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Abstract. We propose results about sign-constancy of Green’s functions to impulsive
nonlocal boundary value problems in a form of theorems about differential inequalities. One
of the ideas of our approach is to construct Green’s functions of boundary value problems
for simple auxiliary differential equations with impulses. Careful analysis of these Green’s
functions allows us to get conclusions about the sign-constancy of Green’s functions to given
functional differential boundary value problems, using the technique of theorems about
differential and integral inequalities and estimates of spectral radii of the corresponding
compact operators in the space of essential bounded functions.
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1. Introduction

Various mathematical models with impulsive differential equations attract to this

topic attention of many authors [3], [16], [19], where various results on boundary

value problems and stability of these equations were presented. One of possible ap-

proaches to study impulsive equations is the theory of generalized differential equa-

tions allowing researchers to consider systems with continuous as well as systems

with discontiniuos solutions and discrete systems in the frame of the same theory [2],

[14]. In this paper we use the concept of the approach proposed in the monograph [3],

and developed then, for example, in the papers [6]–[10].

Various comparison theorems for solutions of the Cauchy and periodic problems

for ordinary differential equations with impulses have been obtained in [7], [17], [18].
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On the basis of the comparison theorems, tests of stability are proved in [1]. Theory

of impulsive differential equations and inclusions was presented in the book [4].

Nonlocal problems have naturally appeared in mathematical models of many pro-

cesses in applications. For non-impulsive functional differential equations nonlocal

problems were considered in Chapter 15 of the book [1]. Existence results for non-

local boundary value problems with impulsive equations were studied in the papers

[5], [13]. There are almost no results on sign-constancy of Green’s function for impul-

sive boundary value problems. Concerning nonlocal impulsive boundary value prob-

lems as far as we know, there are no results about positivity/negativity of Green’s

function.

In this paper we propose results about differential inequalities for sign-constancy

of Green’s functions of nonlocal impulsive boundary value problems.

2. Main results

We consider the impulsive equation

(Lx)(t) = x′(t) +

m
∑

i=1

pi(t)x(t − τi(t)) = f(t), t ∈ [a, b](2.1)

x(tj) = βjx(tj − 0), j = 1, . . . , k,(2.2)

x(ζ) = 0, ζ /∈ [a, b],(2.3)

where f ∈ L∞ is a measurable essentially bounded function and τi > 0, i = 1, . . . ,m

are measurable functions such that mes{t : t − τi(t) = const} = 0 for i = 1, . . . ,m,

βj > 0, j = 1, . . . , k, a = t0 < t1 < t2 < . . . < tk < tk+1 = b.

Consider the following variants of boundary conditions:

(2.4) lx =

∫ b

a

ϕ(s)x′(s) ds+ θx(a) = c,

where ϕ ∈ L∞[a, b]; θ, c ∈ R;

x(a) = c,(2.5)

x(b) = c,(2.6)

x(a) = x(b).(2.7)

Solving step-by-step on every of the intervals [a, t1), [t1, t2), . . . , [tk, b) the initial

value problem x′(t) = z(t), x(a) = α, t ∈ [a, b], with condition (2.2), where z ∈ L∞,

α ∈ R we obtain

(2.8) x(t) =

∫ t

a

Ω(t, s)z(s) ds+ ω(t)α,
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where

ω(t) =
k+1
∑

i=1

χ[ti−1,ti)(t)
i
∏

j=1

βi−j ,

Ω(t, s) =

k+1
∑

i=1

χ[ti−1,ti)(t)χ[ti−1,ti)(s)β0 +

k+1
∑

i=2

i−1
∑

r=1

χ[ti−1,ti)(t)χ[ti−1,ti)(s)

i−r
∏

j=1

βi−j ;

here β0 = 1.

It is clear that x(t) is absolutely continuous in (ti−1, ti), i = 1, . . . , k+1, satisfying

the equality x(ti) = βix(ti − 0). We see that x(t) has only discontinuities of the first

kind and is continuous from the right at the points ti, i = 1, . . . , k.

We can consider the equality (2.8) as a definition of the space D(t1, . . . , tk) of

piecewise continuous functions x : [a, b] → R. It is clear that this space is isomorphic

to the topological product L∞ × R. Actually for every pair (z, α) where z ∈ L∞,

α ∈ R we obtain by (2.8) the unique x ∈ D(t1, . . . , tk), and every solution of equa-

tion (2.1)–(2.3) can be written in the form (2.8).

Let us consider the auxiliary equation

x′(t) = z(t), t ∈ [a, b],(2.9)

x(tj) = βjx(tj − 0), j = 1, . . . , k.

In [7] it was proved that the general solution of equations (2.1)–(2.3) can be

represented in the form

(2.10) x(t) =

∫ t

a

C(t, s)f(s) ds+ C(t, a)x(a),

where C(t, s) is called the Cauchy function of equation (2.1)–(2.3). For each s fixed,

the function x(t) = C(t, s) satisfies equations (2.1), (2.2) and x(ζ) = 0 for ζ < s. In

particular, C(t, s) = 0 for t < s. In the case when problem (2.1)–(2.4) is uniquely

solvable, its Green’s function G(t, s) is of the form

(2.11) G(t, s) = C(t, s)− C(t, a)

∫ b

s
ϕ(w)C′

w(w, s) dw + ϕ(s)

θ +
∫ b

a
ϕ(w)C′

w(w, a) dw
.

This can be proved when we insert the solution representation (2.10) into the

condition (2.4) and determine the proper value of the parameter α.

Green’s functions for various impulsive boundary value problems were constructed

and conditions ensuring their positivity were discussed in [12]. Existence of Green’s
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function G0(t, s) for problem (2.9), (2.4) was discussed in [12]. On the basis of

estimates of Green’s function G0(t, s) of problem (2.9), (2.4), sufficient conditions

of positivity of Green’s function G(t, s) of nonlocal boundary value problems of the

type (2.1)–(2.4) were obtained in [11]. In this paper we propose theorems about

differential inequalities that allow us to obtain results about positivity/negativity of

Green’s function of the nonlocal boundary value problem (2.1)–(2.4) based only on

sign-constancy of G0(t, s) and without knowledge of the explicit formula for G0(t, s).

Define the operator K : L∞ → L∞ by the equality

(2.12) (Kz)(t) = −

m
∑

i=1

pi(t)χ(t− τi(t), 0)

∫ b

a

G0(t− τi(t), s)z(s) ds,

where

χ(t, s) =

{

1 for t > s,

0 for t < s.

It is clear that K is a positive operator whenever G0(t, s) 6 0 and pi(t) > 0 for

t, s ∈ [a, b] and i = 1, 2, . . . ,m.

Theorem 2.1. Let G0(t, s) 6 0 for t, s ∈ [a, b], while G0(t, s) < 0 if a 6 t < s 6 b,

pi(t) > 0 for i = 1, . . . ,m and θ 6= 0. Then the following assertions are equivalent:

(1) There exists a positive function v ∈ D(t1, . . . , tk) such that v
′(t) 6 ε < 0,

v(a) + θ−1
∫ b

a
ϕ(s)v′(s) ds > 0, and (Lv)(t) 6 −ε < 0 for t ∈ [a, b].

(2) The spectral radius of the operator K is less than one.

(3) G(t, s) 6 0 for t, s ∈ [a, b], and G(t, s) < 0 for a 6 t < s 6 b.

(4) There exists a positive function z ∈ L∞ such that z(t)−Kz(t) > ε > 0.

P r o o f. (1) ⇒ (4) Let v(t) be a function satisfying assertion (1). We can set

u(t) = −v(t) and choose u′(t) = z(t). We have

u(t) =

∫ b

a

G0(t, s)z(s) ds+

[

u(a) +
1

θ

∫ b

a

ϕ(s)u′(s) ds

] j
∏

i=0

βi,

where tj 6 t < tj+1, j = 0, 1, . . . , k.

It is clear that z(t) = u′(t) > ε > 0 and z(t)− (Kz)(t) = ψ(t), where

ψ(t) = −

{ m
∑

i=1

pi(t)χ(t− τi(t), 0)

[

u(a) +
1

θ

∫ b

a

ϕ(s)u′(s) ds

] j
∏

i=0

βi

}

+ (Lu)(t),

where tj 6 t < tj+1, j = 0, 1, . . . , k.
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According to our condition, ψ(t) > ε > 0.

The implication (1) ⇒ (4) is proved.

(2) ⇒ (3) Assuming in (2.4) c = 0 and substituting x(t) =
∫ b

a
G0(t, s)z(s) ds, we

get that the solution of the problem (2.1)–(2.4), where c = 0, can be represented in

the form

x(t) =

∫ b

a

G0(t, s)(I −K)−1f(s) ds.

The operator K is positive and by (2) its spectral radius is less than 1. Hence,

using the condition about the spectral radius, we get

(2.13) x(t) =

∫ b

a

G0(t, s){f(s) +Kf(s) +K2f(s) + . . . } ds.

It is clear that for every nonpositive f we get x(t) −
∫ b

a
G0(t, s)f(s) ds > 0 and

consequently

0 6

∫ b

a

G(t, s)f(s) ds−

∫ b

a

G0(t, s)f(s) ds =

∫ b

a

[G(t, s)−G0(t, s)]f(s) ds

and G(t, s) −G0(t, s) 6 0 for t, s ∈ (a, b).

The implication (2) ⇒ (3) is proved.

(3)⇒ (1) Let us set v(t) = −
∫ b

a
G(t, s) ds. It is clear that (Lv)(t) = −1, t ∈ [a, b].

The implication (3) ⇒ (1) is proved.

(4) ⇒ (2) This implication follows theorem in the paragraph 5.7 of the book [15],

page 87.

Theorem 2.1 is proved. �

Definition 2.1. We say that problem (2.1)–(2.4) satisfies the condition Θ if

(2.14)

∫ b

s
ϕ(ξ)C′

ξ(ξ, s) dξ + ϕ(s)

θ +
∫ b

a
ϕ(s)C′

s(s, a) ds
< 0.

Let us assume existence of Green’s function P0(t, s) of the problem (2.9), (2.6),

Green’s function P (t, s) of the problem (2.1)–(2.3), (2.6), and Green’s function

P1(t, s) of the problem (2.1)–(2.3), (2.7).

Define the operator M : L∞ → L∞ by the equality

(Mx)(t) = −

m
∑

i=1

pi(t)χ(t− τi(t), 0)

∫ b

a

P0(t− τi(t), s)z(s) ds.
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Theorem 2.2. Let pi(t) > 0 for i = 1, . . . ,m. Then the following assertions are

equivalent

(1) The Cauchy function of (2.1)–(2.3) is positive for a 6 s 6 t 6 b.

(2) A nontrivial solution of the homogeneous equation (Lx)(t) = 0, (2.2), (2.3) has

no zeros on [a, b].

(3) The spectral radius of the operator M is less than one.

(4) Problem (2.1)–(2.3), (2.6) is uniquely solvable for every f ∈ L and its Green’s

function P (t, s) is negative for a 6 t < s 6 b and nonpositive for a 6 s 6 t 6 b.

(5) If in addition β1 < 1, . . . , βk < 1, then periodic problem (2.1)–(2.3), (2.7) is

uniquely solvable and its Green’s function P1(t, s) is positive for t, s ∈ [a, b].

(6) There exists a nonnegative function v ∈ D(t1, . . . , tk) such that (Lv)(t) 6 0,

v(b)−
∫ b

t
(Lv)(s) ds > 0, t ∈ [a, b].

(7) If in addition β1 < 1, . . . , βk < 1, and the Θ condition is fulfilled, then Green’s

function of the problem (2.1)–(2.4) satisfies G(t, s) > 0, for t, s ∈ [a, b].

The equivalence of assertions (1)–(6) was shown in [7]. To prove equivalence of

the remaining assertions we prove the implications (1) ⇒ (7) and (7) ⇒ (2).

P r o o f. (1) ⇒ (7) It is clear from conditions (2.11) and (2.14) that G(t, s) > 0

for t, s ∈ [a, b].

(7) ⇒ (2) For t < s we have C(t, s) = 0 and consequently

G(t, s) = −C(t, a)

∫ b

s
ϕ(w)C′

w(w, s) dw + ϕ(s)

θ +
∫ b

a
ϕ(w)C′

w(w, a) dw
.

Now, due to the assumption Θ and since an arbitrary nontrivial solution x of the

homogeneous problem Lx = 0, (2.2), (2.3) is of the form x(t) = C(t, a)x(a) with

x(a) 6= 0, it follows that assertion (2) is true.

Theorem 2.2 is proved. �

Denote

d−(t) = min{j : tj ∈ (t− τ1(t), t)},

d+(t) = max{j : tj ∈ (t− τ1(t), t)},

B(t) =

d+(t)
∏

j=d
−
(t)

βj .

126



Corollary 2.3. Let m = 1, p1(t) > 0,
∫ t

t−τ1(t)
p1(s) ds 6 (1 + lnB(t))/e and the

condition Θ be fulfilled. Then the Green’s function G(t, s) of the problem (2.1)–(2.4)

is positive for t, s ∈ [a, b].

P r o o f. To prove the corollary we set

v(t) =















































exp

(

−e

∫ t

a

p1(s) ds

)

, a 6 t 6 t1,

β1 exp

(

−e

∫ t

a

p1(s) ds

)

, t1 6 t 6 t2,

...

β1β2 . . . βk exp

(

−e

∫ t

a

p1(s) ds

)

, tk 6 t 6 b,

in assertion (6) of Theorem 2.2. �
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