern matrix. We need to show

that there exists a (+,−) signature pattern J such that

(6.1) ATJA
c↔ J

and

(6.2) AJAT c↔ J.

Observe that ATJA and AJAT are symmetric generalized sign pattern matrices. So,

we need only to find a J which fulfils the upper-triangular part of the compatible

conditions.

Let J = diag(ω1, . . . , ωn). Note that (6.1) and (6.2) may be restated as

(6.3)
n∑

k=1

ωkakiakj
c↔ δijωj ∀ i, j
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and

(6.4)

n∑

k=1

ωkaikajk
c↔ δijωj ∀ i, j.

Then, for i = j, (6.3) and (6.4) automatically hold for any J . For the i < j

positions, (6.3) and (6.4) each yield n(n − 1)/2 linear expressions in J . Letting

v = (ω1, . . . , ωn)
T, we have

C1v
c↔ 0

and

C2v
c↔ 0

to solve simultaneously, where C1 and C2 are n(n − 1)/2 × n (+,−) sign patterns.

Let S be the set of rows of C1 together with the set of rows of C2. Let S
′ be S∪(−S).

To find a possible J , we choose a (+,−) n-vector v such that v 6∈ S′. For n > 6,

2n(n− 1) < 2n, so that such a choice of v is always possible. Then for any c ∈ S′,

v will be different from c in at least one component and different from −c in at least

one component. Hence, cTv
c↔ 0, i.e., v ∈ (S′)⊥. Letting J = diag(v), we have

a signature pattern that fulfils (6.1) and (6.2). �

If we allow zero entries, then Theorem 6.2 may fail. For example, an n × n sign

pattern A with a zero column does not satisfy ATJA
c↔ J and an n×n sign pattern

A with a zero row does not satisfy AJAT c↔ J , for any signature pattern J .

The following is straightforward.

Lemma 6.3. The class Jn is closed under the following operations:

i) negation;

ii) transposition;

iii) permutation similarity;

iv) multiplication (on either side) by a signature pattern;

v) signature equivalence.

The use of these operations yields “equivalent” sign patterns. We now investigate

the question of whether the (+,−) n× n sign patterns always allow a J-orthogonal

matrix.

Remark 6.4. It was observed in [6] that for n 6 4, the SPO patterns are the

same as the sign patterns in POn, and that this is also the case for (+,−) sign

patterns of order 5, see [1] and [14]. So, regarding the above question with n 6 5,

we need only to consider non-SPO patterns.
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By what we have previously done, all the (+,−) sign patterns of orders 1 or 2

allow a J-orthogonal matrix. By Theorem 5.3, every symmetric staircase pattern

allows a J-orthogonal matrix. By Remark 6.4, for n 6 5, every n × n (+,−) SPO

sign pattern allows orthogonality. If A is a 3 × 3 (+,−) sign pattern, by signature

multiplications, A is equivalent to a sign pattern of the form

(
+ + +
+

+
A1

)

where A1 is a 2 × 2 (+,−) sign pattern. By analyzing the 16 choices for A1, it can

be seen that A is equivalent to at least one of the following: a symmetric staircase

pattern; a SPO pattern; the pattern

Â =




+ + +

+ + +

+ − −


 .

By Remark 5.7 it follows that this nonsymmetric staircase pattern allows a J-

orthogonal matrix since the counts m1 = m2 = 0, m3 = 2 and n1 = 0, n2 = n3 = 1

lead to P = [e1, e3, e2] that satisfies Â = ÂP , similarly to Example 5.9. So, A ∈ J3.

We arrive at the following result.

Proposition 6.5. If A is a 3× 3 (+,−) sign pattern, then A ∈ J3.

This result improves Corollary 4.8. In fact, given a 3 × 3 (+,−) sign pattern A,

we can easily enough construct B ∈ Q(A) that is J-orthogonal.

Example 6.6. If

A =




+ − −
+ + −
+ − −


 , B =




1 −1 −1

1 1

2
− 1

2

1 − 1

2
− 3

2


 , J = diag(1, 1,−1),

then B ∈ Q(A) and BTJB = J .

Given a 4× 4 (+,−) sign pattern we can proceed similarly.

Example 6.7. If

A =




+ − + +

− + + −
+ − − +

− − + −


 , B =




14√
15

− 1√
15

1

2
√
6

17

2
√
6

− 11√
15

4√
15

1√
6

− 7√
6

14√
15

− 1√
15

− 3√
6

9√
6

− 16√
15

− 1√
15

3

2
√
6

− 21

2
√
6


 ,

J = diag(1,−1, 1,−1), then B ∈ Q(A) and BTJB = J .
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The same can be done for 5× 5 (+,−) sign patterns.

Open Question 6.8. Is every n× n (+,−) sign pattern in Jn?

Now we return to the SPJO conditions. If A is a 4 × 4 (+,−) sign pattern, by

signature multiplications, A is equivalent to a sign pattern of the form




+ + + +
+

+

+

A1




where A1 is a 3× 3 (+,−) sign pattern. We denote the columns and rows of A1 as

follows:

A1 = ( c1 c2 c3 ) =




rT1
rT2
rT3


 .

The SPJO conditions (6.1) and (6.2) for the matrix A have then the form of linear

expressions in diagonal elements of J so that Cv
c↔ 0 and J = diag(v), where

(6.5) C =




+ cT1
+ cT2
+ cT3
+ cT1 ◦ cT2
+ cT1 ◦ cT3
+ cT2 ◦ cT3
+ rT1
+ rT2
+ rT3
+ rT1 ◦ rT2
+ rT1 ◦ rT3
+ rT2 ◦ rT3




.

By observing (6.5), it can be seen that any permutation of the rows or columns of

A1 leads to the same SPJO conditions for A.

Assume that columns c1, c2, c3 are mutually different and assume the same for

the vectors r1, r2, r3. Then it is clear that none of the vectors c
T
1 ◦ cT2 , c

T
1 ◦ cT3 ,

cT2 ◦ cT3 , rT1 ◦ rT2 , rT1 ◦ rT3 and rT2 ◦ rT3 is equal to (+ + + )T. Assuming that none

of c1, c2, c3, r1, r2, r3 is equal to (+ + +)
T
, we have Cv

c↔ 0 with J = diag(v)

and v = (+ + + + )T, so that A satisfies the SPO conditions. If at least one of

vectors c1, c2, c3, r1, r2, r3 is equal to (+ + +)
T
, the matrix A has two identical

columns ( + + + + )T or rows (+ + + + ) (and thus it does not satisfy the
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SPO conditions). Assume without loss of generality that c1 = (+ + + )
T
. Then

c1 ◦ c2 = c2 and c1 ◦ c3 = c3. In addition, either r1 = c1 and thus also r1 ◦ r2 = r2
and r1 ◦ r3 = r3, or none of r1, r2, r3 is equal to c1, but then either r1 = r2 or

r1 ◦ r2 = r3. All these cases lead to at most 7 different conditions in (6.5) so that

there exists a vector v satisfying Cv
c↔ 0.

It remains to treat the cases of at least two identical columns or rows in the

submatrix A1. The case c1 = c2 = c3 leads to three vectors r1, r2, r3 that are

equal to (+ + +)T or to (− − − )T. Here, c1 ◦ c2 = c1 ◦ c3 = c2 ◦ c3 =

(+ + + )
T
. Therefore, it is easy to find v such that (+ + + + ) v

c↔ 0,

(+ − − − ) v
c↔ 0 and (+ cT1 ) v

c↔ 0. For the next case, assume without loss

of generality that c1 = c2 6= c3, so that c1 ◦ c2 = (+ + +)
T
and c2 ◦ c3 = c1 ◦ c3.

Then it is not difficult to show that at least one of the vectors r1, r2, r3 must be

equal to (+ + +)
T
or (− − − )

T
, or, all the three vectors r1, r2, r3 are the

same, or two are the same and the third is negative of those two (in which cases our

desired result easily holds). Then, without loss of generality, r1 = (+ + +)
T
so

that r1 ◦ r2 = r2 and r1 ◦ r3 = r3, or r1 = (− − − )T so that r1 ◦ r2 = −r2 and

r1 ◦ r3 = −r3. All these cases also lead to at most 7 different conditions in (6.5) so

that there exists a vector v satisfying Cv
c↔ 0.

We have proved the following.

Proposition 6.9. If A is a 4× 4 (+,−) sign pattern, then A satisfies the SPJO

conditions.

The case for n = 5 can be handled in a generally similar way. We omit the proof.

Proposition 6.10. If A is a 5× 5 (+,−) sign pattern, then A satisfies the SPJO

conditions.

In view of Proposition 6.9, Proposition 6.10, and Theorem 6.2, we have all the

cases covered (the cases n = 1 and n = 2 are trivial).

Theorem 6.11. For all n > 1, each n × n (+,−) sign pattern A satisfies the

SPJO conditions.

We finish with some more open questions.

Open Question 6.12. Let A be an n×n (+,−) sign pattern and A1 a principal

submatrix ofA. Are there relations between signature patterns J satisfying the SPJO

conditions for A and the signature patterns J1 satisfying the SPJO conditions for A1?

Open Question 6.13. Let A be an n× n (+,−) sign pattern that satisfies the

SPJO conditions. Are there some sufficient conditions on submatrices of A to ensure

that A ∈ Jn?
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7. Concluding remarks

In this paper we have established connections between G-matrices and J-

orthogonal matrices, and we have begun an exploration of the sign patterns of

the J-orthogonal matrices. This opens an interesting new topic for further research

and there are many questions still to be resolved. We will continue this investigation

in a follow-up paper.
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