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Zeros of Solutions and Their Derivatives of Higher
Order Non-homogeneous Linear Differential Equations

Zinelâabidine Latreuch and Benharrat Beläıdi

Abstract. This paper is devoted to studying the growth and oscillation
of solutions and their derivatives of higher order non-homogeneous linear
differential equations with finite order meromorphic coefficients. Illustrative
examples are also treated.

1 Introduction and main results
We assume that the reader is familiar with the usual notations and basic results of
the Nevanlinna theory [9], [11], [17]. Let f be a meromorphic function, we define

m(r, f) =
1

2π

∫ 2π

0

log+|f(reiϕ)|dϕ ,

N(r, f) =

∫ r

0

n(t, f)− n(0, f)

t
dt+ n(0, f) log r ,

and

T (r, f) = m(r, f) +N(r, f) (r > 0)

is the Nevanlinna characteristic function of f , where log+ x = max(0, log x) for
x ≥ 0, and n(t, f) is the number of poles of f(z) lying in |z| ≤ t, counted according
to their multiplicity. Also, we define

N

(
r,

1

f

)
=

∫ r

0

n
(
t, 1
f

)
− n

(
0, 1

f

)
t

dt+ n

(
0,

1

f

)
log r,

N

(
r,

1

f

)
=

∫ r

0

n
(
t, 1
f

)
− n

(
0, 1

f

)
t

dt+ n

(
0,

1

f

)
log r,
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where n
(
t, 1
f

) (
n
(
t, 1
f

))
is the number of zeros (distinct zeros) of f(z) lying in

|z| ≤ t, counted according to their multiplicity. In addition, we will use

λ(f) = lim sup
r→+∞

logN
(
r, 1
f

)
log r

and

λ(f) = lim sup
r→+∞

logN
(
r, 1
f

)
log r

to denote respectively the exponents of convergence of the zero-sequence and dis-
tinct zeros of f(z). In the following, we give the necessary notations and basic
definitions.

Definition 1. [9], [17] Let f be a meromorphic function. Then the order ρ(f) and
the lower order µ(f) of f(z) are defined respectively by

ρ(f) = lim sup
r→+∞

log T (r, f)

log r

and

µ(f) = lim inf
r→+∞

log T (r, f)

log r
.

Definition 2. [7], [17] Let f be a meromorphic function. Then the hyper-order of
f(z) is defined by

ρ2(f) = lim sup
r→+∞

log log T (r, f)

log r
.

Definition 3. [9], [13] The type of a meromorphic function f of order ρ (0 < ρ <∞)
is defined by

τ(f) = lim sup
r→+∞

T (r, f)

rρ
.

Definition 4. [7] Let f be a meromorphic function. Then the hyper-exponent of
convergence of zero-sequence of f(z) is defined by

λ2(f) = lim sup
r→+∞

log logN
(
r, 1
f

)
log r

.

Similarly, the hyper-exponent of convergence of the sequence of distinct zeros of
f(z) is defined by

λ2(f) = lim sup
r→+∞

log logN
(
r, 1
f

)
log r

.

The study of oscillation of solutions of linear differential equations has attracted
many interests since the work of Bank and Laine [1], [2], for more details see [11].
One of the main subject of this research is the zeros distribution of solutions and
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their derivatives of linear differential equations. In this paper, we first discuss the
growth of solutions of higher-order linear differential equation

f (k) +Ak−1(z)f (k−1) + · · ·+A0(z)f = F (z), (1)

where Aj(z) (j = 1, . . . , k−1), A0(z) 6≡ 0 and F (z)(6≡ 0) are meromorphic functions
of finite order. Some results on the growth of entire and meromorphic solutions
of (1) have been obtained by several researchers (see [5], [6], [10], [11], [16]). In the
case that the coefficients Aj(z) (j = 0, . . . , k − 1) are polynomials and F (z) ≡ 0,
the growth of solutions of (1) has been extensively studied (see [8]). In 1992,
Hellerstein et al. (see [10]) proved that every transcendental solution of (1) is of
infinite order, if there exists some d ∈ {0, 1, . . . , k − 1} such that

max
j 6=d
{ρ(Aj), ρ(F )} < ρ(Ad) ≤

1

2
.

Recently, Wang and Liu proved the following.

Theorem 1. [16, Theorem 1.6] Suppose that A0, A1, . . . , Ak−1, F (z) are meromor-
phic functions of finite order. If there exists some As (0 ≤ s ≤ k − 1) such that

b = max
j 6=s

{
ρ(F ), ρ(Aj), λ

(
1

As

)}
< µ(As) <

1

2
.

Then

1. Every transcendental meromorphic solution f whose poles are of uniformly
bounded multiplicities, of (1) satisfies µ(As) ≤ ρ2(f) ≤ ρ(As). Furthermore,
if F 6≡ 0, then we have µ(As) ≤ λ2(f) = λ2(f) = ρ2(f) ≤ ρ(As).

2. If s ≥ 2, then every non-transcendental meromorphic solution f of (1) is a
polynomial with degree deg f ≤ s − 1. If s = 0 or 1 then every nonconstant
solution of (1) is transcendental.

For more details there are many interesting papers, please see [11] and references
contained in it. Recently, in [12], the authors studied equations of type

f ′′ +A(z)f ′ +B(z)f = F (z) , (2)

where A(z), B(z) (6≡ 0) and F (z) (6≡ 0) are meromorphic functions of finite order.
They proved under different conditions that every nontrivial meromorphic solu-
tion f of (2) satisfies

λ
(
f (j)

)
= λ

(
f (j)

)
= ρ(f) = +∞ (j ∈ N)

with at most one exception. It’s interesting now to study the stability of the
exponent of convergence of the sequence of zeros (resp. distinct zeros) of solutions
for higher order differential equation (1) with their derivatives. The main purpose
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of this paper is to deal with this problem. Before we state our results we need to
define the following notations.

Aji (z) = Aj−1
i (z) +

(
Aj−1
i+1 (z)

)′ −Aj−1
i+1 (z)

(
Aj−1

0 (z)
)′

Aj−1
0 (z)

, for j = 1, 2, 3, . . . , (3)

where i = 0, 1, . . . , k − 1 and

F j(z) =
(
F j−1(z)

)′ − F j−1(z)

(
Aj−1

0 (z)
)′

Aj−1
0 (z)

, for j = 1, 2, 3, . . . , (4)

where A0
i (z) = Ai(z) (i = 0, 1, . . . , k− 1), F 0(z) = F (z) and Ajk(z) = 1. We obtain

the following results.

Theorem 2. (Main Theorem) Let A0(z) (6≡ 0), A1(z), . . . , Ak−1(z) and F (z) (6≡ 0)
be meromorphic functions of finite order such that Aj0(z) 6≡ 0 and F j(z) 6≡ 0, where
j ∈ N. If f is a meromorphic solution of (1) with ρ(f) = ∞ and ρ2(f) = ρ, then
f satisfies

λ
(
f (j)

)
= λ

(
f (j)

)
= +∞ (j = 0, 1, 2, . . . )

and

λ2

(
f (j)

)
= λ2

(
f (j)

)
= ρ (j = 0, 1, 2, . . . ).

Furthermore, if f is of finite order with

ρ(f) > max
i=0,...,k−1

{
ρ(Ai), ρ(F )

}
,

then

λ
(
f (j)

)
= λ

(
f (j)

)
= ρ(f) (j = 0, 1, 2, . . . ).

Remark 1. The condition “Aj0(z) 6≡ 0 and F j(z) 6≡ 0 where j ∈ N ” in Theorem 2
is necessary. For example, the entire function f(z) = eez − 1 satisfies

f (3) − ezf ′′ − f ′ − e2zf = e2z,

where A2(z) = −ez, A1(z) = −1, A0(z) = −e2z and F (z) = e2z. So

A1
0(z) = −e2z + 2 F 1(z) ≡ 0.

On the other hand, we have λ(f ′) = 0 < λ(f) =∞.

Here, we will give some sufficient conditions on the coefficients which guarantee
Aj0(z) 6≡ 0 and F j(z) 6≡ 0, (j = 1, 2, 3, . . . ).
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Theorem 3. Let A0(z) (6≡ 0), A1(z), . . . , Ak−1(z) and F (z) (6≡ 0) be entire func-
tions of finite order such that ρ(A0) > max

i=1,...,k−1

{
ρ(Ai), ρ(F )

}
. Then all nontrivial

solutions of (1) satisfy

λ
(
f (j)

)
= λ

(
f (j)

)
= +∞ (j = 0, 1, 2, . . . )

with at most one possible exceptional solution f0 such that

ρ(f0) = max
{
λ(f0), ρ(A0)

}
.

Furthermore, if ρ(A0) ≤ 1
2 , then every transcendental solution of (1) satisfies

λ
(
f (j)

)
= λ

(
f (j)

)
= +∞ (j = 0, 1, 2, . . . ).

Remark 2. The condition ρ(A0) > max
i=1,...,k−1

{
ρ(Ai), ρ(F )

}
does not ensure that all

solutions of (1) are of infinite order. For example, we can see that f0(z) = e−z
2

satisfies the differential equation

f (3) + 2zf ′′ + 3f ′ +
(
ez

2

− 2z
)
f = 1,

where
λ(f0) = 0 < ρ(f0) = ρ(A0) = 2.

Combining Theorem 1 and Theorem 3, we obtain the following result.

Corollary 1. Let A0(z) (6≡ 0), A1(z), . . . , Ak−1(z) and F (z) (6≡ 0) be entire func-
tions of finite order such that

max
i=1,...,k−1

{
ρ(F ), ρ(Ai)

}
< µ(A0) <

1

2
.

Then, every transcendental solution f of (1) satisfies

µ(A0) ≤ λ2

(
f (j)

)
= λ2

(
f (j)

)
= ρ2(f) ≤ ρ(A0) (j ∈ N).

Furthermore, if

max
i=1,...,k−1

{
ρ(F ), ρ(Ai)

}
< µ(A0) = ρ(A0) <

1

2
,

then every transcendental solution f of (1) satisfies

λ2

(
f (j)

)
= λ2

(
f (j)

)
= ρ2(f) = ρ(A0) .

Theorem 4. Let A0(z) (6≡ 0), A1(z), . . . , Ak−1(z) and F (z) (6≡ 0) be entire func-
tions of finite order such that A1, . . . , Ak−1 and F are polynomials and A0 is tran-
scendental. Then all nontrivial solutions of (1) satisfy

λ
(
f (j)

)
= λ

(
f (j)

)
= +∞ (j = 0, 1, 2, . . . )

with at most one possible solution f0 of finite order.
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Corollary 2. Let P be a nonconstant entire function, letQ be a nonzero polynomial,
and let f be any entire solution of the differential equation

f (k) + eP (z)f = Q(z) (k ∈ N).

1. If P is polynomial, then

λ
(
f (j)

)
= λ

(
f (j)

)
= ρ(f) =∞ (j = 0, 1, 2, . . . )

and
λ2

(
f (j)

)
= λ2

(
f (j)

)
= ρ (j = 0, 1, 2, . . . ),

where ρ is positive integer not exceeding the degree of P .

2. If P is transcendental with ρ(P ) < 1
2 , then

λ2

(
f (j)

)
= λ2

(
f (j)

)
=∞ (j = 0, 1, 2, . . . ).

Theorem 5. Let j ≥ 1 be an integer, let A0(z) (6≡ 0), A1(z), . . . , Ak−1(z) and
F (z) (6≡ 0) be entire functions of finite order such that ρ(F ) < ρ(Ai) ≤ ρ(A0)
(i = 1, . . . , k − 1) and

τ(A0) >


∑
l∈Ij

βlτ(Al+1) if j < k,

∑
l∈Ik

βlτ(Al+1) if j ≥ k,

where βl =
∑j−1
p=l C

l
p with Clp = p!

(p−l)! l! ,

Ik =
{

0 ≤ l ≤ k − 2 : ρ(Al+1) = ρ(A0)
}

and
Ij =

{
0 ≤ l ≤ j − 1 : ρ(Al+1) = ρ(A0)

}
.

If f is a nontrivial solution of (1) with ρ(f) =∞ and ρ2(f) = ρ, then f satisfies

λ
(
f (m)

)
= λ

(
f (m)

)
= +∞ (m = 0, 1, 2, . . . , j)

and
λ2

(
f (m)

)
= λ2

(
f (m)

)
= ρ (m = 0, 1, 2, . . . , j).

From Theorem 5, we obtain the following result of paper [12].

Corollary 3. [12] Let A(z), B(z) 6≡ 0 and F (z) 6≡ 0 be entire functions with finite
order such that ρ(B) = ρ(A) > ρ(F ) and τ(B) > kτ(A), k ≥ 1 is an integer. If f is
a nontrivial solution of (2) with ρ(f) =∞ and ρ2(f) = ρ, then f satisfies

λ
(
f (j)

)
= λ

(
f (j)

)
= +∞ (j = 0, 1, . . . , k)

and
λ2

(
f (j)

)
= λ2

(
f (j)

)
= ρ (j = 0, 1, . . . , k).
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In the next theorem, we denote by σ(f) the following quantity

σ(f) = lim sup
r→+∞

logm(r, f)

log r
.

Theorem 6. Let A0(z) (6≡ 0), A1(z), . . . , Ak−1(z) and F (z) (6≡ 0) be meromorphic
functions of finite order such that σ(A0) > max

i=1,...,k−1

{
σ(Ai), σ(F )

}
. If f is a

meromorphic solution of (1) with ρ(f) =∞ and ρ2(f) = ρ, then f satisfies

λ
(
f (j)

)
= λ

(
f (j)

)
= +∞ (j = 0, 1, 2, . . . )

and
λ2

(
f (j)

)
= λ2

(
f (j)

)
= ρ (j = 0, 1, 2, . . . ).

In the following, we mean by two meromorphic functions f and g share a finite
value a CM (counting multiplicities) when f−a and g−a have the same zeros with
the same multiplicities. It is well-known that if f and g share four distinct values
CM, then f is a Möbius transformation of g. Rubel and Yang [14], [17] proved that
if f is an entire function and shares two finite values CM with its derivative, then
f = f ′. We give here a different result.

Theorem 7. Let k be a positive integer and let f be entire function. If f and f (k)

share the value a 6= 0 CM, then

(a) ρ(f) = 1 or

(b) with at most one exception

λ(f − a) = λ
(
f (j)

)
=∞ (j = 1, 2, . . . ).

2 Preliminary lemmas
Lemma 1. [9] Let f be a meromorphic function and let k ≥ 1 be an integer. Then

m

(
r,
f (k)

f

)
= S(r, f),

where S(r, f) = O
(
log T (r, f) + log r

)
, possibly outside of an exceptional set E ⊂

(0,+∞) with finite linear measure. If f is of finite order of growth, then

m

(
r,
f (k)

f

)
= O(log r).

Lemma 2. [3], [5] Let A0, A1, . . . , Ak−1, F 6≡ 0 be finite order meromorphic func-
tions.

1. If f is a meromorphic solution of the equation

f (k) +Ak−1f
(k−1) + · · ·+A1f

′ +A0f = F (5)

with ρ(f) = +∞, then f satisfies

λ(f) = λ(f) = ρ(f) = +∞.



150 Zinelâabidine Latreuch and Benharrat Beläıdi

2. If f is a meromorphic solution of (5) with ρ(f) = +∞ and ρ2(f) = ρ, then
f satisfies

λ(f) = λ(f) = ρ(f) = +∞ λ2(f) = λ2(f) = ρ2(f) = ρ.

Lemma 3. [15] Let A0, A1, . . . , Ak−1, F 6≡ 0 be finite order meromorphic functions.
If f is a meromorphic solution of equation (5) with

max
j=0,1,...,k−1

{
ρ(Aj), ρ(F )

}
< ρ(f) < +∞,

then
λ(f) = λ(f) = ρ(f).

Lemma 4. [6] Let A,B1, . . . , Bk−1, F 6≡ 0 be entire functions of finite order, where
k ≥ 2. Suppose that either (a) or (b) below holds:

(a) ρ(Bj) < ρ(A) (j = 1, . . . , k − 1);

(b) B1, . . . , Bk−1 are polynomials and A is transcendental.

Then we have

1. All solutions of the differential equation

f (k) +Bk−1f
(k−1) + · · ·+B1f

′ +Af = F

satisfy
λ(f) = λ(f) = ρ(f) = +∞

with at most one possible solution f0 of finite order.

2. If there exists an exceptional solution f0 in case 1, then f0 satisfies

ρ(f0) ≤ max
{
ρ(A), ρ(F ), λ(f0)

}
<∞. (6)

Furthermore, if ρ(A) 6= ρ(F ) and λ(f0) < ρ(f0), then

ρ(f0) = max
{
ρ(A), ρ(F )

}
.

Lemma 5. Let A0, A1, . . . , Ak−1 be the coefficients of (1). For any integer j, the
following inequalities hold

m
(
r,Aj1

)
≤


j∑
i=0

Cijm(r,Ai+1) +O(log r) if j < k,

k−2∑
i=0

Cijm(r,Ai+1) +O(log r) if j ≥ k,

(7)

where Aj1 is defined in (3).
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Proof. First, we prove the case j < k. We have from (3)

Aji = Aj−1
i +Aj−1

i+1

((
Aj−1
i+1

)′
Aj−1
i+1

−
(
Aj−1

0

)′
Aj−1

0

)
(i ∈ N).

By using Lemma 1, we have for all j ∈ N

m
(
r,Aji

)
≤ m

(
r,Aj−1

i

)
+m

(
r,Aj−1

i+1

)
+O(log r). (8)

In order to prove Lemma 5, we apply mathematical induction. For j = 2, we have
from (8)

m
(
r,A2

1

)
≤ m

(
r,A1

1

)
+m

(
r,A1

2

)
+O(log r)

≤ m(r,A1) + 2m(r,A2) +m(r,A3) +O(log r)

= C0
2m(r,A1) + C1

2m(r,A2) + C2
2m(r,A3) +O(log r)

=

2∑
i=0

Ci2m(r,Ai+1) +O(log r).

Suppose that (7) is true and we show that for j + 1 < k

m
(
r,Aj+1

1

)
≤

j+1∑
i=0

Cij+1m(r,Ai+1) +O(log r).

By using (3) and (7) we have

m
(
r,Aj+1

1

)
≤ m

(
r,Aj1

)
+m

(
r,Aj2

)
+O(log r)

≤
j∑
i=0

Cijm(r,Ai+1) +

j∑
i=0

Cijm(r,Ai+2) +O(log r)

= C0
jm(r,A1) +

j∑
i=1

Cijm(r,Ai+1)

+

j−1∑
i=0

Cijm(r,Ai+2) + Cjjm(r,Aj+2) +O(log r)

= C0
jm(r,A1) +

j∑
i=1

Cijm(r,Ai+1)

+

j∑
i=1

Ci−1
j m(r,Ai+1) + Cjjm(r,Aj+2) +O(log r).

Of course if j + 1 ≥ k, then m(r,Aj+1) = m(r,Aj+2) = 0. Since C0
j = C0

j+1 and

Cjj = Cj+1
j+1 , then we have

m
(
r,Aj+1

1

)
≤ C0

j+1m(r,A1) +

j∑
i=1

(
Cij + Ci−1

j

)
m(r,Ai+1)

+ Cj+1
j+1m(r,Aj+2) +O(log r).
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Using the identity Cij + Ci−1
j = Cij+1, we get

m
(
r,Aj+1

1

)
≤ C0

j+1m(r,A1) +

j∑
i=1

Cij+1m(r,Ai+1) + Cj+1
j+1m(r,Aj+2) +O(log r)

=

j+1∑
i=0

Cij+1m(r,Ai+1) +O(log r).

For the case j ≥ k, we need just to remark that m(r,Ai+1) = 0 when i ≥ k−1 and
by using the same procedure as before we obtain

m
(
r,Aj1

)
≤
k−2∑
i=0

Cijm(r,Ai+1) +O(log r). �

Lemma 6. Let A0, A1, . . . , Ak−1 be the coefficients of (1). For any integer j, the
following inequalities hold

j−1∑
p=0

m
(
r,Ap1

)
≤


j−1∑
i=0

(
j−1∑
p=i

Cip

)
m(r,Ai+1) +O(log r) if j < k,

k−2∑
i=0

(
j−1∑
p=i

Cip

)
m(r,Ai+1) +O(log r) if j ≥ k.

(9)

Proof. We prove only the case j < k. By Lemma 5 we have

j−1∑
p=0

m
(
r,Ap1

)
≤

j−1∑
p=0

( p∑
i=0

Cipm(r,Ai+1)

)
+O(log r). (10)

The first term of the right hand of (10) can be expressed as

j−1∑
p=0

( p∑
i=0

Cipm(r,Ai+1)

)
= C0

0m(r,A1) +
(
C0

1m(r,A1) + C1
1m(r,A2)

)
+
(
C0

2m(r,A1) + C1
2m(r,A2) + C2

2m(r,A3)
)

+ · · ·
+
(
C0
j−1m(r,A1) + C1

j−1m(r,A2) + · · ·+ Cj−1
j−1m(r,Aj)

)
which we can write as

j−1∑
p=0

( p∑
i=0

Cipm(r,Ai+1)

)
=
(
C0

0 + C0
1 + · · ·+ C0

j−1

)
m(r,A1)

+
(
C1

1 + C1
2 + · · ·+ C1

j−1

)
m(r,A2) + · · ·

+
(
Cj−2
j−2 + Cj−2

j−1

)
m(r,Aj−1) + Cj−1

j−1m(r,Aj).
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Then

j−1∑
p=0

m
(
r,Ap1

)
≤

j−1∑
p=0

( p∑
i=0

Cipm(r,Ai+1)

)
+O(log r)

=

j−1∑
i=0

(j−1∑
p=i

Cip

)
m(r,Ai+1) +O(log r).

By using the same procedure as above we can prove the case j ≥ k. �

Lemma 7. [18] Let φ(z) be a nonconstant entire function and k be a positive
integer. Then, with at most one exception, every solution F of the differential
equation

F (k) − eφ(z)F = 1

satisfies ρ2(F ) = ρ(eφ).

Lemma 8. [4] Let P be a nonconstant entire function, let Q be a nonzero polyno-
mial, and let f be any entire solution of the differential equation

f (k) + eP (z)f = Q(z) (k ∈ N).

If P is polynomial, then f has an infinite order and its hyper-order ρ2(f) is a
positive integer not exceeding the degree of P . If P is transcendental with order
less than 1

2 , then the hyper-order of f is infinite.

Lemma 9. Let f be a meromorphic function with ρ(f) = ρ ≥ 0. Then, there exists
a set E1 ⊂ [1,+∞) with infinite logarithmic measure

lm(E1) =

∫ +∞

1

χE1
(t)

t
dt =∞ ,

where χE1
(t) is the characteristic function of the set E1, such that

lim
r→+∞
r∈E1

log T (r, f)

log r
= ρ.

Proof. Since ρ(f) = ρ, then there exists a sequence {rn}∞n=1 tending to +∞ satis-
fying

(
1 + 1

n

)
rn < rn+1 and

lim
rn→+∞

log T (rn, f)

log rn
= ρ(f).

So, there exists an integer n1 such that for all n ≥ n1, for any r ∈
[
rn,
(
1 + 1

n

)
rn
]
,

we have
log T (rn, f)

log
(
1 + 1

n

)
rn
≤ log T (r, f)

log r
≤

log T
((

1 + 1
n

)
rn, f

)
log rn

.
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Set E1 =
∞⋃

n=n1

[
rn,
(
1 + 1

n

)
rn
]
, we obtain

lim
r→+∞
r∈E1

log T (r, f)

log r
= lim
rn→+∞

log T (rn, f)

log rn
,

and

lm(E1) =

∞∑
n=n1

∫ (1+ 1
n )rn

rn

dt

t
=

∞∑
n=n1

log

(
1 +

1

n

)
=∞.

Thus, the proof of the lemma is completed. �

Lemma 10. Let f1, f2 be meromorphic functions satisfying ρ(f1) > ρ(f2). Then
there exists a set E2 ⊂ (1,+∞) having infinite logarithmic measure such that for
all r ∈ E2, we have

lim
r→+∞

T (r, f2)

T (r, f1)
= 0.

Proof. Set ρ1 = ρ(f1), ρ2 = ρ(f2), (ρ1 > ρ2). By Lemma 9, there exists a set
E2 ⊂ (1,+∞) having infinite logarithmic measure such that for any given 0 < ε <
ρ1−ρ2

2 and all sufficiently large r ∈ E2

T (r, f1) > rρ1−ε

and for all sufficiently large r, we have

T (r, f2) < rρ2+ε.

From this we can get

T (r, f2)

T (r, f1)
<
rρ2+ε

rρ1−ε
=

1

rρ1−ρ2−2ε
(r ∈ E2).

Since 0 < ε < ρ1−ρ2
2 , then we obtain

lim
r→+∞
r∈E2

T (r, f2)

T (r, f1)
= 0. �

3 Proofs of the Theorems and the Corollary
Proof of Theorem 2. For the proof, we use the principle of mathematical induc-
tion. Since A0(z) 6≡ 0 and F (z) 6≡ 0, then by using Lemma 2 we have

λ(f) = λ(f) = ρ(f) = +∞

and
λ2(f) = λ2(f) = ρ2(f) = ρ.

Dividing both sides of (1) by A0, we obtain

Ak
A0

f (k) +
Ak−1

A0
f (k−1) + · · ·+ A1

A0
f ′ + f =

F

A0
. (11)
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Differentiating both sides of equation (11), we have

Ak
A0

f (k+1) +

((
Ak
A0

)′
+
Ak−1

A0

)
f (k) + · · ·+

((
A1

A0

)′
+ 1

)
f ′ =

(
F

A0

)′
. (12)

Multiplying now (12) by A0, we get

f (k+1) +A1
k−1(z)f (k) + · · ·+A1

0(z)f ′ = F 1(z), (13)

where

A1
i (z) = A0

((
Ai+1(z)

A0(z)

)′
+
Ai(z)

A0(z)

)
= Ai(z) +A′i+1(z)−Ai+1(z)

A′0(z)

A0(z)
(i = 0, . . . , k − 1)

and

F 1(z) = A0(z)

(
F (z)

A0(z)

)′
= F ′(z)− F (z)

A′0(z)

A0(z)
.

Since A1
0(z) 6≡ 0 and F 1(z) 6≡ 0 are meromorphic functions with finite order, then

by using Lemma 2 we obtain

λ(f ′) = λ(f ′) = ρ(f) = +∞

and
λ2(f ′) = λ2(f ′) = ρ2(f) = ρ.

Dividing now both sides of (13) by A1
0, we obtain

A1
k

A1
0

f (k+1) +
A1
k−1

A1
0

f (k) + · · ·+ A1
1

A1
0

f ′′ + f ′ =
F 1

A1
0

. (14)

Differentiating both sides of equation (14) and multiplying by A1
0, we get

f (k+2) +A2
k−1(z)f (k+1) + · · ·+A2

0(z)f ′′ = F 2(z), (15)

where A2
0(z) 6≡ 0 and F 2(z) 6≡ 0 are meromorphic functions defined in (3) and (4).

By using Lemma 2, we obtain

λ(f ′′) = λ(f ′′) = ρ(f) = +∞

and
λ2(f ′′) = λ2(f ′′) = ρ2(f) = ρ.

Suppose now that

λi
(
f (k)

)
= λi

(
f (k)

)
= ρi(f) (i = 1, 2) (16)

for all k = 0, 1, 2, . . . , j−1, and we prove that (16) is true for k = j. With the same
procedure as before, we can obtain

f (k+j) +Ajk−1(z)f (k−1+j) + · · ·+Aj0(z)f (j) = F j(z),
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where Aj0(z) 6≡ 0 and F j(z) 6≡ 0 are meromorphic functions defined in (3) and (4).
By using Lemma 2, we obtain

λ
(
f (j)

)
= λ

(
f (j)

)
= ρ(f) = +∞

and
λ2

(
f (j)

)
= λ2

(
f (j)

)
= ρ2(f) = ρ.

For the case ρ(f) > max
i=0,...,k−1

{
ρ(Ai), ρ(F )

}
we use simply similar reasoning as

above and by using Lemma 3, we obtain

λ
(
f (j)

)
= λ

(
f (j)

)
= ρ(f) (j = 0, 1, 2, . . . ).

This completes the proof of Theorem 2. �

Proof of Theorem 3. By Lemma 4, all nontrivial solutions of (1) are of infinite
order with at most one exceptional solution f0 of finite order. By (3) we have

Aj0 = Aj−1
0 +Aj−1

1

((
Aj−1

1

)′
Aj−1

1

−
(
Aj−1

0

)′
Aj−1

0

)
= Aj−2

0 +Aj−2
1

((
Aj−2

1

)′
Aj−2

1

−
(
Aj−2

0

)′
Aj−2

0

)
+Aj−1

1

((
Aj−1

1

)′
Aj−1

1

−
(
Aj−1

0

)′
Aj−1

0

)

= A0 +

j−1∑
p=0

Ap1

((
Ap1
)′

Ap1
−
(
Ap0
)′

Ap0

)
. (17)

Now, suppose that there exists j ∈ N such that Aj0(z) ≡ 0. By (17) we obtain

−A0 =

j−1∑
p=0

Ap1

((
Ap1
)′

Ap1
−
(
Ap0
)′

Ap0

)
. (18)

Hence

m(r,A0) ≤
j−1∑
p=0

m
(
r,Ap1

)
+O(log r). (19)

Using Lemma 6 and (19) we have

T (r,A0) = m(r,A0) ≤


j−1∑
i=0

(
j−1∑
p=i

Cip

)
m(r,Ai+1) +O(log r) if j < k

k−2∑
i=0

(
j−1∑
p=i

Cip

)
m(r,Ai+1) +O(log r) if j ≥ k

=


j−1∑
i=0

(
j−1∑
p=i

Cip

)
T (r,Ai+1) +O(log r) if j < k

k−2∑
i=0

(
j−1∑
p=i

Cip

)
T (r,Ai+1) +O(log r) if j ≥ k

(20)
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which implies the contradiction

ρ(A0) ≤ max
i=1,...,k−1

ρ(Ai),

and we can deduce that Aj0(z) 6≡ 0 for all j ∈ N. Suppose now there exists j ∈ N
which is the first index such that F j(z) ≡ 0. From (4) we obtain

(
F j−1(z)

)′ − F j−1(z)

(
Aj−1

0 (z)
)′

Aj−1
0 (z)

= 0

which implies
F j−1(z) = cAj−1

0 (z), (21)

where c ∈ C \ {0}. By (17) and (21) we have

1

c
F j−1 = A0(z) +

j−2∑
p=0

Ap1(z)

((
Ap1(z)

)′
Ap1(z)

−
(
Ap0(z)

)′
Ap0(z)

)
. (22)

On the other hand, we obtain from (4)

m(r, F j) ≤ m(r, F ) +O(log r) (j ∈ N). (23)

By (20), (22) and (23), we have

T (r,A0) = m(r,A0) ≤
j−2∑
p=0

m
(
r,Ap1

)
+m(r, F j−1) +O(log r)

≤


j−2∑
i=0

(
j−2∑
p=i

Cip

)
m(r,Ai+1) +m(r, F ) +O(log r) if j − 1 < k

k−2∑
i=0

(
j−2∑
p=i

Cip

)
m(r,Ai+1) +m(r, F ) +O(log r) if j − 1 ≥ k

=


j−2∑
i=0

(
j−2∑
p=i

Cip

)
T (r,Ai+1) + T (r, F ) +O(log r), if j − 1 < k

k−2∑
i=0

(
j−2∑
p=i

Cip

)
T (r,Ai+1) + T (r, F ) +O(log r), if j − 1 ≥ k

which implies the contradiction ρ(A0) ≤ max
i=1,...,k−1

{
ρ(Ai), ρ(F )

}
. Since Aj0 6≡ 0 and

F j 6≡ 0 (j ∈ N), then by applying Theorem 2 and Lemma 4 we have

λ
(
f (j)

)
= λ

(
f (j)

)
= +∞ (j = 0, 1, 2, . . . )

with at most one exceptional solution f0 of finite order. Since

ρ(A0) > max
i=1,...,k−1

{
ρ(Ai), ρ(F )

}
,
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then by (6) we obtain
ρ(f0) ≤ max

{
ρ(A0), λ(f0)

}
. (24)

On the other hand by (1), we can write

A0 =
F

f0
−
(
f

(k)
0

f0
+Ak−1

f
(k−1)
0

f0
+ · · ·+A1

f ′0
f0

)
.

It follows that by Lemma 1

T (r,A0) = m(r,A0) ≤ m
(
r,
F

f0

)
+

k−1∑
i=1

m(r,Ai) +O(log r)

≤ T (r, f0) + T (r, F ) +

k−1∑
i=1

T (r,Ai) +O(log r),

which implies

ρ(A0) ≤ max
i=1,...,k−1

{
ρ(f0), ρ(Ai), ρ(F )

}
= ρ(f0). (25)

Since λ(f0) ≤ ρ(f0), then by using (24) and (25) we obtain

ρ(f0) = max
{
ρ(A0), λ(f0)

}
.

If ρ(A0) ≤ 1
2 , then by the theorem of Hellerstein et al. (see [10]) every transcenden-

tal solution f of (1) is of infinite order without exceptions. So, by the same proof
as before we obtain

λ
(
f (j)

)
= λ

(
f (j)

)
= +∞ (j = 0, 1, 2, . . . ).

This completes the proof of Theorem 3. �

Proof of Theorem 4. Using the same proof as Theorem 3, we obtain Theorem 4.
�

Proof of Corollary 2.
1. If P is polynomial, since A0(z) = eP (z), Ai(z) ≡ 0 (i = 1, . . . , k − 1) and

F (z) = Q(z), then
ρ(A0) > max

i=1,...,k−1

{
ρ(Ai), ρ(F )

}
,

hence Aj0(z) 6≡ 0 and F j(z) 6≡ 0, j ∈ N. On the other hand, by Lemma 8 every
solution f has an infinite order and its hyper-order ρ2(f) is a positive integer not
exceeding the degree of P . So, by applying Theorem 2 we obtain

λ
(
f (j)

)
= λ

(
f (j)

)
= ρ(f) =∞ (j = 0, 1, 2, . . . )

and
λ2

(
f (j)

)
= λ2

(
f (j)

)
= ρ (j = 0, 1, 2, . . . ),

where ρ is positive integer not exceeding the degree of P .
2. Using the same reasoning as in 1. for the case P is transcendental with

ρ(P ) < 1
2 . �
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Proof of Theorem 5. First, we prove that An0 (z) 6≡ 0 for all n = 1, 2, . . . , j. Sup-
pose there exists 1 ≤ s ≤ j such that As0 ≡ 0. By (20), we have

T (r,A0) = m(r,A0) ≤


s−1∑
l=0

(
s−1∑
p=l

Clp

)
T (r,Al+1) +O(log r) if s < k

k−2∑
l=0

(
s−1∑
p=l

Clp

)
T (r,Al+1) +O(log r) if s ≥ k

=


∑
l∈Is

(
s−1∑
p=l

Clp

)
T (r,Al+1) +

∑
l∈{0,1,...,s−1}−Is

(
s−1∑
p=l

Clp

)
T (r,Al+1) +O(log r) if s < k

∑
l∈Ik

(
s−1∑
p=l

Clp

)
T (r,Al+1) +

∑
l∈{0,1,...,k−2}−Ik

(
s−1∑
p=l

Clp

)
T (r,Al+1) +O(log r) if s ≥ k.

Then, by using Lemma 10, there exists a set E2 ⊂ (1,+∞) having infinite loga-
rithmic measure such that for all r ∈ E2, we have

T (r,A0) = m(r,A0) ≤


∑
l∈Is

(
s−1∑
p=l

Clp

)
T (r,Al+1) + o

(
T (r,A0)

)
if s < k,

∑
l∈Ik

(
s−1∑
p=l

Clp

)
T (r,Al+1) + o

(
T (r,A0)

)
if s ≥ k,

which implies the contradiction

τ(A0) ≤


∑
l∈Is

βlτ(Al+1) if s < k,

∑
l∈Ik

βlτ(Al+1) if s ≥ k,

where βl =
∑s−1
p=l C

l
p. Hence An0 (z) 6≡ 0 for all n = 1, 2, . . . , j. By the same

procedure we deduce that Fn(z) 6≡ 0 for all n = 1, 2, . . . , j. Then, by Theorem 2
we have

λ
(
f (m)

)
= λ

(
f (m)

)
= +∞ (m = 0, 1, . . . , j)

and

λ2

(
f (m)

)
= λ2

(
f (m)

)
= ρ (m = 0, 1, . . . , j). �

Proof of Theorem 6. By using the same reasoning as in the proof of Theorem 3,
we can prove Theorem 6. �
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Proof of Theorem 7. Since f and f (k) share the value a CM, then

f (k) − a
f − a

= eQ(z),

where Q is entire function. Set G = f
a−1. Then G satisfies the following differential

equation
G(k) − eQ(z)G = 1. (26)

(a) If Q is constant, by solving (26) we obtain ρ(G) = ρ(f) = 1.
(b) If Q is nonconstant, we know from Lemma 7 that ρ2(G) = ρ(eQ) with at

most one exception, which means that G is of infinite order with one exception
at most. On the other hand, A0(z) = −eQ(z), Ai(z) ≡ 0 (i = 1, . . . , k − 1) and
F (z) = 1, then

ρ(A0) > max
i=1,...,k−1

{
ρ(Ai), ρ(F )

}
.

Hence Aj0(z) 6≡ 0 and F j(z) 6≡ 0, j ∈ N. So, by applying Theorem 2, we obtain

λ
(
G(j)

)
= λ

(
G(j)

)
= ρ(G) =∞ (j = 0, 1, 2, . . . )

with one exception at most. Since G = f
a − 1, we deduce

λ(f − a) = λ
(
f (j)

)
=∞ (j = 1, 2, . . . )

with one exception at most. �
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[3] B. Beläıdi: Growth and oscillation theory of solutions of some linear differential
equations. Mat. Vesnik 60 (4) (2008) 233–246.

[4] T. B. Cao: Growth of solutions of a class of complex differential equations. Ann. Polon.
Math. 95 (2) (2009) 141–152.

[5] Z. X. Chen: Zeros of meromorphic solutions of higher order linear differential equations.
Analysis 14 (4) (1994) 425–438.

[6] Z. X. Chen, S. A. Gao: The complex oscillation theory of certain nonhomogeneous linear
differential equations with transcendental entire coefficients. J. Math. Anal. Appl. 179
(2) (1993) 403–416.

[7] Z. X. Chen, C. C. Yang: Some further results on the zeros and growths of entire solutions
of second order linear differential equations. Kodai Math. J. 22 (2) (1999) 273–285.

[8] G. G. Gundersen, E. M. Steinbart, S. Wang: The possible orders of solutions of linear
differential equations with polynomial coefficients. Trans. Amer. Math. Soc. 350 (3)
(1998) 1225–1247.



Zeros of Solutions and Their Derivatives of Higher Order Equations 161

[9] W. K. Hayman: Meromorphic functions. Clarendon Press, Oxford (1964).

[10] S. Hellerstein, J. Miles, J. Rossi: On the growth of solutions of certain linear differential
equations. Ann. Acad. Sci. Fenn. Ser. A I Math. 17 (2) (1992) 343–365.

[11] I. Laine: Nevanlinna theory and complex differential equations. de Gruyter Studies in
Mathematics, 15. Walter de Gruyter & Co., Berlin-New York (1993).
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