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KYB ERNET IK A — VO LUME 5 1 ( 2 0 1 5 ) , NUMBER 1 , PAGES 1 7 3 – 1 9 1

LQR AND MPC CONTROLLER DESIGN AND
COMPARISON FOR A STATIONARY SELF-BALANCING
BICYCLE ROBOT WITH A REACTION WHEEL

Kiattisin Kanjanawanishkul

A self-balancing bicycle robot based on the concept of an inverted pendulum is an unstable
and nonlinear system. To stabilize the system in this work, the following three main components
are required, i. e., (1) an IMU sensor that detects the tilt angle of the bicycle robot, (2) a
controller that is used to control motion of a reaction wheel, and (3) a reaction wheel that
is employed to produce reactionary torque to balance the bicycle robot. In this paper, we
propose three control strategies: linear quadratic regulator (LQR), linear model predictive
control (LMPC), and nonlinear model predictive control (NMPC). Several simulation tests
have been conducted in order to show that our proposed control laws can achieve stabilizaton
and make the system balance. Furthermore, LMPC and NMPC controllers can deal with state
and input constraints explicitly.

Keywords: self-balancing bicycle robot, linear quadratic regulator, model predictive con-
trol

Classification: 49N05, 93C85

1. INTRODUCTION

A self-balancing bicycle robot is a system based on the concept of an inverted pendulum
system, where its upright body is pivoted on two wheels. Without a proper control
scheme, the system itself cannot be balanced and keeps falling off. Therefore, it is
naturally an unstable system and its nonlinearity makes the problem of controlling it
difficult, resulting in a challenging research topic to the control engineering community.

Over the past few decades, researchers have explored different solutions to dynami-
cally balance a bicycle robot. Their ideas can be classified into four groups as follows:

• Gyroscopic stabilization, where one or more motorized gimbals tilt the angular mo-
mentum of a spinning rotor [3]. As the rotor tilts, the changing angular momentum
causes a gyroscopic precessive torque that balances the bicycle. Advantages of this
system are that it can produce large amount of torque, it has no ground reaction
forces, and the system can be stable even when the bicycle is stationary. Disad-
vantages are that it consumes more energy and it is physically complex. Research
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studies using this concept include Beznos et al. in [2], Gallaspy in [5], and Bui
and Parnichkun in [3], while a remarkable example of applying this idea is a self-
balancing electric motorcycle from Lit Motors Inc., where production will begin
by the end of 2014.

• Steering control, where a controller controls the amount of torque applied to the
steering handlebar to balance the bicycle. Advantages of this system are low
mass and low energy consumption, while its disadvantages are that it requires
ground reaction forces and it cannot withstand large tilt angle disturbance. Its
mathematical model is also complex, however, several different dynamic models
and control schemes have been proposed in the literature, such as Tanaka and
Murakami in [13], Yi et al. in [14], Defoort and Murakami in [4], Lei et al. in [9],
and Pongpaew in [11].

• Reaction wheel control, where speed of a reaction wheel is increased or decreased to
generate a reactionary torque about the spin axis which is parallel to the bicycle’s
frame. As the bicycle begins to fall to one side, a motor mounted to the reaction
wheel applies a torque on the reaction wheel, generating a reactionary torque on
the bicycle, which brings back the bicycle’s balance. Advantages of this system
are that it is low cost, simple and no ground reaction, while disadvantages are that
it consumes more energy and it cannot produce large amount of torque. A very
well-known self-balancing bicycle robot using a reaciton wheel is the Murata Boy
which was developed by Murata Manufacturing Co., Ltd in 2005.

• Mass Balancing, where the center of gravity or a mass balancer is controlled.
Studies using this idea are Lee and Ham in [8], Keo and Masaki in [6].

Furthermore, Keo and Yamakita [7] derived a controller using a steering handlebar
and a balancer torque to stabilize the bicycle. Numerical simulation results were shown
that balancing control using both the steering and the balancer has a better performance
than conventional ones with only balancer or steering.

However, in the literature, a PID controller has been most commonly used for achiev-
ing balance of the bicycle robot with a reaction wheel. Hence, in this study, we propose
control algorithms for stabilization at zero forward speed by using linear quadratic reg-
ulator (LQR), linear model predictive control (LMPC), and nonlinear model predictive
control (NMPC). They belong to an optimal control scheme where a control law is de-
termined for a given system such that a certain optimality criterion is achieved. They
can be applied for multivariable systems in a state-space form. Furthermore, constraints
of the control input can be handled explicitly in case of using model predictive control
(MPC).

In Section 2, we present a simplified dynamic model of the bicycle robot with a re-
action wheel based on the concept of an inverted pendulum system from a Lagrange
equation. Then, LQR, LMPC, and NMPC control laws are introduced in Section 3 for
stabilization. In Section 4, numerical simulation tests are conducted. Several simulation
scenarios with our proposed control laws are evaluated in detail and outputs are com-
pared. The results are shown to verify the effectiveness of our proposed control strategy.
Finally, our conclusions and future work are given in Section 5.
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2. DESIGN AND MODELLING OF A SELF-BALANCING BICYCLE ROBOT
WITH A REACTION WHEEL

The ultimate goal of our long-term project is to build a bicycle robot that can balance
itself using a reaction wheel. This bicycle robot has to be able to keep balancing at zero
forward speed and to follow a given path without losing its balance at desired forward
speed.

The basic principle is that the reaction wheel attached to an electric motor can rotate
clockwise or counterclockwise with desired speed in order to maintain balancing of the
bicycle. Due to the fact that the motor applies a torque on the reaction wheel, which in
turn applies an equal amount of torque back on the bicycle. With a proper control law,
this action-reaction combination can balance the bicycle.

2.1. Hardware and electronic design

Figure 1 shows a block diagram of the electronic system of our bicycle robot. There
are four state variables, i. e., the tilt angle and its first derivative obtained from an
accelerometer-gyro-magnetometer sensor called a MinIMU-9 sensor, and the reaction
wheel angle and its first derivative received from an encoder mounted at the motor
shaft.

In our closed-loop control system, the output of the bicycle robot is the tilt angle,
which is the instantaneous angle of the robot base with respect to the vertical upright
position. Sensor data from the MinIMU-9 sensor are transmitted to the microcontroller
via I2C communicaton. The received data are processed through a complementary filter
algorithm in order to obtain a precise tilt angle. We determine the error, which is
the difference between the desired tilt angle and the actual tilt angle. It is fed into
our proposed controller so that the controller will process, calculate, and generate the
corresponding motor voltage to control the DC motor (that, in turn, controls the reaction
wheel) via the motor controller, in order to achieve balancing at the upright position.

IMU Sensor

RC Servo Motor
for steering

I2C

PWM

Serial

MICRO CONTROLLER

Motor
Controller

DC Motor
for driving

DC Motor
for reaction 
wheel

Encoder

Encoder

Fig. 1: A block diagram of the electronic system.

Figure 2 shows the mechanical structure of the self-balancing bicycle system. It
consists of three motors: a metalgear DC motor with an encoder connected to the
rear wheel, providing propulsion; a metalgear DC motor with an encoder connected to
the reaction wheel, providing balance; and an RC servo motor connected to the steer,
providing directional steering. However, the RC servo motor for steering and the DC
motor for driving will be taken into account in the future work.
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(a) (b)

Fig. 2: The bicycle robot’s mechanical frame design: (a) SolidWorks design drawing
showing layout of major components and (b) a photograph of our prototype bicycle
robot, dimensions approximately (W × L×H) : 175× 1083× 453 mm.

Since the rotation of the reaction wheel located at the center of the bicycle is the
key of the balancing and energy is stored in the rotor as kinetic energy, a compromise
between mass vs. moment of inertia of the wheel is very important. In order to minimize
the overall mass, while attaining a high moment of inertia, the majority of its mass has
to be concentrated at the outer edge of the wheel.

2.2. Mathematical model

Since our system is based on the principle of an inverted pendulum with a reaction wheel
as seen in Figure 3, by disregarding forces generated from moving forward and steering, a
simplified dynamic model of the bicycle robot can be derived using a Lagrange method.
Let m1, o1, I1, θ and L1 be the bicycle mass, its center of mass, its moment of inertia
about its center of mass, the angle between the bicycle and the vertical upright direction
and the distance from the origin O to the center of mass of the bicycle, respectively and
let m2, o2, I2, φ and L2 be the reaction wheel mass, its center of mass, its moment of
inertia about the center of mass of the reaction wheel, the rotation angle of the reaction
wheel, and the distance from its center of mass to the origin O, respectively, then a
Lagrange equation of the dynamic model can be derived by using:

d
dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= τi (1)

where τi, i = 1, 2, 3, . . . , n, denotes the external force corresponding to generalized coor-
dinates qi, and

L(q, q̇) = KE(q, q̇)− PE(q, q̇) (2)

where L, KE, PE, and q are the Lagrangian operator, the kinetic energy of the sys-
tem, the potential energy of the system, and the generalized coordinates of the system,
respectively. In this paper, θ and φ are considered as system generalized coordinates.
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Fig. 3: A model of a bicycle robot with a reaction wheel system based on the principle
of an inverted pendulum system.

The total kinetic energy of the system is written as

KE =
1
2
(m1L

2
1 + m2L

2
2 + I1 + I2)θ̇2 + I2θ̇φ̇ +

1
2
I2φ̇

2 (3)

The potential energy of the bicycle body and of the reaction wheel are obtained as
follows:

PE = (m1L1 + m2L2)g cos θ (4)

After that, the Lagrangian operator can be obtained as follows:

L =KE − PE

=
1
2
(m1L

2
1 + m2L

2
2 + I1 + I2)θ̇2 + I2θ̇φ̇ +

1
2
I2φ̇

2 − (m1L1 + m2L2)g cos θ.
(5)

Using the Lagrange equation defined in (1), the following two equations are derived

(m1L
2
1 + m2L

2
2 + I1 + I2)θ̈ + I2φ̈− (m1L1 + m2L2)g sin θ = 0

I2(θ̈ + φ̈) = Tr

(6)

where Tr is a driving torque of the reaction wheel as friction forces and electrical dy-
namics of the DC motor are neglected.

The equation above is a nonlinear mathematical model expression of the inverted
pendulum system with a reaction wheel. In order to simplify analysis and computation,
when θ is very small, according to Jacobian linearization, we obtain:

(m1L
2
1 + m2L

2
2 + I1 + I2)θ̈ + I2φ̈− (m1L1 + m2L2)gθ = 0

I2(θ̈ + φ̈) = Tr.
(7)
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Let x = [x1, x2, x3, x4]T = [θ, θ̇, φ, φ̇]T be state variables of the system, then the state
space expression of the system can be given as follows:

θ̇

θ̈

φ̇

φ̈

 =


0 1 0 0

b/a 0 0 0
0 0 0 1

−b/a 0 0 0




θ

θ̇
φ

φ̇

 +


0

−1/a
0

(a + I2)/(aI2)

Tr, (8)

where a = m1L
2
1 + m2L

2
2 + I1, b = (m1L1 + m2L2)g.

Next, to control the speed of the reaction wheel to the desired one, the following
mathematical model is the physical behavior of the motor with a gear system:

V = Lm
di

dt
+ Rmi + Keωm

Tm = Kti

Tr = NgTm,

(9)

where V is motor supply voltage, Ke is a motor back emf constant, ωm is motor angular
speed, Lm is armature coil inductance, Rm is armature coil resistance, i is armature
current, Tm is motor generated torque, Kt is a motor torque constant, and Ng is the
gear ratio.

The term of inductance can be neglected since, in general, the motor inductance value
is much less than the motor resistance value (Lm � Rm). By using the relationship
between the motor and the reaction wheel, i. e., φ̇ = ωr, ωm = Ngωr, where ωr is reaction
wheel angular speed, the motor supply voltage can be found in terms of the reaction
wheel angle as follows:

Tr = NgKt

(V −KeNgφ̇

Rm

)
(10)

Then, the mathematical model of the motor (10) is combined with the mathematical
model of the bicycle (8) in state space form:

θ̇

θ̈

φ̇

φ̈

 =


0 1 0 0

a21 0 0 a24

0 0 0 1
a41 0 0 a44




θ

θ̇
φ

φ̇

 +


0
b2

0
b4

V

y =
[
1 0 0 0

] 
θ

θ̇
φ

φ̇

 ,

(11)

where

a21 =
b

a
, a24 =

KtKeN
2
g

aRm
, a41 = − b

a
, a44 = −(

a + I2

aI2
)(

KtKeN
2
g

Rm
),

b2 = −KtNg

aRm
, b4 = (

a + I2

aI2
)
KtNg

Rm
.
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Parameters Values
Bicycle c.g. upright height (L1) 0.25 m
Reaction wheel c.g. upright height (L2) 0.35 m
Mass of bicycle (m1) 20.1 kg
Mass of reaction wheel (m2) 3.7 kg
Bicycle moment of inertia about c.g. (I1) 1.504 kgm2

Reaction wheel moment of inertia about c.g. (I2) 0.052 kgm2

Motor resistance (Rm) 0.71 Ω
Motor torque constant (Kt) 0.0229 Nm/A
Motor back emf constant (Ke) 0.0229 Vs/rad
Motor gear ratio (Ng) 25 : 1
Gravitational acceleration (g) 9.81 m/s2

Tab. 1: System parameters.

Finally, by substituting the parameter values in Table 1, the state space expression
of the system is changed into:


θ̇

θ̈

φ̇

φ̈

 =


0 1 0 0

22.4350 0 0 0.1670
0 0 0 1

−22.4350 0 0 −9.0445




θ

θ̇
φ

φ̇

 +


0

−0.2918
0

15.7983

V. (12)

According to control theory, the characteristic equation of the system is given by
det(λI −A) = 0, resulting in four eigenvalues: λ1 = 0, λ2 = 4.7077, λ3 = −4.6458, λ4 =
−9.1065. Since one of eigenvalues is located in the right half-plane of complex frequency
domain, the system is unstable. Furthermore, the controlability matrix of the system
CO = [B,AB,A2B,A3B] and rank(CO) = 4, therefore the system is controllable.

3. CONTROL ALGORITHM

As mentioned previously, the self-balancing bicycle robot is an unstable system, there-
fore, a proper control law is required to balance the system. In this paper, to maintain
balancing at the zero forward speed, three different types of controllers, i. e., LQR,
LMPC, and NMPC, are designed and evaluated. For these model-based controllers,
the state space model obtained by linearization (12) is used in LQR and LMPC design
process, while the nonlinear model (6) and (10) are used in the NMPC strategy.

Although the cost function often used in MPC is similar to the cost in LQR, the main
difference between MPC and LQR is that MPC is formulated as the repeated solution
of a finite horizon open-loop optimal control problem subject to the predicted system
behavior and input and state constraints. This is an important advantage of this type
of control.
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3.1. Linear Quadratic Regulator (LQR)

An LQR controller is a solution to the linear quadratic (LQ) problem where a set of linear
differential equations and a quadratic objective function are defined. It can stabilize the
system by changing the location of poles of the system to the optimal location since time
response, overshoot and steady state depend on the location of poles. It also has simpler
structure than MPC, for example, only instant input and output variables are penalized
by weight matrices, while variation of the input and future values of inputs/outputs are
not penalized.

For a continuous time system described by

ẋ = Acx + Bcu

y = Ccx + Dcu,
(13)

the LQR controller is basically an algorithm that finds an optimal gain matrix (K) for
a state-feedback controller based on weighting factors (Q, R and M) of minimization of
the following quadratic objective function:

J(u) =
∫ ∞

0

(xT Qx + uT Ru + 2xT Mu) dt, (14)

where Q is a symmetric positive semi-definite matrix, R is a symmetric positive definite
matrix, and M is the cross term that relates u to x in the objective funtion. Then, the
gain matrix K can be calculated by the following equation:

K = R−1(BT S + MT ), (15)

where S is found by solving the continuous time Riccati equation:

AT S + SA− (SB + M)R−1(BT S + MT ) + Q = 0. (16)

With this optimal gain matrix, a control law can be defined as u = −Kx.
However, a disadvantage of the LQR is that the controller requires full state feedback,

which in most cases are unavailable. An observer used to estimate the unmeasured states
will be implemented in our future work.

3.2. Linear MPC (LMPC)

Model predictive control (MPC) is one of the most advanced control methods that can
deal with constraints on inputs and states explicitly. It is very important since almost all
physical systems have constraints such as limitations on the input and output signals. If
such constraints are not taken into account in the design of control systems, performance
degradation or, at worst, instability might happen. Although MPC is apparently not a
new control method, research studies dealing with MPC of a self-balancing bicycle robot
are rare.

The conceptual structure of MPC is depicted in Figure 4. The basic principle of
this technique [1] is to take a sample from sensors and then future control inputs and
future plant responses are predicted using a system model for the next N time steps
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Fig. 4: Principle of model predictive control [1].

called a horizon. From that, a control law is determined for every time step by solving
a constrained optimization problem and only the first one is implemented. This process
is then repeated for the next time step.

A linear model is used for controller design in this subsection, while a nonlinear version
will be considered in the next subsection for NMPC design. Therefore, the linearized
system (12) can be written in a discrete state space system as follows:

x(k + 1) = Ax(k) + Bu(k) (17)

where A ∈ Rn × Rn, n is the number of the state variables and B ∈ Rn × Rm, m is the
number of input variables. The discrete matrices A and B can be obtained as follows:

A = I + δAc, B = δBc (18)

where ẋ = Acx + Bcu is a continuous time system and δ is a sampling time.
The goal is to find the control-variable values that minimize the quadratic objective

function. With the linear system, the optimization problem can be transformed into a
QP problem. Since it turns into a convex problem, solving the QP problem results in
global optimal solutions. After solving the QP problem at each time instant, control-
variable values are obtained.

To make the LMPC objective function equivalent to the LQR objective function [12],
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the quadratic objective function with a prediction horizon N is given by

J(k) =
N−1∑
j=0

{xT (k + j|k)Qx(k + j|k) + uT (k + j|k)Ru(k + j|k)}

+ xT (k + N |k)QNx(k + N |k)

(19)

where Q ∈ Rn × Rn and R ∈ Rm × Rm are the penalty weighting matrices, with Q � 0
and R � 0. QN is a penalty applied at the terminal prediction horizon step. The double
subscript notation (k + j|k) denotes the prediction made at time k of a value at time
k + j.

By introducing matrices such that all u(·) and x(·) are conveniently stored, we obtain
a more compact expression that a QP solver can solve. Defining the prediction state
vector

X(k) = [xT (k + 1|k),xT (k + 2|k), . . . ,xT (k + N |k)]T

where X ∈ Rn·N and the control input vector

U(k) = [uT (k|k),uT (k + 1|k), . . . ,uT (k + N − 1|k)]T

where U ∈ Rm·N , it can be shown that

X(k) = G(k)x(k|k) + S(k)U(k) (20)

where G(k) ∈ Rn·N × Rn·N and S(k) ∈ Rn·N × Rm·N are defined as follows

G(k) =


A
A2

...
AN

 and S(k) =


B 0 · · · 0

AB B · · · 0
...

...
. . .

...
AN−1B AN−2B · · · B

 .

After defining Q̄ ∈ Rn·N × Rn·N as a block diagonal matrix containing Q repeated
N − 1 times and QN as follows

Q̄ =


Q 0 0 · · · 0
0 Q 0 · · · 0
...

...
. . .

...
...

0 · · · 0 Q 0
0 0 · · · 0 QN


and R̄ ∈ Rm·N × Rm·N as a block diagonal matrix containing R repeated N times, the
objective function of the QP problem can then be rewritten

J(k) = xT (k|k)Qx(k|k) + XT Q̄X + UT R̄U

= xT (k|k)Qx(k|k) + (Gx(k|k) + SU)T Q̄(Gx(k|k) + SU) + UT R̄U

=
1
2
UT 2(R̄ + ST Q̄S)U + xT (k|k)2GT Q̄SU +

1
2
xT (k|k)2(Q + GT Q̄G)x(k|k).

(21)
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After some algebraic manipulations, we can rewrite the objective function (19) in a
standard quadratic form:

J̄(k) =
1
2
UT H(k)U + xT (k|k)F (k)U +

1
2
xT (k|k)Y (k)x(k|k) (22)

with

H(k) = 2(R̄ + ST Q̄S)

F (k) = 2GT Q̄S

Y (k) = 2(Q + GT Q̄G)

where H ∈ Rm·N × Rm·N is a Hessian matrix which is always positive definite. It
describes the quadratic part of the objective function. F ∈ Rm·N is a vector which
describes the linear part of the objective function.

To handle the input constraints, we consider the existence of bounds in the amplitude
of the control variables:

umin ≤ u(k + j|k) ≤ umax (23)

where j ∈ [0, N−1], and umin and umax denote the lower and upper bounds, respectively.
In this paper, the system is driven by a DC motor, therefore we consider the following
constraints:

Vmin ≤ V ≤ Vmax (24)

where Vmin and Vmax are the lower and upper boundaries of the motor voltage, respec-
tively.

Thus, with the standard expression of the QP problem, the optimization problem to
be solved at each sampling time is stated as follows:

U? = arg min
U
{1
2
UT H(k)U + xT (k|k)F (k)U}

subject to umin ≤ u(k + j|k) ≤ umax.
(25)

Note that 1
2x

T (k|k)Y (k)x(k|k) is constant, therefore it is excluded in (25).
After the QP problem at time tk is solved, an optimal control sequence is generated.

The motor voltage input for a reaction wheel can be obtained from the first element of
this sequence and is then applied to the system.

3.3. Nonlinear MPC (NMPC)

Although LMPC theory is well studied by now, LMPC may not be suitable for some
nonlinear systems. Therefore, nonlinear models must be used [1]. In general, the main
difference between LMPC and NMPC is that LMPC refers to an MPC scheme in which
linear models are used to predict the system dynamics and linear constraints on the states
and inputs are considered. NMPC refers to an MPC scheme that is based on nonlinear
models and/or considers a non-quadratic cost function and nonlinear constraints [1].

A nonlinear system is normally described by the following nonlinear differential equa-
tion:

ẋ(t) = f(x(t),u(t))

subject to: x(t) ∈ X , u(t) ∈ U , ∀t ≥ 0
(26)
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where x(t) ∈ Rn, u(t) ∈ Rm are the n dimensional state vector and the m dimensional
input vector of the system, respectively. X ⊆ Rn and U ⊆ Rm denote the set of feasible
states and inputs of the system, respectively. The input applied to the system is then
given by the solution of the following finite horizon open-loop optimal control problem:

min
u(·)

∫ t+Tp

t

{xT (τ)Qx(τ) + uT (τ)Ru(τ)}dτ + Vt(x(t + Tp)) (27)

subject to: ẋ(τ) = f(x(τ),u(τ)) (28a)
u(τ) ∈ U ∀τ ∈ [t, t + Tc] (28b)
x(τ) ∈ X ∀τ ∈ [t, t + Tp] (28c)
x(t + Tp) ∈ Xf (28d)

where Xf is a terminal constraint set and Vt is a terminal cost.
Although, from a theoretical point of view, an infinite predictive control horizon can

guarantee stability of a system, it may not be feasible for a nonlinear system in practice
[1]. For this reason, finite prediction and control horizons are considered, however, the
major concern is whether such a finite horizon NMPC strategy can guarantee stability of
the closed-loop system. Mayne et al. [10] presented essential principles for the stability of
NMPC for constrained nonlinear systems. Most of the approaches, that achieve closed-
loop stability for NMPC, modify the NMPC setup such that stability of the closed-loop
can be guaranteed. This is usually achieved by adding suitable equality or inequality
terminal constraints and/or a suitable additional terminal cost to the cost function. Due
to a large number of research papers concerning NMPC stability, we refer the reader to
[1, 10]. In this work, the terminal cost, Vt = xT

NQNxN , corresponds to infinite horizon
cost. It is used to ensure stability and feasibility. For more detail, the reader is referred
to [10]. Furthermore, the constraints in (28b) denote the bounded control inputs given
by (24).

Besides the stability issue, NMPC requires the repeated online solution of a nonlin-
ear optimal control problem. In the case of LMPC, the solution of the optimal control
problem can be cast as the solution of a QP problem which can be solved efficiently
online. For NMPC, one has to solve a nonlinear program, which is in general computa-
tionally expensive. A commonly used approach to solve the problem is reformulation to
a finite dimensional nonlinear programming problem (NLP) by a suitable parameteriza-
tion. The most recent research in NMPC suggests to perform this parameterization by
using direct multiple shooting method. The NLP can be solved by sequential quadratic
programming (SQP) approach, which means solving a QP subproblem at each iteration.
An updated estimate of the Hessian is computed in each iteration using the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) formula. The QP subproblem is solved using an
active set strategy and the gradients of the cost function and of equality and inequality
constraint functions are computed using finite difference.

4. NUMERICAL SIMULATION

This section presents numerical simulation in a MATLAB environment where the bicy-
cle robot with LQR, LMPC, and NMPC control laws are implemented and evaluated.
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Desired
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Controller
Self-balancing
Bicycle Robot

Actual valuesInertial
Measurement Unit
(IMU) and Encoder

Fig. 5: A block diagram of the closed-loop control system.

Figure 5 shows a block diagram of the bicycle closed-loop control for stabilization by
using different kinds of controllers. The four state variables including tilt angles and
its angular speed, reaction wheel angles and its angular speed, are assumingly available
without any disturbances and the reaction wheel is attached to a 25:1 DC motor oper-
ating at 12V DC. Therefore the motor voltage input is bounded to Vmin = −12 V and
Vmax = 12V.

To show the validity and to evaluate the performance of the proposed control laws
for bicycle stabilization at zero forward velocity, we perform several simulation scenarios
with different control parameters and different initial tilt angles, while the initial values
of the other state variables are zero. The desired goal of this study is to achieve the
transient response and the stabilization of the bicycle robot back to the upright position.

4.1. LQR Controller

Selecting proper weight matrices Q and R are the most important part of designing an
LQR controller. There is a trade-off between the small effort of control inputs and the
controlled variables’ error from the reference. In general, they are selected as diagonal
matrix in order to simplify controller design process. Each diagonal value penalizes
relevant state’s or input’s error. In the test, the following weighting parameters are first
assigned: Q = diag(1000, 0, 0.001, 0) and R = 10. Then, the optimal gain matrix (K)
determined by using (15) results in K = [−435.5414,−92.4958,−0.0095,−1.1245]. After
that, the control law, u = −Kx, is obtained. Furthermore, to prevent the constraint
violation, we impose the following saturation function for the motor voltage input (V ):

V =

 Vmin if V < Vmin

V if Vmin ≤ V ≤ Vmax

Vmax if V > Vmax.
(29)

The closed-loop system using the LQR controller is evaluated by setting the initial
tilt angle to 1 ◦, 2 ◦, and 3 ◦. System responses with these initial conditions due to the
LQR controller are shown in Figure 6. As seen in the results, the bicycle robot can be
stabilized back to the upright position.

Next, weight matrices Q and R are varied. In Figure 7, the initial tilt angle is set to
3 ◦, and G1, G2, and G3 are defined as follows:

G1 denotes Q = diag(1000, 0, 0.001, 0) and R = 10,
G2 denotes Q = diag(100, 100, 0.0001, 0) and R = 0.01,
G3 denotes Q = diag(1000, 1000, 0.0001, 0.01) and R = 0.01.

It is shown that higher overshoot results in shorter settling time.
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Fig. 6: The simulation results using the
LQR control law when the initial tilt
angles are set to 1 ◦, 2 ◦, and 3 ◦, and
Q = diag(1000, 0, 0.001, 0) and R = 10:
(a) tilt angle, (b) reaction wheel angular
speed, and (c) the motor voltage input for
driving the reaction wheel.
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Fig. 7: The simulation results using the
LQR control law when the initial tilt an-
gle is set to 3 ◦: (a) tilt angle, (b) reac-
tion wheel angular speed, and (c) the mo-
tor voltage input for driving the reaction
wheel.
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4.2. LMPC controller

In this paper, we select the following parameters for our LMPC scheme:
Q = diag(1000, 0, 0.001, 0), R = 10, N = 5, Tc = Tp = 0.05 s, δ = 0.01 s, and QN is
derived from an algebraic Riccati equation.

Figure 8 shows system responses due to the LMPC controller with different initial tilt
angles. One of the most advantages of using LMPC is that constraints can be explicitly
handled by an online optimization solver. As seen in Figure 8(c), the imposed input
constraints (± 12 V) are satisfied.

4.3. NMPC controller

We select the same parameter values as the LMPC controller. Figure 9 shows system
responses due to the NMPC controller with different initial tilt angles. Like LQR and
LMPC, NMPC can stabilize the bicycle robot as expected and the boundaries of motor
voltage input are not violated as seen in Figure 9(c).

4.4. Comparison

In order to assess the performance of our three controller schemes, mean absolute er-
ror (MAE) computed for the controlled variable (i. e., tilt angle), absolute maximum
overshoot, and settling time (using a band of ±2% of the total change in the controlled
variables) are used as performance indicators. The comparison results of the LQR,
LMPC, and NMPC controllers are illustrated in two cases, i. e., motor voltage input
does not reach the boundary and reaches the boundary. In the former case, the initial
tilt angle is set to 1 ◦ and the results are shown in Figure 10 and Table 2. In the latter
case, the initial tilt angle is set to 3 ◦ and the results are shown in Figure 11 and Table 3.
As seen in the results, the values of the performance indicators of all three controllers
are similar and they can stabilize the bicycle robot with a reaction wheel effectively. The
LQR controller has an advantage of fast computation, while the NMPC controller has an
advantage of using a nonlinear model directly. Although the NMPC controller requires
much more computational time than the others, it can handle complex behaviors and
constraints of the system. Hence, it will be further investigated in the future.

It has to be noted that the greater initial tilt angle is; the higher motor torque is
required. But the motor torque cannot exceed maximum torque. Thus, when the initial
tilt angle becomes too large that the required motor torque cannot be produced, the
bicycle robot cannot be back to the upright position.

Criterion LQR LMPC NMPC
MAE (rad) 0.0017 0.0017 0.0018
Absolute maximum overshoot (rad) 0.0043 0.0043 0.0043
Settling time (s) 1.42 1.42 1.45

Tab. 2: Performance Criteria as the initial tilt angle is 1 ◦.
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Fig. 8: The simulation results using the
LMPC control law when the initial tilt an-
gles are set to 1 ◦, 2 ◦, and 3 ◦: (a) tilt an-
gle, (b) reaction wheel angular speed, and
(c) the motor voltage input for driving the
reaction wheel.
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Fig. 9: The simulation results using the
NMPC control law when the initial tilt an-
gles are set to 1 ◦, 2 ◦, and 3 ◦: (a) tilt an-
gle, (b) reaction wheel angular speed, and
(c) the motor voltage input for driving the
reaction wheel.
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Fig. 10: The simulation results using the
LQR, LMPC, and NMPC control laws
when the initial tilt angle is set to 1 ◦:
(a) tilt angle, (b) reaction wheel angular
speed, and (c) the motor voltage input for
driving the reaction wheel.
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Fig. 11: The simulation results using the
LQR, LMPC, and NMPC control laws
when the initial tilt angle is set to 3 ◦:
(a) tilt angle, (b) reaction wheel angular
speed, and (c) the motor voltage input for
driving the reaction wheel.
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Criterion LQR LMPC NMPC
MAE (rad) 0.0133 0.0133 0.0132
Absolute maximum overshoot (rad) 0.0205 0.0205 0.0202
Settling time (s) 2.16 2.16 2.20

Tab. 3: Performance Criteria as the initial tilt angle is 3 ◦.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we studied stabilization of a self-balancing bicycle robot with a reaction
wheel under voltage input constraints, where the objective is to balance the bicycle
robot at the upright position at the zero forward speed. Although there have been many
controller schemes in the literature to stabilize a bicycle robot, in this study, LQR, LMPC
and NMPC controllers were designed and implemented. Simulation results showed that
the bicycle robot has been successfully stabilized by using our proposed three controllers.

Currently, we are building a real bicycle robot which can be used to validate our
control laws in real-world environments. In addition, we will extend our controller to
accomplish path following tasks using a GPS module.
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