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~ Narozdfl od ,,Casopisu pro péstovinf matematiky a fysiky** chceme pésto-
vati publikace, v nichZ je strdnka aplikace podstatni.

Domnivdme se, e novy ¢asopis bude moci doplniti tato dulezitd
nafe publikadnf centra a zprost{ je po piipadé élanki, které .pro svij
gpecielnf vyznam jsou urfeny pouze zlomku jich Stendia a jinak je
zatéZuji. ‘

Kromsé tkolu, buditi zéjem o tyto nové obory védn{ v stéle rostou-
cich fadéch nafich aktudra, md slouZiti asopis také tikolu, seznamovati
ciz{ odbornou verejnost s na%f védeckou produkei. Z tohoto davodu
bude ¢asopis pfinddeti ¢lanky a pojedndni v cizich jazyeich. Stojime na
stanovisku, Ze lidé pracujicf u nds odborné, mus{ ovlddati nejvyznamnéjsf
cizi jazyky a doufdme tudfZ, Ze umoinujice ciziné dovédéti se o na$i
produkei, nezabranujeme zdroven domdcim pracovnikim seznimiti se
8 prac{ naSich badatelii. Chceme v&imati si také bedlivé otdzek, souvise-
jicich s vychovoua vzdéldnim osob, provozujicich prakticky unds funkei
aktudra. Checeme ddle upozorniti mladsi pracovniky naSeho oboru, na
jich# soucinnost primo apelujeme; na dileZité knihy a pojedndni, vyélé
v cizfch jazycich.

Pokud se vnéji stranky vyddvdni Sasopisu tyde, odpovidd poslini
Jednoty ¢sl. matematika a fysikd, Ze vzala na sebe kol vyddvati ¢a-
sopis, jehoZ hlavnim pfedmétem jsou aplikace matematiky na nové
obory védnf, Za ¢lanky Gasopisu, pokud jsou podepsiny, odpovidaji
jejich autofi, jinak redakce. '

Zveme k soudinnosti vSecky pracovniky obori, pro néz je uréen,
a ?4dédme je, aby podporovali Casopis v prvé fadé tvotivou &innostf,
pfi nejmensim vSak aspon laskavym zdjmem.

Dr. E. Schoenbaum za redakéni kruh.

Application of Bessel coefficients in approximative

expressing of collectives.
By, Dr. L. Truksa.

We meet very often in mathematical statistics with the applica-
tion of method of moments and the method of least squares especially
so'in approximative expression of empiric frequency curves, of which-
we assume, that their form can be expressed by a known analytical
expression. including arbitrary constants. With respect to practical
applicability the method of moments has the great advantage of simple
way of calculating the arbitrary constants also in cases, where the use
of method of least squares meets practically nearly insuperable obstac-
les, as in the case of determination of constants of certain Pearsons

frequency curves. The application of both methods is equally easy in

especial expression of frequency curves by means of series of orthogonal
polynommls of type .

== (Px (aoPolx) +- a,Py(2) + .. .) A (1) “



The polynomials Py(z) of degree i fulfil by method of moments
. the condition of orthogonality

D Pix)Pu(z) gz = 0 resp. [Py(z) Pr(z)de =0, i <5 k: @)

the coefficients a; are given by relation
D> 75 1C N |7 L3
2 Pz) gs e fl’ (%) @r dx

If there is question of application of method of least squares the condi.
tion (2) must be replaced by relation

D Pi(x) (@) .2 = 0 resp. [Pi(x) Pua) ptdu =0, i <5k - (2)
the coefficients a; by expression

a; == E}i’i&ﬂﬂ{ resp. a; == f Yr Ll Pi() ) Pz dx

2 PHx) pit _]P‘ x) ot (Ix

To the expansion of type (1) deduced by method of moments
belongs also the well-known Charlier’s series B1)

e~—m mr (ag + a, (,'1 (x) 4 a, Gyx)+...) (4)

3)

(3

Ys = x!
expressing the so called arithmetical distribution of frequencies, which
is a certain generalisation of Poisson’s law of small chances,

e——ﬂt 7n1§

. n

S . e Y —r

w(m, x) = A "llm (w) Pl —py—r,
np=m

I am going to deduce in this article the expansion of type (1) of the
characteristical function y(m, x) of this series by application of method
of least squares and to compare in concrete cases results following from
this new expression on the one hand and from the original Charlier’s
series on the other hand. An analogxcal case is given by Ch. Jordan?) for the
characteristical function Vy)(m x).

The calculation of system of polynomials P;{z) and coefficients a;
in our case is by far more difficult; it is necessary to use Bessel coeffi-
cients of immaginary argument.

I.
Let the frequency curve be defined by
Yz =1 (m, ) [ Ko(m, 2) + ay Kyfm, ) + ... .] (3)
in limits 0, co. For the determination of polynomials Ki(m, x) of degree
¢ and of coefficients @; we use the principle of least squares

Z {yz — p(m, z) [ag Ky (m, 2) + a; K, (m, ) + ... ]}* = Min

1) C. V. L. Charlier: Uber die zweite Form des Fehlergesetzes (1903).
) Ch. Jordan: Statistique mathématique (1927).

1*



Tt is known from the theory of extrems of functions of more variab-
les, that this condition is not fulfilled, unless the partial derivatives
of the left - hand expression with respect to a; are equal to zero, i.e.

2
Dy —p(m, 2) [ag Ko(mt, @)+ a; Ky (m, 2)+ ...} Ki(m, 2)p (m, x) = 0(6)
zo0

where ¢ == 0, 1, 2, ... If the polyﬁomials K,{m, x) fulfil the orthogonal
relation
®
2_, K,(ma) K, (m,2)yp? (m, 2) =0 r< s (7Y
&= .
the equations (6) are reduced to the simple forme of

S S ‘
Z {¥ p(m, x) Ki(m, 2)} — a; D) K&(m, z) p¥m, x) = 0,
@) &=}
where from it follows

©
2.« Yz Ki(m, x) p(m, x)
=0
a; = . (8)

2]

DVK2(m, ) yAm, 2)

Z=0
Let us introduce the following denotation of i-th-moment of function
y¥(m, x) ‘

[oe]
M; = Z’a} pim, ).
=0

The polynomial K;(m, x) which fulfills the condition of ortho-
gonality (7) can be expressed apart from a constant factor by the de-
terminant

1 My M, M, |
x M, M, M,
Dym, x) = | 22 M, .

)

v at My Mpyr Mop

what can be proved in an easy way. Let us multiply both sides of
the equation (9) by z'y*m, x) and carry out the summation with
respect to @ in the limit from 0 to ~., We obtain the values of the
moments M;, My, ... My, in the first column of the determinant.
Consequently, two columns of the determinant are identical — as far
as i < n — and the value of the determinant is equal to zero. The
same holds, when we multiply by the factor R,(z) y2(m, z) [Ri(x) being
an arbitrary polynomial of degree i} viz. '

Q0
: 26 Ri(x) Dp(m, ) p*(m, 2) = 0, ¢ < n.
€Xz=

By replacing the polynomial Ri(x) by D(m, 2) of the same degree the
following orthogonal relation



00 .
ZD;(m, ) Dy(m, 2) p¥m, x) == 0 <X n
=0
is obtained. It is identical with the relation (7) which defines the poly-
nomials K{m, x).
We obtain from the fundamental definition of Bessel coefficients
I,(z) of immaginary argument?)

xr H2r
It e i (i) e ST (iayrie - (z)
)= Julia) =3 2 Y Tl =y et T

7:=0 =0

for the first two moments My, M, the expressions

; m2 . , .
M, = g-—’m j (x y-w == Jg(20m) e 2wz eI (2m),
o (10}
w it T TR s .
My = ¢—3m \ (w!)f s e S (2 0n) = ome = [ (2 m).

.l()

By using the well known property of Bessel coefficients
d ‘ d
-sz‘ {x” In(x)} = M 1”,_‘-1(1'), “dx [o(l’) == ]1(1‘) N

and relation

Moy = ’-’j ~~’% M+ M;m

all the higher moments can be expressed by moments My and AM,.

Let some initial values be given here
My = mPe—2n [, (2m) = m* M,
My=e=2m[(m2 I(2m) + m3 [,(2m)] = m?® (M, + M) (1
M, = e~ [(mi+ m?) I(2m) -+ 2m3 [;(2m)] = M, + m* (M, + M)
My = e 2" [(4mt 4+ m?) I(2Zm) 4 (m® + 3m?) [,(2m)] == M, +

+ m® (M, + 2M, + M)
Mg == e 2m[(mb 4 11m* 4 m?) I[(2m) + (6m> 4 4m?) [;(2m)] =
: = My+ m* (M, + 3 M+ 3M, + M,).
If we now define the polynomial K,(m, ) as follows

— 1y
Ky(m ) = A D‘)‘ - Dy(m, x) . (12)
" 5 B
where D, is equal to the value of the subdeterminant appertaining to
the element 2z in formula (9), the following values of the initial members

of the system of polynomials result in consequence of (10) and (11)
3) See {. i. Whittaker and Watson, A course of Modern Analysis, 1920,



KO(mi x) = l:
_ I,(2m) _ -

K,(m, x)~xfm—jm“ x — A, . 13)
— g Ig® (2m) 1(2m) I, (2m)

Balm, 2) = & — 2 s T om) T ™ T Gmy — Lagmy ™
= 2?— Byx + A,

Ky (m, x) = 2% — C32® 4+ Byx — 4,
If we denote by
Ja == 2m® [,(2m) [1,3(2m) — 1,%(2m)] — m2 [,(2m) L,%(2m)
the common denominator of the coefficients d4,, B;, Cy, then these
coefficients can be expressed as follows
Ay = {—2m8 [,(2m) [[}2m) — I 2(Zm)] + m? I,(2m) [21,2(2m) +
— L¥2m)]} :
By = {m® [(2m) [21}2m) — [,3(2m)] — 2m7 1,(2m) [1,2(2m) +
- 112(2"0]} s
Cy = {2m® I(2m) [L#(2m) — L2 2m)] + m5 [,(2m) [212(2m) +
— 315,%(2m)] — m* [(2m) [,}(2m)} : ;.
Using the known values of 4,, 4,, we can reduce by a short calculation
Ag, By, C; to the following simple form, which is suitable for the nume-
rical process

ma m4
= T
2msi
e e 2
b= Gom—ay "
m2

m2
G=1+ 7 +m—g;

A control of these values — if we suppose the values of M; in the for-
mulas (11) bemg correct — may be carried out by calculating the sum

3 aiKy(m, ) y(m, ),
z=0
which for i = l 2, 3 must be equal to zero. We obtain in this way

f.i.for i=20
mJM2 miM, 2miM,

— M, — _ —miM,
My — M, 4, mi—d, | Ami—dy My +
miM, miM, . miM,

-—‘A,+ ) = m2M, — m:M, 4 +
‘miM, 2m M, 2m M, . —0
4, — 4, —4;

Leaving aside the calculatwn of polynomla.ls of higher degree and
examination of the common recurrent relation for the three adjoining.



polynomials, because for practical use the first three polynomials are
mostly sufficient, let us determine immediately the coefficients
00

Z;l/,; Ki(m, 2) y(m, x)

i rel

E)
ZK,-“‘(m,:v) ypi(m, x)
=0

The denominator §; can be obtained
f. i. from the relation
Bi = \ &K (m, x) pHm, z)
m—»r(l

or by dxrectly substltutmg the values (12) into the expression

Z K *(m, x) y*(n, x),

from which it is easy to deduce
Dy
fi= D,
The first five values of the determinants D; are:
Dy=1
D) = e*n [ (2m)
Dy == e—m m? [I3(2m) — 1,3(2m)]
Dy = e=0mm* {2m [1*(2m) — LH2m)] — [,(2m) I,(2m)}
D = c—gm m8 {[8m Iy(2m) 1,(2m) -+ 4m? I>(2m) — 4m?® [} (2m) +-
— I22m)] [ H2m) — LH2m)] — 312(2m) [;(2m)}
By forming the concerned ratios D;y; : D; and.using some of the coeffi-
cients 4, B, deduced above, we get
fo=
Mz
pr= B, (14)

Bs = M (m? — A,) ' ‘
By = mAM, (2m? _;.1’21__ o, 3 2™
3 MLy ' X oy , Al
To the end of calculating of numerators «; let us form the product
Yo = 4z pim, x)

and let us denote the moments of this function about the origin of
coordinates

0

x=0



Then it is evident:

g == Mo == oy — ftody, @y == iy — p1y By + ptody. (15)
g = g — pty Ca + pty By — 11y 4,

Consequently after having used the calculated values the expansion
(5) gets the form

“

Yo = plm, x)[ + (x—4,)B, ::_w.__;] (16)

We have yet to choose the parameter m. In Charlier’s series m
is chosen as follows

hence it follaws that the arithmetical means of functions y(m, z) and y,
are identical and a, = 0. By an analogical choice of m in our case

)
2@ yaplm, 2)
me 230 (17)

as suggests Ch. Jordan in the above-mentioned expansion for the cha-
racteristic function V y—f(m,x): we could achieve the same simplification,
but even approximative determination of m by this method is very
difficult, becausé the unknown m appears also in summation on the
right-hand side of the equation (17). Further if m is to be determined
more precisely then to one decimal, it is impossible to use with advan-
tage the tables of values y(m, x), which are tabulated in regular inter-
vals 0.1%). With regard to the already said, it appears expedient to
put for m the same value as in the Charlier’s series, viz.

me= 20 , (18)

To expedite: the numerical application of the formula (16) we
tabulate the coefficients §; and constants 4,B, . . .which appear in poly-
nomials K,(m, x) for different values of m. .

The constants 4,, 4,, B,, ﬂo, ﬁl, ps in the following table 1. were
calculated for m == 0.5, 1, 1.5, . 5 by using the values of 7y(2m),

4) Seef.i. K. Pearson, Tables for Statisticians and Biometricians, 1924.



1,(2m)%) published in ,,Proccedings of the Royal Society, Vol. L XIV,
1898, London. The constants belonging to higher values of m could be
determined f. i. by use of tables: E. Anding, Sechsstellige Tafeln der
Bessel’'schen Funktionen imaginiren Argumentes, 1911, It is necessary
however to limit the calculation to a relatively small number of deci-
mals as the ratio 1,(2m) : I(2m) which determine the accuracy of the.
result, is given only to G decimals. In the second part of this article
these tables were also used for determination of the necessary constants
in a concrete case.

Tab. 1.
m A4, A, B, Bo B Bs m
’
0.510.2231 950 | 0.0287 373 | 1.2488 511 | 0.4657 596 | 0.0932 376 | 0.0230 014 |0.56
1 10.6977 747 0.3598 915 | 1.9488 978 | 0.3085 083 | 0.1582 989 | 0.1377 957 |1
1.511.2149 779 | 1.2826 949 | 2.9076 206 | 0.2430 004 | 0.1880 406 | 0.2855 872 {1.5
2 11,7270 4521 2.7906 029 | 3.9319 196 | 0.2070 019 | 0.2105 861 | 0.4323 615 2
2.512.2334 578 | 4.8140 303 | 4.9537 672 | 0.1835 408 | 0.2315 672 | 0.5886 480 {2.5
3 293707791 7.3309 651 | 5.9665 693 | 0.1666 574 | 0.2513 868 | 0.7613 376 |3
3.5]3.2393 627 {10.3412 537 | 6.9739 809 | 0.1537 377 | 0.2700 448 | 0.9505 792 (3.5
4 |3.7409 420 113.8476 464 | 7.9786 4461 0.1434 318 | 0.2876 314 | 1.1548 883 |4
4.514.2421 047 117.8519 239 | 8.9818 444 | 0.1349 595 | 0.3042 727 | 1.3729 284 14.5
5 14.7429 991 [22.3549°951 | 9.9841 880 | 0.1278 333 | 0.3200 895 | 1.6037 019 |H
5.5 5.2437 098 127.3573 205 | 10.9859 857 | 0.1217 302 { 0.3351 850 | 1.8464 484 |5.5

1I.

First of all we make a numerical application of the formula (16),
under the supposition that the observed values of the frequencies P,
are identical with the theoretical probability, that a certain event
of the probability p will oceure z-times in n trials

P,= ( 7;) Pl — py-,

For this purpose we choose an unfavourable case of a small number
of trials (n = 19) and the probability p= §. Let us observe that
for sufficiently large » and small p Ch. Jordan obtained very good
result by means of the Charlier’s series. We deduce the parameter m
from the formula (18)

o0
m == le’r = 9.
=)
The further necessary constants corresponding to the values of the
function P, are '

8) W. Steadman Aldis, Tables for the Solution of the Equation
dy 1dy L
dot ¥ % dr T 1+ 27)y=0
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My == 0.10547 1y = 0.99004 e = 963274
4, = 9.24652 "4, = 85.365 B, = 18.9926
o = 0.10547 a, == 0.0148 a, = — 0.1672
By = 0.0921446 By = 0438 B =  4.162
a, = 1.1446 a, == 0.0338 a, = — 0.0402

In the column (2) of the table 2. there are given the precise values
of P,, in the column 3 the values of the product P,4(9.5, ). The appro-
ximative values of the function P, following from the Charlier’s series
by leaving out the polynomials of higher degree than 2. are given
in the column 5, the analogical values from the formula (16) in the
column 4. By neglecting the polynomials of higher degree than 3 or 4
respectively in the series of Charlier we obtain the approximative
values P, which are contained in the columns 6 and 7 respectively.
The negative values which occur in the extreme approximative values
were replaced by zero in the graphic representation (p. 11.). It is seen
from the graphic representation, that in the given case the expression by
means of the method of least squares describes more exactly the values P, -
than that by means of the method of moments, if we retain the terms
of the same degree (the second) in both developments. We have to
take four terms of the Charlier’s series if we will obtain, the same expres-

Tab. 2.
’é: o éﬁ g8 Charlier’s series
0 T25 g|  inel) polynomial of the
x Py & 4 & =33} x
ES = e e
o %E'ém’ 2.degree | 3. degree | 4. degree
12 3 | 4 | 5 | s 7 8
0 0.00000 | 0.00000 | — 0.000 | — 0.000 | — 0.000 | 4 0.000 0
1 04 00000 | —0.001 | — 001} — 001 4+ 000 1
2 33 2| — 004 — 001 | — 003 — 000 2
3 185 19 — 006 — 000 — 002 000 3
4 739 107 | — 001 008 006 006 4
3 2218 395 018 029 028 023 5
6 5196 997 056 064 066 057 6
g 96 11 17175 105 106 111 102 7
8 144 16 22 91 149 142 147 145 8
9 176 20 2176 172 - 160 164 169 9
10 176 20 1538 . 167 155 156 166 10
11 14416 | . 812 139 131 129 138 11
12 9611 319 00| 097 093 | - 098 12
93 060 063 059 059 13
13 5175 ¢
p 3! 035 032 029 14
14 2218 20 029
016 015 010 15
15 739 3 008
— 002 005 005 001 16
16 185 0 - 006 000 000 | — 002 17
17 33 e - _ oor| — o02] 18
0| — 006| — 002
18 4 > 00l } — o011 — 00L| 19
19 00000 | 000001 — OQ-J - g :
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sion as from the series (16) where the term of the second degree is the
highest respected.

On the other hand the calculation of the values of the Charlier’s
series is by far more -simple than of those of the series (16), as the values
of Gy(m, x) p(m, ) can be obtained by forming simply the n-th diffe-
rences of the function y(m, x) and the product P, y(m, z) does not
appear any more.

If the frequency curve approaches necarlier to the characteristic
value y(m, z), then of course, the difference in the results by the method
of moments and least squares is not too evident. As illustration of
that we give results of approximative expression of P, if n = 32,
p=}, m==4

Tab. 3.
§ 8% 2 Chaxrlier’s series
! ~ 2 B incl. polynomial of the
@x Py Pyy(4,x) 8g°% z
{%’g'gm 2. degree | 3. degree | 4. degree

rt ] 2 | 3 4 | 5 6 7 8

¢ 1001394 | 0.00026 | 0.0133 0.0137 0.0134_ | 0.0139 0

1 0637 2 467 633 641 637 637 1

2 14111 206 8 1415 1419 1423 1413 2

J 20158 3938 2018 2015 2024 © 2016 3
4 2087 8 407 9 2085 2076 2081 2086 4
5 1670 2 2610 1666 1661 1659 |. 1669 5

6 10737 1119 1075 1075 - 1069 1074 6

7 0569 7 339 573 517 573 571 7

8 0254 3 76 256 260 259 256 8
9 0096 9 13 96 99 100 97 9
10 0031 8 2 29 31 32 32 10
11 0009 1 7 8 2] 9 11
12 0002 3 1 1 2 2 12
13 | 00005 ~ 13
14 0000 1 14

From the table 3. it is seen that the expression by means of series (16)
stopped in the term of 2. degree is better than that by means of the
Charlier’s series with 2 or 3 terms, but it is not so good if we add the
fourth term to the latter.

The corresponding constants of the formula (16) are

g = 0.14737 C iy = 0.55615 Uy = 237707
4, = 3.7409 By = T7.9786 4,= 13.8476
g == 0.14737 Sy == 0.00485 ay, = — 0.01951
Be = 0.1434 Py = 0.2876 fs = 11549
a = 1.0277 a, = 0.01686 a, = — 0.01689

As a further example we give in the table 4. the expression of
the function y,, which indicates the number of the stormy days in the
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-
month of August in the years 1753—1857 in Lund!) by means of the
series (16). The constants corresponding to the series are

m = 2, yy = 18,869 o= 20.098 ty == 69.618
4, = 1.727 Ay = 2.791 By = 3932
a, = 18.869 a, = — J.489 ty == T.868
fo = 0.207 By == 0.211 Py = 0.432
a, = 91.15 a, = — 16.53 a, == 18.21

The values in the column 5 given by Charlier on the page 30 of
his mentioned book were calculated for m == 2.133. The expression by
means of the series (16) is better fitting than that of Charlier.

Tab. 4.
Neries (16) | Charlier’s se-

. ) o . incl. polyno-{ ries inel. po- .
®ooUx Yx 922 | ial of the lynomial of *
i 2. degree | the 2. degree

| 1
1 2 3 4 H i 6
! i

0 24 - 3.248 23.1 i 24.8 0
1 26 7.037 27.2 i 28.2 1
2 19 5.143 18.2 15.9 2
3 13 2.346 - 12.6 10.2 3
4 9 0.812 10.1 95 4
5 6 0.216 6.7 7.9 b
6 5 0.060 3.6 4.6 6
7 2 0.007 1.5 2.5 7
8 0 0.000 0.5 0.7 8
9 0 0.000 0.2 0.3 9
10 0 0.000 0.0 0.1 10
11 1 0.000 0.0 0.0 11

Uber die Bedeutung und Anwendung der Nomo-
gramme in der Versicherungsmatematik.
Dr. V. Havlik.

In der letzten Zeit scheint es noch fraglich zu sein, ob man in der
Praxis der Versicherungsmathematik graphische Rechnungsmethoden
und Rechentafeln gebrauchen konnte und sollte. Einige Versicherungs-
mathematiker weisen richtig darauf hin, dass in allen Wissenschafts-
zweigen, welche mit einer hiufigen Anwendung in der tiiglichen Praxis

1} See L. Charlier: Vorlesungen iiber die (irundziige der mathem, Sta-
tistik, p. 83 and 84.
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