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Abstract. We study oscillatory behavior of a class of fourth-order quasilinear differential
equations without imposing restrictive conditions on the deviated argument. This allows
applications to functional differential equations with delayed and advanced arguments, and
not only these. New theorems are based on a thorough analysis of possible behavior of
nonoscillatory solutions; they complement and improve a number of results reported in the
literature. Three illustrative examples are presented.
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1. INTRODUCTION

This paper is concerned with the oscillation of a fourth-order quasilinear differen-
tial equation

(1.1) (r(®)[=" ()%) + a(t)2" (9(1)) = 0,

where t € | = [tg,0), to € R, r € CHI,R4), 7(t) = 0, ¢ € C(I,Ryp), ¢(t) does
not vanish eventually, ¢ € C([,R), and tlir&g(t) = oo. Here Ry = (0,00) and
Ro = [0, 00). We also assume that a, § € R, where R is the set containing all ratios
of odd natural numbers.

This research was supported in part by the National Fundamental Research Program
of P.R. China (2013CB035604), the NNSF of P.R. China (Grants 61503171, 61034007,
51277116, and 51107069), the Doctor Scientific Research Foundation of Linyi University
(LYDX2015BS001), and the AMEP of Linyi University, P. R. China.
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By a solution of (1.1) we mean a function z € C3([T},c0), R), Tx > to, which has
the property r(t)[z" (¢)]* € C*([T%, 00), R) and satisfies (1.1) on [T}, 00). We consider
only those solutions z of (1.1) which do not vanish eventually; we tacitly assume that
(1.1) possesses such solutions. As usual, a solution z(t) of (1.1) is called oscillatory
if it does not have the largest zero on [T, 00); otherwise, it is called nonoscillatory.
Equation (1.1) is called oscillatory if all its solutions are oscillatory.

Fourth-order differential equations are quite often encountered in mathematical
models of various physical, biological, and chemical phenomena. Applications in-
clude, for instance, problems of elasticity, deformation of structures, or soil settle-
ment; see [6]. In mechanical and engineering problems, questions related to the
existence of oscillatory and nonoscillatory solutions play an important role. As a re-
sult, many theoretical studies have been undertaken during the last decades. We
refer the reader to the monographs [1], [3], [12], [15], papers [2], [4]-[11], [13], [14],
[16]-[23], and the references cited therein.

In what follows, we briefly comment on the results that motivated the research in
this paper. For a compact presentation of conditions, we use the notation

R(t) = /too r=1/9(5) ds.

To the best of our knowledge, papers by Onose [17], [18] published in the late sev-
enties were among the first contributions dealing with the oscillation of fourth-order
functional differential equations. In these papers, two classes of functional differential
equations,
(r(t)z"(t))" + f(t,2(9(1))) =0

and

(r(®)z" ()" +p(t) f(x(g(t) = a(t),
were studied under the assumption that [ (s/r(s))ds = oo for some 7' > 0.

Since then, many authors were concerned with the oscillation and nonoscillation
of fourth-order and higher-order functional differential equations. Properties of so-
lutions to different classes of equations were explored by using a wide spectrum of
approaches. In particular, interesting results for the fourth-order functional differ-
ential equations

(5 (G (G o)™))))") 2aosa6o) =0

were obtained by Agarwal et al. [2]. Grace et al. [7] considered the oscillation prop-

erties of a fourth-order nonlinear differential equation
(r@)[="®)]")" + q(t) f(z(g(t))) = 0.
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Kamo and Usami [10], [11], Kusano et al. [14], and Wu [20] studied the oscillation
of a fourth-order nonlinear differential equation

(r()[" (0]*)" + a(t)" (1) = 0,
whereas a more general equation
(r@)[="O)]*)" + q(t) f(z(g())) = 0

was considered by Agarwal et al. [5].
Agarwal et al. [4] and Zhang et al. [23] investigated the oscillatory behavior of
a higher-order differential equation

(1.2) (r(@®)[" D (@0)]") + q(t)a” ( (1) =0,

considering separately the cases where

A Rt = o
and
(1.3) tlgglo R(t) < 0.

In particular, assuming that 7(¢t) < ¢, @ > (3, and (1.3) holds, Zhang et al. [23]
obtained results which ensure that every solution z of (1.2) is either oscillatory or
satisfies lim z(t) = 0.

t—o0

Recently, oscillation of all unbounded solutions to (1.1) was established by Li et
al. [16], who assumed that « = 8 = 1 and g(¢) < t, whereas Zhang et al. [22] derived
oscillation criteria for equation (1.1) under the assumptions that « = 8 = 1 and
g(t) = t. Finally, Zhang et al. [21] analysed oscillation of equation (1.2) for o > 8
and g(t) < t.

Our principal goal in this paper is to derive new oscillation criteria for equation
(1.1) without imposing restrictive conditions on the deviated argument g(¢). Our
methods are based on a thorough analysis of possible behavior of nonoscillatory
solutions and comparison with oscillation theorems that are available in the litera-
ture. We conclude the paper by providing three illustrative examples that explain
advantages of the new oscillation results.
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2. MAIN RESULTS

We need the following auxiliary result extracted from Agarwal et al. [3], Lem-
ma 2.2.3.

Lemma 2.1. Let f € C*(I, R, ). Assume that f(")(t) is eventually of one sign for
all large t, and there exists a t1 > ty such that

FeB @ M) <o,

for allt > t1. If
lim f(t) #0,

t—o0

then, for every A € (0, 1), there exists a ty € [t1,00) such that

A

AR
e AUl

ft) =

for all t € [ty, 00).

Observe that if x(t) is a solution of (1.1), then —x(¢) is also a solution. Therefore,
without loss of generality, we can assume from now on that nonoscillatory solutions
of (1.1) are eventually positive. In what follows, it is tacitly supposed that all
functional inequalities are satisfied for all ¢ large enough and we use the following
notation: given a solution z(t) of (1.1), we define

(2.1) y(t) = —2(t) E r(t)a" (1)

Theorem 2.1. Assume that (1.3) holds and there exist a number v € R, v >
a > f8 and two functions 7,0 € C(l, R) such that

(2.2) T(t) < gt) <o(t), 7(@)<t<o(t), lim 7(t)=o0.

t—o0

Suppose further that

(2.3) /t Oo q(t) (%)ﬂ dt = 0o

and

(2.4) / " 409 (R (0(1)) dt = oo,

to

408



If, in addition, either

(2.5) /too R(t) dt = oo,
(2.6) /t:o/:o R(s)dsdu = oo,

2.7) /too o(t) (/U:)/uoo R(s)ds du)7 dt = o

holds, equation (1.1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of equation (1.1) which is eventually
positive. It follows from (1.1) that

Hence, we have either 2"/(¢) > 0 or 2"/(t) < 0. Assume first that 2”/(¢) > 0. Then
there exists a t1 > tg such that, for all ¢ > t;,

(2.8)  xz(t) >0, 2'(t)>0, 2(1t)>0, zP()<0, (r)[z" (1)) <O0.
On the other hand, if we assume now that x’”'(¢) < 0, then, for all ¢ > t;, either
(29)  z(t) >0, 2/(t)<0, 2"(t)>0, z"({t) <0, (r@)"®)]*) <0,
or

(2.10) z(t) >0, 2'(t)>0, 2'(t)>0, 2"(t)<0, (r@)"()]*) <O0.

Assume that (2.8) holds. Taking into account that tli}m x(t) # 0 and also
o0

2" )z (t) < 0 and applying Lemma 2.1, we have, for every A € (0,1) and for all
sufficiently large ¢,

A3
6ri/o(t)

(2.11) z(t) > )z (t).

409



Let y be defined by (2.1). It follows from (1.1) and (2.11) that y(¢) is a positive
solution of a differential inequality

3 B
(2.12) u'(t) + q(t) (%) u?/*(r(t)) < 0.

However, using (2.3) and [13], Theorem 2, we conclude that delay differential in-
equality (2.12) has no positive solutions, which is a contradiction.

Assume now that (2.9) holds. Taking into account the fact that the function
r(t)[z" (t)]* is nonincreasing, we deduce that

(2.13) rHe(s)z" (s) < /)" (t), s=t>t.

Dividing both sides of (2.13) by 7'/®(s) and integrating the resulting inequality from
t to [, we obtain

1
(1) < () + P02 (1) / r=1/9(5) ds.

t

Passing to the limit as [ — oo, we conclude that

(2.14) 2" (t) = =) a" () R(t).

Hence, by the monotonicity of '/ (t)z"(t), there exists a constant k > 0 such that
(2.15) 2" (t) = kR(t).

Integrating (2.15) from ¢t to ¢, we obtain

(2.16) 2'(t) — 2 (to) = k‘/ R(s)ds.

to

t
—a/(tg) = k/ R(s)ds
to

which contradicts assumption (2.5). Integrating (2.15) from ¢ to oo, we arrive at the

—’t)>k/
t

Another integration from ¢ to ¢ yields

Inequality (2.16) yields

inequality

—x(t) + x(to) / R(s)dsdu,
toJu
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which implies that
t 0
x(tg) = k;/ / R(s)dsdu.
toJu

But the latter inequality contradicts (2.6).
Integrating (2.14) twice from ¢ to oo, we obtain

217) —(t) > /t T e ()2 () R(s) ds > /7 ()" () /t " R(s)ds
and
(2.18) x(t) > /t h —rt e (u)z" (u) / h R(s)dsdu

u
> —rt/o )" (t) / / R(s)ds du.
t Ju
It follows from the fact that a/(¢) < 0 that there exists a constant ¢; > 0 such that
27 (g(t)) = 2% (o (t)) = 27 (a(1))2" 7 (0 (1)) = era” (o (1))

Therefore, it follows from (1.1) and (2.17) that the function z(t) defined by (2.1) is
a positive solution of a differential inequality

(2.19) W () — exglt) ( [, : /u " R(s)ds du)vu”’/a(a(t)) >0.

On the other hand, using (2.7) and [13], Theorem 1, we conclude that advanced

differential inequality (2.18) has no positive solutions. This is a contradiction.
Assume that (2.10) holds. We have already established that (2.14) holds. Note

that tlgrolo x(t) # 0 and a”(¢)2” (t) < 0. Therefore, by virtue of Lemma 2.1, we

conclude that

(2.20) z(t) > %t%”(t),

for every A\ € (0,1) and for all sufficiently large t. It follows now from (2.14) and
(2.19) that

(2.21) x(t) = —%tQR(t)rl/a(t)a:'"(t),

for every A € (0,1) and for all sufficiently large ¢. Using conditions (2.10) and a well-
known result in [12], we deduce that, for all ¢ large enough, z(t)/z’(t) > ¢/2, and thus
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(z/t?)" < 0 eventually. Hence, there exists a constant ca > 0 such that z(t)/t? < ¢z
for all sufficiently large ¢. Consequently,

2(g(t)) _ 2(o(t)) _ 27(o(t) 27 7(o(t)) (o (1))

g?(t) ~ (1) a?1(t) o*B=1(a(

~+
~
~
\
Q
w
Q
[ )
2
—~
~
~

where c3 = cg ~7. Writing the latter inequality in the form

g
2 (g(t)) > T (o(t))

and using (1.1) and (2.20), we observe that y(t) is a negative solution of a differential

inequality

/(1) — esa(t)g? (1) (S R(o(1))) w7/ (o (1)) < 0.
Hence, the differential inequality
(2:22) v (0) = a0 () (SR (1) 07/ (0(0) > 0

has a positive solution z(¢). Note that in view of (2.4) and [13], Theorem 1, ad-
vanced differential inequality (2.21) has no positive solutions, which is a contradic-

tion. Therefore, we established that in all possible cases equation (1.1) is oscillatory.
O

Theorem 2.2. Assume that (1.3) holds and there exist a number v € R, v <
a < f, and two functions 7,0 € C(l, R) such that (2.2) holds. Assume further that

0o 7_3 Yy
and
(2.24) | atgomem) a = .

If either (2.5), (2.6), or

(2.25) /t Oo o(t) ( /H : /u " R(s)ds du)ﬂ dt = oo

holds, equation (1.1) is oscillatory.
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Proof. Assume that equation (1.1) has a nonoscillatory solution z(¢). Without
loss of generality, we may assume that x is eventually positive. As in the proof of
Theorem 2.1, the structure of equation (1.1) implies three possible cases described
by (2.8), (2.9), and (2.10).

We start by assuming that (2.8) holds. It has been established in the proof of
Theorem 2.1 that (2.11) is satisfied for every A € (0,1) and for all sufficiently large ¢.
It follows from the condition that z'(¢) > 0 that there exists a constant ¢4 such that

27 ()27 (7()) = can” (7(2)).

8
i)
<
—~
~+
~—
~—
WV
8
™
—~
3
~
~—
~
|

Hence, by (1.1) and (2.11), we observe that the function y(¢) is a positive solution
of a differential inequality

AT3(t)

Vzﬂ/o‘T <0.
5 ) o) <o

(2.26) ' (t) + eaq(t) <W

However, (2.22) and [13], Theorem 2, imply that delay differential inequality (2.25)
has no positive solutions, which is a contradiction.

Assume now that (2.9) holds. Proceeding as in the proof of Theorem 2.1, we
obtain a contradiction with our assumptions (2.5) and (2.6). On the other hand, we
established in Theorem 2.1 that (2.17) is satisfied. Hence, applying (1.1), (2.17), and
using the property x(g(t)) > z(o(t)), we conclude that a differential inequality

(2.27) u'(t) — q(t) < /a : / h R(s)ds du>ﬁu6/"(o(t)) >0

has a positive solution z(¢). On the other hand, (2.24) and [13], Theorem 1, im-
ply that advanced differential inequality (2.26) has no positive solutions. This is
a contradiction.

Finally, assume that (2.10) holds. Following the same lines as in the proof of
Theorem 2.1, we deduce that, for every A € (0,1) and for all sufficiently large ¢,
(2.20) holds. Furthemore,

2(9(1))/9*(t) = x(o(t))/o*(t).
Consequently, it follows from (1.1) and (2.20) that a differential inequality

Ao

(2.28) /(1) — a(0) (20O RIe(1)) w7/ (o(1)) > 0

has a positive solution z(t). However, (2.23) and [13], Theorem 1, imply that ad-
vanced differential inequality (2.27) has no positive solutions. This contradiction
completes the proof. O
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Theorem 2.3. Suppose that « = § and (1.3) holds. Assume that there exist two
functions 1,0 € C(I, R) such that (2.2) holds. Furthermore, assume that

i imin t s ﬂ ’ S l
(2.29) Gﬂlt*oof/ﬂt)(l( )(7“1/“(7(8))> >3
and
o(t)
(2.30) 2%ntrgi£f /t d(0) (P R(o(0)? dv > %

If either (2.5), (2.6), or

o(t) 00 o B 1
2.31 lim inf —
(2.31) im in /t q(v) (/U(v)/u R(s) dsdu) dv > S

holds, equation (1.1) is oscillatory.

Proof. Suppose that equation (1.1) has a nonoscillatory solution z(t) which,
without loss of generality, may be assumed to be eventually positive. As above,
differential equation (1.1) “induces” three possible cases described by conditions
(2.8), (2.9), and (2.10).

Assume that (2.8) holds. We know from the proof of Theorem 2.1 that, for every
A € (0,1) and for all sufficiently large ¢, (2.11) is satisfied. Hence, by (1.1) and (2.11),
we conclude that y(t) is a positive solution of a differential inequality

3 B
(2.32) u' () + q(t) <6r1)\/0‘7((7't3t))) u(7(t)) < 0.

Application of (2.28) and [15], Theorem 2.1.1, yields that delay differential inequality
(2.31) has no positive solutions, which is a contradiction.

Assume now that (2.9) holds. As in the proof of Theorem 2.1, we obtain first
a contradiction with (2.5) and then with (2.6). On the other hand, by (1.1) and
(2.17), a differential inequality

(2.33) u'(t) — q(t) (/U: /:O R(s)ds du>6u(a(t)) >0

has a positive solution z(t). Using [15], Theorem 2.4.1, and (2.30), we see that ad-
vanced differential inequality (2.32) has no positive solutions, which is a contradic-
tion.
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Finally, suppose that we have the case (2.10). In the proof of Theorem 2.1, we
established that, for every A € (0,1) and for all sufficiently large ¢, (2.20) holds
and thus, z(g(t))/g?(t) = z(o(t))/o?(t). By virtue of (1.1) and (2.20), a differential
inequality

Ao

B
(2.34) W (1) = a0 (5 ORE®) ) ulo(t) >0

has a positive solution z(t). Using (2.29) and [15], Theorem 2.4.1, we conclude that
advanced differential inequality (2.33) has no positive solutions. This contradiction
completes the proof of the fact that equation (1.1) is oscillatory. O

3. EXAMPLES AND DISCUSSION

In this section, we provide three examples that illustrate the main results reported
in this paper. Using these examples, we compare the efficiency of our oscillation
theorems to that of the criteria reported recently in the papers by Li et al. [16],
Zhang et al. [21], [22], and Zhang et al. [23].

Example 3.1. Consider an advanced differential equation
(3.1) (22" (1)) + 70728 1P 2ty =0, t>1.

Here the numbers «, 3, 79 € P are such that v9 > «a > 3, and, in the notation
adopted in the paper, r(t) = t2%, q(t) = t°=271 g(t) = 2t, 7(t) = t/2, and
o(t) = 2t. Let v = 7o, then R(t) =t~!. Then

o0

R(t)dtz/ t~tdt = oo.
1

to

Since vg > (3, a straightforward calculation yields

/t:o Q(t)<%>ﬂ dt = 2% lootvo—ﬁ—l df — oo

and

/Oo (g% (DR (o (1)) dt = 225=7 /oo 1 dt = oc.

to 1
Hence, equation (3.1) is oscillatory by Theorem 2.1. Note that the oscillatory nature
of this equation cannot be deduced from the results reported in the papers by Li
et al. [16], Zhang et al. [21], [22], and Zhang et al. [23] because in our example
g(t) =2t > t.
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Example 3.2. For t > 2, consider a differential equation with an argument
g(t) =t —sint that alternates between advanced and delayed,

(3.2) (2 (2" (£)*) +t~1702P(t —sint) = 0.
We assume that «, 3, 7o € R are such that 79 < a < 3. Here 7(t) = t2*, q(t) =
t=170 g(t) =t —sint, 7(t) = t/2, and o(t) = 2t. Then R(t) = 1/t and
oo oo
R(t)dt :/ t~tdt = oo.
to 2

Let v = v9. Then

and, since 8 > 7o,
| 0@ oreo) as 2 [T rta - e
to 2

Therefore, we conclude that equation (3.2) is oscillatory by Theorem 2.2. Note that
results reported by Zhang et al. [23] cannot be applied to (3.2), since all results in
the cited paper require that 8 < « and g(t) < t.

Example 3.3. Fort > 1, consider a delay differential equation
(3'3) (etx///(t))/ + 2\/Eet+arcsin(\/ﬁ/10)x(t _ arcsin(« /10/10)) 0.

Let a = f = 1, r(t) = e', q(t) = 23/T0e!+aresinlVI0/10) " g(4) — ¢ — arcsin(1/10/10),
7(t) =t/2, and o(t) = t + arcsin(v/10/10). Then R(t) = e,

t 3 o I t
lim ll'lf/ q(S) 7—7(8) ds = 10 lim ll'lf/ es/2+arcsin(\/ﬁ/10)53 ds = 00,
=0 Jr ri/e(r(s)) 4 tmee Jiyn

o(t) 1 t+arcsin(+/10/10)
lim inf q()(¢*(v)R(o(v)))* dv > ~ liminf/

t—o0 ¢ t—o0 ¢

o(t) 0o 0o o
lim inf/ q(v) </ / R(s)ds du> dv
t—oo Jy o(v) Ju

t+arcsin(+/10/10) /1 1
= 2v/10lim inf dv = 2V 10 arcsin 1—00 > —,

t—o0 t (§]

v dv = oo,

and
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Hence, equation (3.3) is oscillatory by Theorem 2.3, and z(t) = e’sint is one such
solution. Note that results in the paper by Zhang et al. [23] ensure that every solution
of (3.3) is either oscillatory or tlgrolo z(t) = 0 and cannot guarantee oscillatory nature
of the equation. Our result is stronger since it excludes existence of solutions ()
satisfying lim «(t) = 0.

t—o0

Remark 3.1. In this paper, employing a number of known comparison theo-
rems, we derived three new oscillation theorems for a class of fourth-order quasilinear
functional differential equations (1.1). These criteria supplement and improve the
results obtained by Li et al. [16], Zhang et al. [21], [22], and Zhang et al. [23]. A dis-
tinguishing feature of our results is that we do not impose specific restrictions on
the deviating argument g, that is, g may be delayed, advanced, or change back and
forth from advanced to delayed, as in Example 3.2.

Remark 3.2. As fairly noticed by the referee, equation (1.1) can be viewed as
a particular case of a more general class of equations

(3-4) (r(t)ea(z" (1)) + a(t)ps(z(9(t)) =0,

where ¢, (u) = |u|vf1 u, v > 0. However, techniques used in this paper do not allow

a straightforward extension of our results to equation (3.4); this remains an open
problem for further research.
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