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ON THE RANKS OF ELLIPTIC CURVES IN FAMILIES

OF QUADRATIC TWISTS OVER NUMBER FIELDS

Jung-Jo Lee, Daegu

(Received September 18, 2013)

Abstract. A conjecture due to Honda predicts that given any abelian variety over a num-
ber field K, all of its quadratic twists (or twists of a fixed order in general) have bounded
Mordell-Weil rank. About 15 years ago, Rubin and Silverberg obtained an analytic criterion
for Honda’s conjecture for a family of quadratic twists of an elliptic curve defined over the
field of rational numbers. In this paper, we consider this problem over number fields. We
will prove that the existence of a uniform upper bound for the ranks of elliptic curves in
this family is equivalent to the convergence of a certain infinite series. This result extends
the work of Rubin and Silverberg over Q.
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1. Introduction

Fix integers a, b, c such that the polynomial f(x) = x3 + ax2 + bx+ c ∈ Z[x] has

three distinct complex roots, and let E be the elliptic curve

(1.1) E : y2 = f(x).

For D ∈ Z \ {0}, let ED be the quadratic twist of E given by

(1.2) ED : Dy2 = f(x).

For an abelian variety A defined over a number field K, let A(K) denote the

group of K-rational points of A, which is finitely generated and abelian (Mordell-

Weil theorem). Denote by rankA(K) the number of maximally independent points

This research was supported by NRF grant No. 2012-005700, Republic of Korea.
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in A(K)/A(K)tor with respect to the ring of rational integers, where A(K)tor denotes

the subgroup of torsion points in A(K). In this paper, we will consider the cases

where A is the elliptic curve E or ED defined above.

Much work have been done to give an explicit upper bound for the ranks of elliptic

curves. For example, for elliptic curves E(D) : y
2 = x3 +Dx, where D is a fourth-

power-free integer, it is well known that

rankE(D)(Q) 6 2ν(2D),

where ν(2D) denotes the number of prime divisors of 2D. (See [13], Chapter X,

Section 6.)

In the case where E is defined over Q and has no rational point of order two,

Brumer and Kramer gave an upper bound for the rank of E in terms of the dimension

of the ideal class group of the cubic subfield of 2-division field of E modulo squares,

and the number of primes of bad reduction. (For the precise statement, see [2],

Proposition 7.1.) Notice that the 2-division field of ED is just the field generated

over Q by the solutions of f(x) = 0 in Q, where f(x) is as given in Equation (1.2),

so it is independent of D in a family of quadratic twists.

In [10] and [11], Rubin and Silverberg reformulated the question of whether there

is a constant C ∈ R such that rankED(Q) < C for every D ∈ Z\{0}, into a question
of whether a certain infinite series converges. The significance of their work is the

translation of a purely arithmetic question into an analytic one. So far, we do not

know a single example of a family of quadratic twists of an elliptic curve for which

we could prove the existence of such a uniform upper bound for the ranks.

Our main theorem, which is Theorem 3.1 in Section 3, is as follows.

Main Theorem. Let E/K be an elliptic curve and Em be its quadratic twist as

given in Equation (1.2). Let j and k be non-negative real numbers such that j > 0.

There is a series SE,K(j, k) such that the following conditions are equivalent:

(a) rankEm(K) < 2j for every m ∈ Z \ {0};
(b) SE,K(j, k) converges for every k > 1;

(c) SE,K(j, k) converges for some k > 1.

(For the definition of the series SE,K(j, k), see Equation (3.1) in Section 3.)

The existence of such a uniform upper bound for the ranks of elliptic curves was

first conjectured by Honda in 1960 in a more general context [4]. In that paper, he

proved Theorems 1.1 and 1.2 below.

1004



Theorem 1.1. Let A be an abelian variety defined over a number field. Then

there exists a constant c1(A) which depends only on A and has the following property:

for every prime l and for every number field K over which A is defined and such that

A(K) ⊃ A[l], we have

rankA(K) 6 c1(A)[K : Q] + 2rhK(l).

Here, A[l] is the subgroup of l-torsion points of A(K), r is the dimension of the

variety A and hK(l) is the l-rank of the absolute ideal class group of K.

P r o o f. This is the Corollary of Theorem 5 of [4]. �

Remark. There is a result of T.Ooe and J.Top which is similar to Theorem 1.1

but more general. For the reference, see Theorem 1 of [9].

Let K/k be a finite extension of algebraic number fields with [K : k] > 1. For

an abelian variety A, let A(A) be the set of all automorphisms of A and A0(A) =

A(A)⊗Q. Let A be a simple abelian variety of dimension r, defined over a number

field k, such that A0(A) is isomorphic to a number field F of degree 2r over Q. Let ι

be an isomorphism of F onto A0(A).

Theorem 1.2. Let (A, ι) be a simple abelian variety, belonging to a CM -type

(F ; {ϕi}), and assume that A is defined over a number field k. Denote by (F ∗; {ψi})
the dual of (F ; {ϕi}) and put K = kF ∗. Then we have

rankA(K) = [K : k] rankA(k).

P r o o f. This is Theorem 6 of [4]. For the notions used here, see [12], Chapter II.

�

Based on Theorems 1.1 and 1.2 above, together with an analogy of Dirichlet’s unit

theorem, Honda conjectured the following.

Conjecture 1.1 (Honda). For every abelian variety A defined over a number

field, there exists a constant c(A) which depends only on A such that

rankA(K) 6 c(A)[K : Q]

for every number field K over which A is defined, where [K : Q] denotes the extension

degree of K over Q.

In this paper, we will prove (see Theorem 3.1 below) that the convergence of

a certain infinite series is equivalent to the existence of a uniform upper bound for
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the ranks of elliptic curves in a family of quadratic twists of an elliptic curve over

a number field. This extends the result of Rubin and Silverberg ([10], [11]), which

was obtained over the field of rational numbers Q.

It deals with a special case of Honda’s conjecture, which implies for quadratic

extensions that there is a constant c(E) independent of m ∈ Z such that

rankE(K(
√
m)) 6 c(E)[K(

√
m) : Q] 6 2c(E)[K : Q].

Then, as rankEm(K) 6 rankE(K(
√
m)) (see [13], Chapter X, Exercises 10.16

or 10.22), we can conclude that rankEm(K) 6 2c(E)[K : Q].

To prove the above mentioned result regarding the special case of Honda’s conjec-

ture, Rubin and Silverberg used the convergence property of an Epstein zeta function,

by identifying a related series as such a function ([10], [11]).

Many of Rubin and Silverberg’s proofs remain true over a number field (see Re-

mark 2.5 of [11]). To get the result of this paper using their method, we need another

estimation of the size of the canonical height. For any P ∈ ED(Q) \ ED(Q)tor, the

estimation that they use is ĥD(P ) > 1
12 log |D| for sufficiently large D, which is valid

only overQ. Over a number field, there is a related conjecture by Lang (Chapter VIII,

Conjecture 9.9 of [13]).

Conjecture 1.2 (Lang). Let E/K be an elliptic curve with j-invariant jE and

minimal discriminant DE/K . There is a constant C > 0, depending only on [K : Q],

such that for all non-torsion points P ∈ E(K) we have

ĥ(P ) > Cmax{h(jE), logNK/QDE/K , 1}.

(Here, h is the absolute logarithmic height.)

However, in this paper, we will use Abel’s summation formula and a lattice point

estimate due to Lenstra and Silverman [15]. Another important ingredient for our

proof is the estimation of the size of the canonical height due to Silverman [14] (see

Theorem 2.7 below).

Finally, it seems to be possible to get the result of this paper using the method

of Rubin and Silverberg if we apply the estimation of Silverman (Theorem 2.7) and

Northcott’s theorem [6]. So the purpose of this paper is to state and prove the result

explicitly over number fields with a completely different approach.
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2. Bounds on heights and a counting lemma

To state our theorem over a number field, we first have to define the height of

points over number fields. The definitions and basic properties of heights can be

found in [13], Chapter VIII, Section 5, where the heights are more generally defined

on the projective space over number fields. Now, we briefly explain these.

Let K/Q be a number field, and let MK be the set of standard absolute values

on K. Thus, MK contains an archimedean absolute value for each embedding of K

into R or C and a p-adic absolute value for each prime ideal in the ring of integers

of K.

Definition 2.1. The height of a point x ∈ K is defined by

HK(x) =
∏

v∈MK

max{1, |x|v}nv ,

where nv = [Kv : Qv], the local degree at v, and Kv and Qv denote the completions

of the indicated fields with respect to the absolute value v.

For x ∈ K, we define the absolute logarithmic height as

(2.1) h(x) =
1

[K : Q]
logHK(x).

(The “log” in the definition denotes the natural logarithm.)

If P ∈ E(K), write P = (x(P ), y(P )). Then we define

(2.2) h(P ) := h(x(P )).

Definition 2.2. Let E/K be an elliptic curve defined over an algebraic number

field K. For P ∈ E(K), the canonical height of P is given by the formula

ĥ(P ) = lim
n→∞

1

4n
h(2nP ).

Important properties of the canonical heights are summarized in the following

theorem.
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Theorem 2.3. The canonical height ĥ(P ) satisfies the following properties:

(a) ĥ(P ) = h(P ) +O(1), where the implied constant depends on E but not on P .

(b) 〈P,Q〉 = 1
2 (ĥ(P +Q)− ĥ(P )− ĥ(Q)) is bi-additive.

(c) ĥ(mP ) = m2ĥ(P ) for all m ∈ Z.

(d) ĥ(P ) > 0, with equality holding if and only if P is a torsion point.

(e) If g(P ) is any function satisfying (a) and (c), then g = ĥ.

P r o o f. This is Theorem 20.4.4 of [5]. �

We can view E(K) mod E(K)tor as a lattice in the vector space E(K)⊗ R with

the positive definite quadratic form ĥ, whose associated norm is defined by |P | =
√

〈P, P 〉. Then rankE(K) is the dimension of E(K)⊗ R over R.

Definition 2.4. Let E/K be an elliptic curve defined over an algebraic number

field K. Let P1, P2, . . . , Pr be a basis for E(K) mod E(K)tor. Then R(E/K), the

elliptic regulator of E/K, is defined to be

R(E/K) := det(〈Pi, Pj〉)16i, j6r.

(If r = 0, we set R(E/K) = 1 by convention.)

Remark 2.5. The elliptic regulator R(E/K) is the square of the volume of

a fundamental domain of the lattice E(K)/E(K)tor in E(K)⊗ R.

It satisfies the property that R(E/K) > 0. (See [13], Chapter VIII, Section 9,

Corollary 9.7.)

Using this geometric interpretation and some standard arguments from the ge-

ometry of numbers, one can deduce the following result about the distribution of

rational points on an elliptic curve.

Lemma 2.6. Let E be an elliptic curve defined over a number field K. Suppose

that E(K) has rank r. Let N(x) be the number of elements P ∈ E(K) such that

ĥ(P ) 6 x. Then there is a constant C such that

N(x) = Cxr/2 +O(x(r−1)/2+ε).

More precisely, C = π
r/2|E(K)tor|/Γ(1 + r/2)

√

R(E/K). The implied constant in

the error term depends on E.

P r o o f. This is Lemma 13 of [3]. In [3], the statement is made for elliptic curves

over Q, but exactly the same proof is valid for elliptic curves over K. Indeed, the

proof uses only the properties of the lattice points in the r-dimensional ellipsoid

determined by the quadratic form. Notice also that Lemma 13 of [3] proves the

result modulo the torsion points. �
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One of the key ingredients in our proof is the following result due to Silverman

about a lower bound for the canonical height on elliptic curves. This result was

proved by M.Baker for all cases except when j(E) is an algebraic integer and E does

not have a complex multiplication [1].

Theorem 2.7 (Silverman). Let E/K be an elliptic curve defined over a number

field, let ĥ : E(K) → R be the canonical height on E, and let Kab/K be the maximal

abelian extension of K. There is a constant c1 = c1(E/K) > 0 such that every non-

torsion point P ∈ E(Kab) satisfies

ĥ(P ) > c1.

P r o o f. This is Theorem 1 of [14]. �

Corollary 2.8. Let ĥm : Em(K) → R be the canonical height on Em. Under

the same conditions as in Theorem 2.7, there is a constant c1 > 0 such that every

non-torsion point P ∈ Em(K) satisfies

ĥm(P ) > c1,

where c1 is a constant independent of m.

P r o o f. If
√
m ∈ K, then Em(K) = E(K). Thus, we only need to consider m

such that
√
m 6∈ K. Consider the trace map defined by

(2.3) Trm : E(K(
√
m)) → E(K), P 7→ P + P σ,

where σ is the non-trivial automorphism in Gal(K(
√
m)/K). It is a homomorphism

whose kernel is isomorphic to Em(K) ([13], Chapter X, Exercise 10.22). Thus, we

have an injection Em(K)
ι→ E(K(

√
m)) ⊂ E(Kab) given by (x, y)

ι7→ (x,
√
my).

Let P = (x, y) ∈ Em(K). By using the tangent-chord method (see [13], Chap-

ter III, Section 2), it can be verified that the x-coordinate of 2P in Em(K) is

x(2P ) =
x4 − 2bx2 − 8cx+ b2 − 4ac

4my2
=
x4 − 2bx2 − 8cx+ b2 − 4ac

4x3 + 4ax2 + 4bx+ 4c
,

where Em is defined by a Weierstrass equation as given in (1.2).

Next, consider ι(P ) = (x,
√
my) ∈ E(K(

√
m)) ⊂ E(Kab), and using the same

method (or duplication formula), we compute the x-coordinate of 2ι(P ) in E(K(
√
m))

to be

x(2ι(P )) =
x4 − 2bx2 − 8cx+ b2 − 4ac

4x3 + 4ax2 + 4bx+ 4c
.
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Therefore, if 2P = (x1, y1) ∈ Em(K), then 2ι(P ) = (x1,
√
my1) = ι(2P ) ∈

E(K(
√
m)), so

x(2P ) = x(2ι(P )).

Repeating this, we can conclude that

x(2nP ) = x(2nι(P )) for all n > 0,

where duplications are done in Em(K) for 2nP , and in E(K(
√
m)) for 2nι(P ).

Since the canonical height is defined as a limit of x-heights (see Definition 2.2), we

have that ĥm(P ) = ĥ(ι(P )) for all P ∈ Em(K). As ĥ(ι(P )) > c1 by Theorem 2.7,

we have the desired result. �

Silverman derived the following upper bound, which when applied to the Mordell-

Weil group of K-rational points gives an effective bound on the number of rational

points [15]. The idea goes back to Hendrik Lenstra.

Lemma 2.9. Let E be an elliptic curve defined over a number field K. Suppose

that E(K) has rank r. Let N(x) be the number of elements P ∈ E(K) such that

ĥ(P ) 6 x. Then

N(x) 6 |E(K)tor|
(

2

√

x

c
+ 1

)r

,

if c satisfies

min{ĥ(P )|P ∈ E(K) \ E(K)tor} > c.

P r o o f. This follows from Lemma 7 of [15] and Theorem 2.7. �

3. Main theorem

Let f(x) = x3 + ax2 + bx + c ∈ Z[x] be a cubic polynomial with three distinct

complex roots. Let E : y2 = f(x) and Em : my2 = f(x). For any real numbers j > 0

and k > 0, define an infinite series

(3.1) SE,K(j, k) =
∑

m∈Z\{0}

µ2(|m|)
|m|k

∑

P∈Em(K)\Em(K)tor

1

ĥm(P )j
.

Here µ denotes the Möbius function and ĥm : Em(K) → R>0 is the canonical

height.

The purpose of this paper is to prove the following theorem.
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Theorem 3.1. Let j and k be non-negative real numbers such that j > 0. Then

the following conditions are equivalent:

(a) rankEm(K) < 2j for every m ∈ Z \ {0};
(b) SE,K(j, k) converges for every k > 1;

(c) SE,K(j, k) converges for some k > 1.

Let us rewrite the expression (3.1) of SE,K(j, k) as

SE,K(j, k) =
∑

m∈Z\{0}

µ2(|m|)
|m|k Sm,

that is,

(3.2) Sm =
∑

P∈Em(K)\Em(K)tor

1

ĥm(P )j
.

For each non-zero integer m, define Tm as

(3.3) Tm =

∞
∑

n=2

am,n

(logn)j
,

where

(3.4) am,n = #{P ∈ Em(K) \ Em(K)tor : log(n− 1) < ĥm(P ) 6 logn}

for all positive integers n > 2. Define

(3.5) TE,K(j, k) =
∑

m∈Z\{0}

µ2(|m|)
|m|k Tm.

One can also define

am,1 := #{P ∈ Em(K) \ Em(K)tor : −∞ < ĥm(P ) 6 0} = 0.

Lemma 3.2. Fix a positive real number j. For a non-negative real number k,

SE,K(j, k) converges if and only if TE,K(j, k) converges.

P r o o f. Because log(n− 1) > 1
2 logn for all n > 3, if log(n− 1) < ĥm(P ) 6 logn

for some x, then
1

(logn)j
6

1

ĥm(P )j
6

1
(

1
2 logn

)j
.

Thus, we have that

Tm 6 Sm 6 2jTm,

which implies that SE,K(j, k) converges if and only if TE,K(j, k) converges. �
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In view of Lemma 3.2, what we will actually prove is the following theorem, which

is equivalent to Theorem 3.1:

Theorem 3.1′. Let j and k be non-negative real numbers such that j > 0. Then

the following conditions are equivalent:

(a) rankEm(K) < 2j for every m ∈ Z \ {0};
(b) TE,K(j, k) converges for every k > 1;

(c) TE,K(j, k) converges for some k > 1.

The proof of Theorem 3.1′ is based on the application of the following elementary

theorem of analytic number theory, called Abel’s summation formula (or the partial

summation theorem).

Theorem 3.3 (Abel’s Summation Formula). Suppose {an}∞n=a is a sequence of

complex numbers and f(t) is a continuously differentiable function on [a, x]. Set

A(t) =
∑

a6n6t

an.

Then
∑

a6n6x

anf(n) = A(x)f(x) −
∫ x

a

A(t)f ′(t) dt.

P r o o f. See [8], Chapter 2. �

We now apply the above theorem to our situation.

Fix a real number t > 2, and for integers n such that 2 6 n 6 t, let us define

(3.6) Am(t) :=
∑

26n6t

am,n.

(See Equation (3.4) for the definition of am,n.) Then

(3.7) Am(t) = #{P ∈ Em(K) \ Em(K)tor : ĥm(P ) 6 log t}.

For t < 2, we may set Am(t) = 0, since am,1 = 0 for allm ∈ Z\{0}. Substituting x
by log t in Lemma 2.9, we have that

(3.8) Am(t) 6 |Em(K)tor|
(

2

√

log t

c1
+ 1

)rm

,

where c1 is a constant independent of m by Corollary 2.8.

Observe that if rm = 0, then Em(K) = Em(K)tor and Am(t) = 0.
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Lemma 3.4. For m ∈ Z \ {0} and a real number x > 2, let Tm(x) =
∑

26n6x

am,n/(logn)
j . Then

Tm(x) =
Am(x)

(log x)j
+ j

∫ x

2

Am(t)

t(log t)j+1
dt.

P r o o f. This is immediate from Theorem 3.3 by replacing an = am,n, a = 2,

A(t) = Am(t), and f(t) = 1/(log t)j , which is continuously differentiable on the

interval [2, x]. �

Proposition 3.5. For m ∈ Z \ {0} and a real number x > max{2, ec1}, where c1
is the constant that appears in Corollary 2.8, we have an estimate of

Tm(x) 6 |Em(K)tor|
{

(3/
√
c1)

rm

(log x)j−rm/2
+ j

∫ log x

c1

(3/
√
c1)

rm

uj+1−rm/2
du+

3rm

(log 2)j
− 3rm

cj1

}

if ec1 > 2,

and

Tm(x) 6 |Em(K)tor|
{

(3/
√
c1)

rm

(log x)j−rm/2
+ j

∫ log x

log 2

(3/
√
c1)

rm

uj+1−rm/2
du

}

, otherwise.

P r o o f. From Lemma 3.4, we know that

(3.9) Tm(x) =
Am(x)

(log x)j
+ j

∫ x

2

Am(t)

t(log t)j+1
dt,

and we apply Formula (3.8) to this. Our assumption of x > ec1 implies that

(

2

√

log x

c1
+ 1

)rm

6

(

3

√

log x

c1

)rm

=

(

3√
c1

)rm

(log x)rm/2,

so

Am(x) 6 |Em(K)tor|
(

3√
c1

)rm

(log x)rm/2.

Now, let ec1 > 2. For any t satisfying 2 6 t < ec1 , we have

(

2

√

log t

c1
+ 1

)rm

< 3rm ,

thus

Am(t) < |Em(K)tor| 3rm .
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Therefore,

∫ x

2

Am(t)

t(log t)j+1
dt =

∫ ec1

2

Am(t)

t(log t)j+1
dt+

∫ x

ec1

Am(t)

t(log t)j+1
dt

6 |Em(K)tor|
{
∫ ec1

2

3rm

t(log t)j+1
dt+

∫ x

ec1

(3/
√
c1)

rm

t(log t)j+1−rm/2
dt

}

= |Em(K)tor|
{
∫ c1

log 2

3rm

uj+1
du+

∫ log x

c1

(3/
√
c1)

rm

uj+1−rm/2
du

}

= |Em(K)tor|
{
∫ log x

c1

(3/
√
c1)

rm

uj+1−rm/2
du+

1

j

(

3rm

(log 2)j
− 3rm

cj1

)}

.

Similarly, if ec1 6 2,

∫ x

2

Am(t)

t(log t)j+1
dt 6 |Em(K)tor|

∫ log x

log 2

(3/
√
c1)

rm

uj+1−rm/2
du.

By putting these back into (3.9), we get the result. �

Before we give the proof of Theorem 3.1′, we prove the following lemma.

Lemma 3.6. There is a constant B such that |Em(K)tor| 6 B for all m.

P r o o f. Northcott’s theorem tells us that for all numbers d and H , the set

{P ∈ E(K) : [K(P ) : K] 6 d and h(P ) 6 H}

is finite [6]. By this theorem and the fact that h(P ) = ĥ(P ) +O(1) (see [6]), the set

⋃

m∈Z

E(K(
√
m))tor

is finite, since the torsion points are those with canonical height equal to 0. Therefore,

there is a constant B such that

#

(

⋃

m∈Z

E(K(
√
m))tor

)

6 B,

which implies the result, since this set contains an isomorphic image of Em(K)tor for

all m. �

Remark 3.1. The above lemma implies that |Em(K)tor| 6 4 for all but finitely

many square-free integers m.
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Remark 3.2. Lemma 3.6 could also be obtained as an immediate consequence

of a theorem of Merel. Indeed, Merel proved that there exists a constant B(d) > 0

such that for all elliptic curves defined over a number field K with [K : Q] = d,

we have |E(K)tor| 6 B(d) (see [7]). In a family of quadratic twists of E, Em(K)

is isomorphic to a subgroup of E(K(
√
m)), thus |Em(K)tor| 6 |E(K(

√
m))tor| 6

max{B(d), B(2d)} for all m.

Now we prove Theorem 3.1′.

P r o o f of Theorem 3.1′. Let us define

(3.10) TE,K(j, k, x, y) :=
∑

−y6m6y,m 6=0

µ2(|m|)
|m|k Tm(x),

where

Tm(x) :=
∑

26n6x

am,n

(logn)j
.

(See Lemma 3.4.)

(a) =⇒ (b): rm < 2j implies that

(

3√
c1

)rm

<

(

3√
c1

)2j

=

(

9

c1

)j

and
3rm

(log 2)j
− 3rm

cj1
<

32j

(log 2)j
− 32j

cj1

for all m ∈ Z \ {0}.
We know that there is a constant B such that |Em(K)tor| 6 B for all m by

Lemma 3.6.

Let us put

α1 = B

(

9

c1

)j

and α2 = B

(

32j

(log 2)j
− 32j

cj1

)

.

Let ec1 > 2. Then by Proposition 3.5, for x > 2, we have

TE,K(j, k, x, y) 6
∑

−y6m6y,m 6=0

1

|m|k
(

α1

(log x)j−rm/2
+ j

∫ log x

c1

α1

uj+1−rm/2
du+ α2

)

=
∑

−y6m6y,m 6=0

1

|m|k
(

α1

(log x)j−rm/2
+

j

j − rm/2

α1

c
j−rm/2
1

− j

j − rm/2

α1

(log x)j−rm/2
+ α2

)
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=
∑

−y6m6y,m 6=0

1

|m|k
(

j

j − rm/2

α1

c
j−rm/2
1

+

(

1− j

j − rm/2

)

α1

(log x)j−rm/2
+ α2

)

6
∑

−y6m6y,m 6=0

1

|m|k
(

j

j − rm/2

α1

c
j−rm/2
1

+ α2

)

,

where the last inequality holds because 1− j/(j − rm/2) 6 0 and log x > log 2 > 0.

Now, taking limits x→ ∞ and y → ∞ on TE,K(j, k, x, y), we get

(3.11) TE,K(j, k) 6
∑

m∈Z\{0}

1

|m|k
(

j

j − rm/2

α1

c
j−rm/2
1

+ α2

)

.

The right hand side of the inequality (3.11) converges for k > 1. This is because

0 <
j

j − rm/2

1

c
j−rm/2
1

6 β

for some constant β independent of m. For example, we could take β as

β = max
06k<2j, k∈Z

{

j

j − k/2

1

c
j−k/2
1

}

.

Similarly, we can prove the convergence of the series TE,K(j, k) for k > 1 in the

case where ec1 < 2.

It is clear that (b) =⇒ (c).
(c) =⇒ (a): Suppose

TE,K(j, k) =
∑

m∈Z\{0}

µ2(|m|)
|m|k Tm

converges for some k > 1. Then for every square-free m, the inner sum Tm =

lim
x→∞

Tm(x) converges. (For the definition of Tm, see (3.3).)

According to Lemma 3.4, we have

Tm(x) =
Am(x)

(log x)j
+ j

∫ x

2

Am(t)

t(log t)j+1
dt.

We apply Lemma 2.6 to the formula (3.7) for Am(t), and get

Am(t) = Cm(log t)rm/2 +O
(

(log t)(rm−1)/2+ε
)

,
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where Cm and the implied constant depend on m. If rm = 0, there is nothing to

prove for this m. Hence, for each m with rm 6= 0, we have

Tm(x) =
Cm

(log x)j−rm/2
+ j

∫ x

2

Cm

t(log t)j+1−rm/2
dt

+O

(

1

(log x)j−(rm−1)/2−ε
+ j

∫ x

2

1

t(log t)j+1−(rm−1)/2−ε
dt

)

=
Cm

(log x)j−rm/2
+ j

∫ log x

log 2

Cm

uj+1−rm/2
du

+O

(

1

(log x)j−(rm−1)/2−ε
+ j

∫ log x

log 2

1

uj+1−(rm−1)/2−ε
du

)

.

Thus, Tm = lim
x→∞

Tm(x) converges for all m if and only if j − rm/2 > 0, that is, if

and only if rm < 2j for all m ∈ Z \ {0}. �
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