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KYBER NET IKA — VOLUM E 5 1 ( 2 0 1 5 ) , NUMBE R 3 , P AGES 4 6 9 – 4 8 5

MODELING BIASED INFORMATION SEEKING
WITH SECOND ORDER PROBABILITY DISTRIBUTIONS

Gernot D. Kleiter

Updating probabilities by information from only one hypothesis and thereby ignoring al-
ternative hypotheses, is not only biased but leads to progressively imprecise conclusions. In
psychology this phenomenon was studied in experiments with the “pseudodiagnosticity task”.
In probability logic the phenomenon that additional premises increase the imprecision of a
conclusion is known as “degradation”. The present contribution investigates degradation in
the context of second order probability distributions. It uses beta distributions as marginals
and copulae together with C-vines to represent dependence structures. It demonstrates that in
Bayes’ theorem the posterior distributions of the lower and upper probabilities approach 0 and
1 as more and more likelihoods belonging to only one hypothesis are included in the analysis.

Keywords: probability logic, Bayes’ theorem, degradation, pseudodiagnosticity task, sec-
ond order probability distributions

Classification: 03B48, 49N30, 62F15, 91E10

If our object be to discover the effects of an agent A, we must procure A in
some set of ascertained circumstances, as A B C, and having noted the effects
produced, compare them with the effect of the remaining circumstances B
C, when A is absent. (John Stuart Mill, Collected Works, Vol. 7, p. 391,
Method of Difference)

1. INTRODUCTION

Imagine the following situation:

A physician is 50 % sure that a patient is suffering from diseaseH, P (H) = .5.
The physician knows that the probability that if the patient is suffering from
H, the patient shows symptom E1 is .7, P (E1|H) = .7. The physician may
obtain just one more piece of information out of the following three options:

1. P (E2|H), the probability of a second symptom given the presence of
the disease,

2. P (E1|¬H), the probability of the first symptom given the absence of
the disease, or
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3. P (E2|¬H), the probability of the second symptom given the absence of
the disease.

Which option is the best choice?

This is a classical task in the psychology of decision making under uncertainty. It is
called the “pseudodiagnosticity task” and was introduced by Doherty, Mynatt, Tweney,
and Schiavo [4, 8]. For short here I will call it the “Doherty task”. In empirical studies
the majority of the participants select the first option, P (E2|H). Doherty et al. however
considered P (E1|¬H), the second option, to be the best choice. Only with P (E1|¬H)
Bayes’ theorem can be used to compute the posterior point probability

P (H|E1) =
P (H)P (E1|H)

P (H)P (E1|H) + (1− P (H)P (E1|¬H)
. (1)

In the status quo situation, before any of the three options is selected, the posterior
probability is constrained by the given values of the prior P (H) and the likelihood
P (E1|H). The unknown value of P (E1|¬H) may have any value between 0 and 1 and
the posterior probability is therefore in the interval [19]

P (H|E1) ∈
[

P (H)P (E1|H)
P (H)P (E1|H) + 1− P (H)

, 1
]
. (2)

The lower bound results from P (E1|¬H) = 1 and the upper bound from P (E1|¬H) = 0.
If however, as most participants do, P (E2|H) is selected, then the interval is

P (H|E1, E2) ∈
[

P (H)P (E1, E2|H)
P (H)P (E1, E2|H) + 1− P (H)

, 1
]
. (3)

The interval in (3) is wider than the interval in the status quo (2) because

P (E1, E2|H) ≤ min{P (E1|H), P (H2|H)} ≤ P (E1|H) .

Thus, selecting P (E1|¬H) with option 2. results in a precise point probability. Selecting
P (E2|H) with option 1., however, results in an interval that is wider than the initial
status quo interval.

The preference for P (E2|H) is seen as a confirmation bias: people do not consider
alternative hypotheses, here the case in which the disease is absent. This results in
conclusions that are less precise than in the initial situation. This phenomenon, the
degradation of inferences in the light of new information, is not new. The Doherty task,
however, is an especially prototypical example.

Assume P (H) = .5, P (E1|H) = .7 and P (E2|H) = .7. Then in the status quo the
posterior interval is [.5× .7/(.5× .7+ .5), 1] = [.4118, 1], whereas after selecting P (E2|H)
the interval is [.5× (.7 + .7− 1)/(.5× (.7 + .7− 1) + .5), 1] = [.2857, 1].

If we continue to select only the “affirmative ” likelihoods given H and not those given
the alternative hypothesis ¬H, then the interval gets wider and after a few more steps
is completely noninformative, i.e, [0, 1]. The additional information makes the situation
more uncertain. Selecting the likelihood under the alternative hypothesis, however, leads
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to a precise point value. It is easily seen that selecting the third option P (E2|¬H) results
in the noninformative interval [0, 1].

Gilio [5] studied generalized probabilistic inference rules and observed that with rules
like the modus ponens or the modus tollens more information leads to less precise infer-
ences. He called this phenomenon degradation. Closely related is the property of dilution
described by Seidenfeld and Wasserman [18]. A similar phenomenon was described in
the context of continuous probability functions and called “bad news” [9]. Recently
degradation was investigated in probability logic [10, 20, 22, 21].

While usually updating by Bayes’ theorem is done by conditioning on a new event or
new data, in the Doherty task updating is done by information about a probability. The
new evidence is the value of a probability. In the context of Jeffrey’s rule this is called
updating by soft evidence. Below we will distinguish first and second order probabilities.
We will update second order probabilities by the values of first order probabilities.

Here we analyse a version of the Doherty task that is more general than the original
one. We assume that the prior probability, P (H), and the likelihoods, like P (E1|H) or
P (E1|¬H), are only imprecisely known. In real decision making problems this is clearly
more realistic than to work with precise point probabilities. It is highly plausible for
human representation and processing of uncertainty. Mathematically we express the
imprecision by beta distributions. Moreover, we do not assume stochastic independence
of the involved events and uncertain quantities. We present a new formal analysis
of the Doherty task using continuous second order probability functions; we drop the
independence assumption and use copulae and vines to model stochastic dependence
structures. References on copulae are [7, 15], a reference on vines is the handbook by
Kurowicka and Joe [13]. There is a close relationship between Bayesian networks and
vines described in [6, 11, 12]. We will rely on simulation methods. For copulae and
vines the simulation algorithms are described in [14]. We will use the R [16] package
VineCopula provided by [17].

2. MODELING THE DOHERTY TASK

We consider a binary hypothesis, H and ¬H, and a set of n binary events, E1, . . . , En and
¬E1, . . . ,¬En, respectively. First order probabilities are denoted by P (H), P (Ei|H),
P (Ei|¬H) etc. The probability of conjunctions like P (E1∧E2|H) is written as P (E1, E2|H).

First order probabilities are treated as continuous uncertain quantities (random vari-
ables) with values between 0 and 1:

X = P (H), Y1 = P (E1|H), . . . , Yn = P (En|H), and
Z1 = P (E1|¬H), . . . , Zn = P (En|¬H) .

The uncertain quantities span a d = 1 + 2n dimensional unit-cube. Each uncertain
quantity is characterized by a beta distribution,

X ∼ Be(aX , bX), Y1 ∼ Be(aY1 , bY1), . . . , Yn ∼ Be(aYn
, bYn

),
Z1 ∼ Be(aZ1 , bZ1), . . . , Zn ∼ Be(aZn

, bZn
) .

The events E1, . . . , En are not assumed to be conditionally independent given H
and, likewise, E1, . . . , En are not assumed to be conditionally independent given ¬H.
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Fig. 1. Bayesian network of an inference with d = 5 (n = 2) premises

X,Y1, Y2, Z1, and Z2 and the target function T (Bayes’ theorem, for

example,) representing the conclusion. The probability of the

conclusion is functionally dependent upon the joint cumulative

probability distribution F (X,Y1, Y2, Z1, Z2).

Correspondingly, the uncertain quantities X,Y1, . . . , Yn, Z1, . . . , Zn are not assumed
to be independent. Their dependence structure is characterized by an d-dimensional
copula. This multivariate copula is decomposed by a sequence of

(
d
2

)
pairwise copulae.

First order probabilities are sometimes interpreted as “objective” probabilities and
second order probabilities as subjective probabilities, degrees of belief, or epistemic
probabilities. Psychologically it is a big advantage to be able to express correlated
degrees of belief by copulae.

We investigate the updating of X = P (H) by a sequence of Yi = P (Ei|H) and
Zi = P (Ei|¬H), that is, we update second order probability densities by the values of
first order probabilities, not by binary events. The updating is done by Bayes’ theorem
which acts as a target function of the uncertain quantities X,Yi, and Zi. The uncertain
quantities, their dependence structure, and the target function may be represented by
two kinds of graphical models, as a Bayesian network or as a vine. We assume that
the density functions are absolutely continuous—a condition met by the family of beta
distributions with shape parameters 0 < a, b <∞.

Figure 1 shows the complete graph of a Bayesian network with five variables. Inde-
pendencies might be encoded by removing directed edges. Figure 2 shows a C-vine in
which the pairwise copulae and the pairwise conditional copulae are represented by the
edges of the graph. Vines are usually graphically represented by a sequence of trees in
which the edges of one tree become the nodes of the next following tree. The repre-
sentation in Figure 2 is more closely related to the factorization principle in Bayesian
networks. In vines independencies are encoded by product copulae.

For point probabilities Bayes’ theorem states

P (H|E1, . . . , En) =
P (H)P (E1, . . . , En|H)

P (H)P (E1, . . . , En|H) + (1− P (H))P (E1, . . . , En|¬H)
. (4)

As we do not assume conditional independence of the events the probabilities of the con-
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Fig. 2. C-vine encoding of the dependence structure of the five

variables X,Y1, Y2, Z1, and Z2. The ten pairwise copulae specify

C(X,Y1), C(X,Y2), C(X,Z1), (X,Z2), C(Y1, Y2|X), C(Y1, Z1|X),

C(Y1, Z2|X), C(Y2, Z1|X,Y1), C(Y2, Z2|X,Y1) and

C(Z1, Z2|X,Y1, Y2).

junctions are interval probabilities with the bounds [1, p. 298ff.]

P (E1, . . . , En|H) ∈

[
max

{
0,

n∑
i=1

P (Ei|H)− (n− 1)},
n

min
i=1
{P (Ei|H)

}]
,

P (E1, . . . , En|¬H) ∈
[
max

{
0, P (Ei|¬H)− (n− 1)},

n
min
i=1
{P (Ei|¬H)

}]
.

Expressed by the values of the uncertain quantities the lower bound of Bayes’ theorem
is

P (H|E1, . . . , En) ≥
max{0, x(

∑n
i=1 yi − (n− 1))}

max{0, x(
∑n

i=1 yi − (n− 1))}+ (1− x) min{zi}
(5)

and the upper bound is

P (H|E1, . . . , En) ≤ xmin{yi}
xmin{yi}+ (1− x)(max{0,

∑n
i=1 zi − (n− 1))}

(6)

[21, 22].
In terms of distributions imprecision about the value of a probability may be ex-

pressed by a beta distribution Be(a, b). First, this choice is motivated by pragmatic
reasons. Beta distributions are easy to handle and so rich to express not only symmetri-
cal and non-symmetrical unimodal distributions, but also U- and J-shaped distributions.
Indifference about the value of a first order probability is expressed by the uniform distri-
bution Be(1, 1). A second reason for the choice of beta distributions is their conjugate
relationship to the frequency of independent binary events: Bayes’ theorem updates
prior beta distributions by the number of observed successes and failures so that the
posterior is again a beta distribution. A third reason is the ease of the assessment of
beta distributions, investigated and used in decision analysis, Bayesian statistics, and
psychology.
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2.1. Replacing an interval by a distribution

In the original Doherty task two probabilities are given, P (H) = h and P (E1|H) = a,
but not the value of P (E1|¬H). All one can say about the unknown value is that it
is between 0 and 1. Do all values in [0, 1] have “equal rights”? What if the values in
[0, 1] are weighted by a distribution? We will now express the lack of knowledge about
the missing P (E1|¬H) by a beta distribution, Z1 ∼ Be(aZ1 , bZ1). We may choose the
uniform distribution Be(1, 1) or, as in the example below Be(1.5, 1.5), which is flat,
symmetric, and slightly favors probabilities around .5.

Before selecting any additional information Bayes’ theorem gives

t =
ha

ha+ (1− h)z1
, t ∈

[
ha

ha+ 1− h
, 1
]
. (7)

We find the probability density function of t by a change of variable z1 → t. We solve
(7) for z1

z1 =
ha(1− t)
(1− h)t

, (8)

and use the Jacobian, i. e., the positive first derivative |dt/dz1|, obtained by the quotient
rule (u/v)′ = (vu′ − uv′)/v2,

|t′| = ha(1− h)
(ha+ (1− h)z1)2

. (9)

We divide the beta distribution by the Jacobian and obtain

p(t) = Be(z1; aZ1 , bZ1)
(ha+ (1− h)z1)2

ha(1− h)
, where z1 =

ha(1− t)
(1− h)t

. (10)

For the special case of a uniform distribution, Be(1, 1), we have

p(t) =
ha

(1− h)t2
, t ∈

[
ha

ha+ (1− h)
, 1
]
. (11)

If we select option 3 (the value y2), its value is c, and if we introduce some simplifying
assumptions, then the situation is completely analog to the status quo. We assume that
(i) E1 and E2 are conditionally independent given H, so that P (E1, E2|H) = ac and
that (ii) the lack of knowledge about P (E1, E2|¬H) is expressed by the uniform Be(1, 1).
Now only the product ha changes to hac. The lower bound becomes

hac

hac+ 1− h
,

that is, it decreases:
hac

hac+ 1− h
≤ ha

ha+ 1− h
.

More information makes the situation less informative.
One might argue that in the status quo one should also include the ignorance about

the likelihoods of P (E2|H) and P (E2|¬H). But as nothing is known about both of them
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Fig. 3. (a) Posterior distribution (dashed) assuming the prior

probability P (H) = h = .5, the likelihood P (E1|H) = a = .7, and the

non-informative beta distribution for the unknown likelihood,

Z1 = P (E1|¬H) ∼ Be(1.5, 1.5) (solid). (b) Posterior (dotted) after

including in addition the information y2 with the value

P (E2|H) = c = .7.

this would open the door for including an infinite sequence of arbitrary variables about
which nothing is known.

Figure 3 shows a numerical example. For the status quo condition the prior prob-
ability is P (H) = h = .5, the first likelihood is P (E1|H) = a = .7, and the unknown
second likelihood P (E1|¬H) is beta distributed, Z1 ∼ Be(1.5, 1.5) with mean .5 and
sd .25, shown by the continuous curve. The dashed curve shows the distribution of
t = P (H|E1) with mean .61 and sd .14. We now select the information P (E2|H) = y2
and assume that its value is also c = .7. Moreover, we assume (i) that P (E1|H) and
P (E2|H) are conditionally independent so that P (E1, E2|H) = ac = .49, and (ii) that
the lack of knowledge about P (E1, E2|¬H) is expressed by the beta Be(1.5, 1.5). The
resulting posterior distribution with mean .53 and sd .15 is shown by the dotted curve in
Figure 3. It is located left of the curve for the status quo and favors smaller probabilities.

If we select P (E1|¬H) (Doherty’s rational choice) the uncertain quantity Z1 is in-
stantiated and becomes a constant. As a consequence, the posterior probability becomes
a precise point probability.

The preceding analysis was based on three assumptions:

1. The probabilities P (H) = h, P (E1|H) = a, and P (E2|H) = c are precise.

2. The events E1 and E2 are conditionally independent given H.

3. The lack of knowledge about the likelihood P (E1, E2|¬H) is expressed by a non-
informative distribution.
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X Y1 Y2

X 1 1 1
Y1 2 2
Z1 3

Tab. 1. Regular vine matrix representation of a C-vine with three

variables. Note that the shown upper matrix follows [14] and is

different from the encoding in the VineCopula package [17].

In real problems especially the first two assumptions are unrealistic. For a more general
approach we drop the requirement of precise point probabilities and independence.

2.2. Representing the joint distribution by marginals and copulae

Instead of precise values for P (H) and P (E1|H), we now use the uncertain quantities
X and Y1 and express our imprecise knowledge by two betas, X ∼ Be(aX , bX) and
Y1 ∼ Be(aY1 , bY1). The shape parameters of these distributions will be clearly greater
than 1. Accordingly, we express the lack of knowledge of the likelihoods P (E1|¬H),
P (E2|H), P (E2|¬H) by beta distributions with shape parameters close to 1.

Modeling the knowledge by these marginals only would be incomplete without spec-
ifying how they combine in a joint distribution. The five probabilities (!) might be
independent. But this seems unrealistic and unnecessarily restrictive. It is more sat-
isfactory to invoke a general dependence structure for the relationships between the
degrees of belief. It may easily be the case, for example, that knowing that the probabil-
ity of a disease H is .9, that I believe that the probability of a symptom is also high. In
this case the probability of the disease and the probability of a symptom are correlated.

Finding the posterior distribution in an analysis of by now five dimensions with
flexible marginals and flexible copulae is analytically not tractable. For the analysis of
such problems simulation methods are used in the literature. We rely on the simulation
methods provided in the VineCopula package of R [17].

Assume that in the status quo we have the following marginals

P (H) = X ∼ Be(5, 5), P (E1|H) = Y1 ∼ Be(15, 5),
P (E1|¬H) = Z1 ∼ Be(1, 1) .

The dependence structure of the C-vine with three variables is specified in the regular
vine matrix in Table 1. We assume Gaussian copulae with parameters ρ = 0. The left
panel of Figure 4 shows a summary of the status quo: The prior distribution and the
distribution of the two liklihoods. The right hand panel of Figure 4 shows a histogram
of the posterior distribution of the target function T = P (H|E1) obtained by simulation
with the VineCopula package and N = 100.000.

We now select Y2. We assume Y2 = P (E2|H) ∼ Be(15, 5), Z2 ∼ Be(1, 1), and use
again Gaussian copulae with ρ = 0. The C-vine is encoded by the regular vine matrix in
Table 2. The copulae are C(1, 2), C(1, 3), C(1, 4), C(1, 5), C(2, 3|1), C(2, 4|1), C(2, 5|1),
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Fig. 4. One binary event (three variables). Left: Beta distributions

of the prior Be(5, 5), the likelihood Y1 = P (E1|H) ∼ Be(15, 5), and

Z1 = Be(E1|¬H) ∼ Be(1, 1). Right: Histogram of the posterior

distribution. Simulation with N = 100.000.

C(3, 4|1, 2), C(3, 5|1, 2), and C(4, 5|1, 2, 3). The hierarchical structure is depicted in
Figure 2. It is closely related to the principle of factorization in a Bayesian network.

With two pieces of evidence, E1 and E2, the (first order) probability of their con-
junction is not known. Thus, P (E1, E2|H) ∈ [max{0, y1 + y2 − 1},min{y1, y2}] and the
posterior probability is an interval probability obtained by equations (5) and (6). As
a consequence, we have two target functions, one for the lower and one for the upper
bounds of the posterior probabilities.

The three histograms on the top of Figure 5 show the lower and upper posterior
probabilities for X ∼ Be(5, 5), Y1 ∼ Be(15, 5), and Y2 ∼ Be(15, 5), Z1 ∼ Be(1, 1), and
Z2 ∼ Be(1, 1); all copulae are Gaussian with ρ = 0. On the left is the histogram for
the lower bound, on the right for the upper bound, and in the middle the histogram
for independent events. Comparing the right hand panel of Figure 4 with the left and

X Y1 Y2 Z1 Z2

X 1 1 1 1 1
Y1 2 2 2 2
Y2 3 3 3
Z1 4 4
Z2 5

Tab. 2. Regular vine matrix representation of a C-vine with five

variables. Note that the shown upper matrix follows [14] and is

different from the encoding in the VineCopula package [17].
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the right histograms in the first row of Figure 5 shows that the selection of Y2 increases
the imprecision of the posterior distribution. As long as we do not know the kind of
dependence or independence of the events only a lower and an upper distribution can
be inferred.

We next extend the number of options in the Doherty task and include a third
event E3 with Y3 = P (E3|H) ∼ Be(15, 5) and Z3 = P (E3|¬H) ∼ Be(1, 1). The three
histograms in the second row from the top of Figure 5 show the resulting distributions.
The modes of the histograms of the lower and upper bounds are at 0 and 1. Note
that the ordinates are truncated at 0 and 1. As we continue to include more and more
information from only one hypothesis the precision of the conclusion degradates.

2.3. Degradation

In probability logic an inference rule degrades if adding more probabilistic premises (of
the same kind) leads to interval probabilities of the conclusion that are contained as
subsets in the next following interval [21]. While important inference rules like the and-
introduction or the modus ponens degrade, Bayes’ theorem does not always degrade
(for an example see [21]). If however the P (Ei|H) do have identical or increasing values,
then the upper bounds increase monotonically. In this case the min-terms in Eq. (6)
are constant whereas the probability of the conjunction in the second term in the de-
nominator decreases monotonically. Similarly, if the P (Ei|¬H) in Eq. (5) are identical
or increasing, then the lower bounds decrease monotonically.

To apply the concept of degradation to inferences with distributions we borrow a
concept from statistics. In statistics the condition of independent and identically dis-
tributed sampling is of eminent importance. We drop the independence and keep the
identical distributions. An inference is an inference with completely identical distributed
premises (completely i.d. premises) if (i) the distributions of all premises with the same
logical form are identical and if (ii) all pairwise copulae belong to the same family. If
only the premises belonging to one class with the same logical form have identical dis-
tributions and all the pairwise copulae of these premises belong to the same family, we
say the premises are partially identical distributed (partially i.d).

Consider, for example, the 2n + 1 premises entering Bayes’ theorem with the distri-
butions

X ∼ Be(aX , bX), Yi ∼ Be(aYi
, bYi

), Zi ∼ Be(aZi
, bZi

), i = 1, . . . , n .

If aYi = aYj , bYi = bYj and aZi = aZj , bZi = bZj , i, j = 1, . . . , n and i 6= j, and if
all pairwise copulae are Gaussian, for example, then the premises are completely i.d.
If, for example, all distributions of the Zi have uniform distributions Be(1, 1) and are
independent, but the Yi have beta distributions with different shape parameters, then
the premises are partially i.d.

We now define the concept of degradation by a dominance relation. Let X and Y
be two first order probabilities with the cumulative distribution functions FX(u) and
FY (u). X stochastically dominates Y , for short X � Y , iff

FX(u) ≤ FY (u), ∀u ∈ [0, 1] and ∃u such that FX(u) < FY (u) .
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Fig. 5. Posterior histograms. From top to bottom: n= 2, 3, 4, and

10 events; left: lower bounds, right: upper bounds, middle:

independence. Prior Be(5, 5), same likelihoods

Yi = P (Ei|H) ∼ Be(15, 5), and Zi = Be(Ei|¬H) ∼ Be(1, 1) for

i = 2, 3, 4, 10 events. Simulation with N = 100.000.
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Fig. 6. Stochastic dominance and degradation in Bayes’ theorem.

Cumulative posterior distribution for the status quo with n = 1 event

(dotted line). Cumulative posterior distributions of the lower bounds

for 2, 3, 4 and 5 events (from right to left of the dotted line) and for

the upper bounds (step function on the right of the dotted line). The

four upper bound cdfs are so close that they are visually

indistinguishable. X ∼ Be(5, 5), Yi ∼ Be(10, 5), and Zi ∼ Be(1, 1),

i = 1, . . . , 5, Gaussian copulae with ρ = 0 for i = 2, . . . , 5.

A sequence of distributions F1, . . . , Fn is increasingly dominant iff Fk � Fk+1 and de-
creasingly dominant iff Fk � Fk+1, k = 1, . . . , n− 1.

An inference rule degrades, if the distributions of its lower bounds are decreasingly
dominant and those of its upper bounds are increasingly dominant.

We state the following conjecture: Bayes’ theorem with partially identical premises
degrades. We have, however, no proof for this conjecture. Because of the involved
copulae and conditional copulae the proof seems to be difficult.

In the Doherty task it is reasonable to model the unknown Zi by identical uniform or
close to uniform distributions and by a multidimensional product copula. We thus have
partially i.d. premises inducing degradation of the lower bound. Lower probabilities get
more plausible. If, in addition, also the distributions of the Yi are identical, this leads
to completely i.d. premises and to degradation of the distributions of the lower and the
upper bounds. In the example shown in Figure 5 the premises are completely i.d., thus
the distributions of the lower and the upper bounds degrade. The example in Figure
6 illustrates stochastic dominance of the posterior distributions of the lower bounds for
an increasing number of events and completely i.d. distributions.

The histograms in Figure 5 show the posterior distributions for the lower (left) and
upper (right) bounds and for independence (middle) for n = 2, 3, 4, 10 five events (cor-
responding to d = 5, 7, 9, 11 variables). The distributions of the lower and upper prob-
abilities approach distributions with sharp peaks with probability mass equal to one at
0 and 1, respectively.

If the Yi and the Zi are independent, numerical investigations show several inter-
esting results. If all distributions are uniform Be(1, 1), for example, then the posterior
distributions are U-shaped with maximums at 0 and 1. As n increases 50 % of the
probability mass concentrates at 0 and 50 % at 1—the most extreme form of “don’t
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X Y1 Y2 Y3 Z1 Z2 Z3

X .8 .7 .6 -.5 -.4 -.3
Y1 .7 .7 -.7 -.7 -.7
Y2 .7 -.5 -.5 -.5
Y3 -.3 -.3 -.3
Z1 .3 .3
Z2 .3
Z3

Tab. 3. Parameters (ρ) for Gaussian copulae. In the first row

correlations C(X,Y1), . . . , C(X,Z3) , in the second row conditional

correlations C(Y1, Y2|X), . . . , C(Y1, Z3|X) up to

C(Z2, Z3|X,Y1, Y2, Y3, Z1) in the last row.

know”. If the shape parameters of the beta distributions of Yi and Zi favor H, then the
means of the sequence of distributions increase and the posterior distributions becomes
more and more J-shaped with modes at 1.

The effects of the different kinds of copulae and copula parameters on the posterior
distributions in a Doherty task is illustrated by the following example.

We consider the three binary event E1, E2, and E3 with the marginals

X ∼ Be(5, 5), Y1 ∼ Be(15, 5), Y2 ∼ Be(15, 5), Y3 ∼ Be(15, 5), (12)
Z1 ∼ Be(1, 1), Z2 ∼ Be(1, 1), Z3 ∼ Be(1, 1). (13)

We encode the dependence structure again by a C-vine and by Gaussian copulae. We
use, however, correlations as shown in Table 3.

The probability of the disease H correlates positively with the presence of the symp-
toms E1, E2, and E3 (ρ = .7) and negatively with their absence (ρ = −.7). The probabil-
ities of the presence of the symptoms are positively inter-correlated given the probability
of the disease. Likewise, given the probability of the absence of the disease the proba-
bilities of the absence of the symptoms are positively inter-correlated (ρ = .3).

In the example the effect of introducing correlations different from 0 leads to a bi-
modal U-shaped posterior distribution of the lower bound (Figure 7). The conclusion
becomes more imprecise. A loss of independence among the premises induces a loss
of information transmitted to the conclusion. A similar effect results if the Gaussian
copulae are replaced by copulae that assign higher joint probabilities to the tails.

One method to investigate degradation in the distributional approach is to study the
(second order )probability mass at (first order) probabilities 0 and 1. In the examples
we have seen that after introducing only a very few more events the lower and upper
posterior distributions concentrate all their mass at 0 and 1. Table 4 shows the frequen-
cies of the posterior probabilities at 0 and at 1 as the number of events increases from
1 to 9. The counts are based on the simulation of N = 100.000 cases. The probability
mass of the lower bound converges at 0, of the upper bound at 1.

Also included are the frequencies of the posterior probabilities at 0 and 1 under
the independence assumption. The posterior distribution gets more and more J-shaped
with its mode at 1. It behaves similar as the upper bound in the analysis without the
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(a) low (b) ind (c) up

0

1

2

3

4

5

0.0 0.4 0.8 0.0 0.4 0.8 0.0 0.4 0.8

n = 3

Fig. 7. Three events (7 variables) same prior and likelihood

distributions as in the example in Figure 5, but with the correlations

as shown in Table 3.

independence assumption. This demonstrates how strong the independence assumption
is. It gives rise to the following conjecture: With independent and identically distributed
premises the posterior distribution converges, without independence it quickly diverges.

The independence assumption may be a justified for statistical samples. If the events
are heterogeneous, as in the context of medical diagnosis or financial risk assessment,
the assumption is not justified. Usually markers of diseases or indicators of financial
risks are not conditionally independent.

It is interesting to compare the behavior of the lower and upper posterior distribu-
tions with the behavior of upper and lower probabilities for inferences with exact point
probabilities. The lower and upper point probabilities are obtained by Eq. (5) and Eq.
(6), respectively.

n events 1 2 3 4 5 6 7 8 9
% at 0
Lower bound 0 2.94 49.02 93.03 99.75 100.00 100.00 100.00 100.00
% at 100
Upper bound .80 50.06 83.24 95.70 99.23 99.86 99.98 100.00
Independence .80 2.96 7.40 13.64 21.36 29.98 38.38 46.02 54.21

Tab. 4. Percentages of posterior probabilities equal to 0 (upper part)

and equal to 1 (lower part) out of 100.000 simulations. As the number

of binary events n increases the lower and upper bounds of the

posterior probability converge 0 and 1. All marginal distributions of

Yi = P (Ei|H) are beta distributions Be(10, 5), all marginals of

Zi = P (Ei|¬H) are noninformative Be(1, 1), i = 1, . . . , n. All copulae

are Gaussian with ρ = 0.
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We take the values P (H) = .5, P (Ei|H) = 2/3, P (Ei|¬H) = .5), i = 1, . . . , n,
which correspond to the means of the distributions in the previous example. For n = 1
P (H|E1) = .57, for n = 2 we have P (H|E1, E2) ∈ [.4, 1], and for n = 3 or more
events the posterior interval is already noninformative [0, 1]. Degradation is slower in
the distributional approach.

3. CONCLUSIONS

We have seen that in a setting with distributionally imprecise probabilities biased infor-
mation seeking induces highly inconclusive inferences. The Doherty task is a prototypical
example. A diagnostic choice, that is, selecting likelihood information about the alterna-
tive hypothesis is crucial. A pseudodiagnostic choice, that is, selecting further likelihood
information about only one hypothesis leads to highly imprecise posterior distributions.

The difference between a diagnostic and a pseudodiagnostic choice becomes even more
obvious as we add more options, so that n more probabilities may be selected. Should
we select only likelihoods given H or should our selection be balanced by selecting in
parallel likelihoods given ¬H? As n increases the posterior interval approaches [0, 1] and
the second order distributions of the lower and upper posterior probabilities approach
δ-functions at 0 and 1.

We modelled uncertain knowledge by beta distributions, copulae, and vines. This
allows to represent correlated beliefs and the updating of beliefs (distributions) by soft
evidence (probabilities). We defined degradation in the context of distributions by the
property of stochastic dominance. We stated the following conjectures

• Biased information seeking leads to conclusions that are less informative than the
original situation with no information seeking at all.

• If Yi and Zi are identical and independently distributed and aY > bY or aZ < bZ ,
then the posterior distribution converges at 1 as the number of premises increases.
If aY < bY or aZ > bZ , then the distribution convergences at 0.

• With identically (but not independently) distributed premises Yi and Zi the dis-
tributions of the lower and upper bounds of the posterior distributions degrade
rapidly to 0 and 1. This seems to hold for a wide spectrum of copulae.

• Precise premises induce stronger degradation than imprecise ones. Point proba-
bilities induce maximum degradation.

Especially the conjectures involving copulae are difficult to proof.
We did not consider structural zeroes or logical constraints among the variables (see,

for example, [3]). Moreover, we did not consider the problem of degradation from
the perspective of the Dempster-Shafer belief function approach. Prior beliefs may
be expressed by belief functions and combined with the likelihoods to infer the lower
envelope of the possible posterior probabilities [2, 23]. The lower and upper envelopes
correspond to the coherent lower and upper conditional probabilities [2]. Belief functions
may be appropriate in the case in which “. . . the prior knowledge could be only partially
specified or, even worse, it could refer to a different space of hypothesis.” [2].
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Sampling from only one condition violates a fundamental methodological principle,
the use of control conditions. The Doherty task demonstrates the importance of John
Stuart Mill’s Method of Difference, cited as dictum at the beginning of the paper.
The Doherty task is a typical example in which degradation is observed. It demonstrates
how easily the quality of inferences can break down with unbalanced and nonindepen-
dent information. Seidenfeld and Wasserman [18] remark that one might consider to
pay some extra money to protect oneself from information leading to dilution. Psycho-
logically degradation can be notoriously counterintuitive.

There are several related problems in statistics, such as excluding noisy variables in
model selection (e. g. by introducing a penalty for the inclusion of additional variables),
missing data problems, robustness, or the handling of unbalanced designs in linear mod-
els. The methodology of experimental design, however, protects against unbalanced
information seeking and degradation by demanding control groups, independent sam-
pling, and randomization.
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