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SLANT AND LEGENDRE CURVES IN

BIANCHI-CARTAN-VRANCEANU GEOMETRY
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Abstract. We study Legendre and slant curves for Bianchi-Cartan-Vranceanu metrics.
These curves are characterized through the scalar product between the normal at the curve
and the vertical vector field and in the helix case they have a proper (non-harmonic) mean
curvature vector field. The general expression of the curvature and torsion of these curves
and the associated Lancret invariant (for the slant case) are computed as well as the corre-
sponding variant for some particular cases. The slant (particularly Legendre) curves which
are helices are completely determined.
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1. Preliminaries

Among the Riemannian manifolds of non-constant sectional curvature a special

rôle is played by the homogeneous spaces with a large isometry group. Due to the

recent approach of Hamilton-Perelman to the Poincaré conjecture (by means of Ricci

flow), great interest is paid to dimension three.

It is well-known that the maximum dimension of the isotropy group of a 3-

dimensional manifold is 6 and that there is no metric with 5-dimensional group.

The Bianchi-Cartan-Vranceanu spaces are certain 3-dimensional homogeneous Rie-

mannian manifolds with 6- and 4-dimensional isometry group. They form a two

parameters family (with parameters denoted as l and m) containing, among others,

some remarkable 3-manifolds: R3, S3, S2 ×R, H2×R and the 3-dimensional Heisen-

berg group Nil3. Recently, several studies have been devoted to special submanifolds

in these spaces: parallel surfaces [2], biharmonic curves [6], [12] and [13], constant
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angle surfaces [15], graphs of constant mean curvature [19], biharmonic surfaces [21],

higher order parallel and totally umbilical surfaces [23].

The aim of this paper is to continue the study of submanifolds, more precisely

1-dimensional submanifolds. In fact, two types of curves are discussed in these

spaces: θ-slant curves (with θ an arbitrary angle considered between the tangent

vector field and the vertical vector field E3 = ∂/∂z) and particularly at θ = π/2,

Legendre curves. We choose this subject for two reasons:

1) the rôle of Legendre curves in almost contact geometry is remarkable and well-

known; in [4] the reader finds an excellent survey on these curves,

2) although the literature on Legendre curves is rich ([3], [5], [7], [16], [20], [24],

[25]), slant curves have been studied until now only for the Sasakian geometry in [12],

for the contact pseudo-Hermitian geometry in [14], for the f -Kenmotsu geometry

in [10], in normal almost contact geometry in [8] and for warped products in [9].

Although some Bianchi-Cartan-Vranceanu metrics are almost contact metrics we

prefer in the present work a unified treatment in order to emphasize the common

properties of these metrics. Another feature of the present paper, as compared

with [8], is that here we do not use the structural tensor field ϕ of (1, 1)-type, which

is a main tool in almost contact geometry.

In Section 3 we obtain a characterization for all these curves in terms of orthog-

onality between the E3 and the normal vector field. Based on this result we derive

the expression of the Frenet frame as well as the curvature and torsion. By defining

the Lancret invariant of a θ-slant curve γ (with θ 6= 0, π) as

(1.1) Lancret(γ) =
cos θ

|sin θ|
,

we obtain the expression of this invariant in the Bianchi-Cartan-Vranceanu setting.

Also, in Section 3 we prove an important property of slant non-Legendre curves:

in the non-geodesic case and for l 6= 0 these are Bertrand curves, i.e., there exists

an affine dependence between curvature and torsion. In the case m = 0 we provide

the general expression of slant (particularly Legendre) curves and their curvature,

torsion and Lancret invariant, as well as of slant helices.

The last section is devoted to examples and we completely discuss three manifolds:

the Euclidean space, the Heisenberg group Nil3 and the 3-dimensional sphere S
3.

Some results already known from [8] and [12] are reobtained with particular choices

of the parameters; but to the best of our knowledge, until now there have been no

general expressions for Legendre curves in Nil3 nor for their curvature and torsion

in S
3.
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2. Bianchi-Cartan-Vranceanu 3 geometries

and curves in Riemannian setting

Fix two real numbers l and m and denote by M3
m the manifold {(x, y, z) ∈ R

3 ;

F (x, y, z) = 1 + m(x2 + y2) > 0}. We shall consider on M3
m the Bianchi-Cartan-

Vranceanu metric [23], page 343,

(2.1) gl,m =
1

F 2
dx2 +

1

F 2
dy2 +

(
dz +

ly

2F
dx−

lx

2F
dy

)2
.

An important feature of these metrics is their S1-invariance, i.e., the invariance with

respect to transformations

(2.2)




x̃

ỹ

z̃


 =




cosϕ − sinϕ 0

sinϕ cosϕ 0

0 0 1







x

y

z


 .

Other remarks concerning these metrics are in [23] and the particular cases are

discussed here in the last section.

An orthonormal basis is

(2.3) E1 = F
∂

∂x
−

ly

2

∂

∂z
, E2 = F

∂

∂y
+

lx

2

∂

∂z
, E3 =

∂

∂z

with the dual basis

(2.4) ω1 =
dx

F
, ω2 =

dy

F
, ω3 = dz +

ly

2F
dx−

lx

2F
dy.

We need the covariant derivatives of Ei; if ∇ is the Levi-Civita connection of gl,m
we have

∇E1
E1 = 2myE2, ∇E2

E2 = 2mxE1, ∇E3
E3 = 0(2.5) {

∇E1
E2 = −2myE1 +

1
2
lE3, ∇E2

E1 = −2mxE2 −
1
2
lE3

∇E1
E3 = ∇E3

E1 = − 1
2
lE2, ∇E2

E3 = ∇E3
E2 = 1

2
lE1.

(2.6)

From (2.53) it results that E3 is a geodesic vector field, i.e., its integral curves are

geodesics of gl,m. In the following we call this vector field vertical. A straightforward

computation yields that E3 is also a Killing vector field; for the set of all Killing vector

fields see [22].

Next, following [4], page 164, we recall the notion of a Frenet curve in a (2n+ 1)-

dimensional manifold: Let m be an integer with 1 6 m 6 2n + 1. The curve

γ : I ⊆ R → M parametrized by the arc length s is called an m-Frenet curve on M
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if there exist m orthonormal vector fields U1 = γ′, U2, . . . , Um along γ and (m − 1)

positive smooth functions k1, . . . , km−1 of s such that:

(2.7) ∇γ′U1 = k1U2, ∇γ′U2 = −k1U1 + k2U3, . . . , ∇γ′Um = km−1Um−1.

The function kj is called the j-th curvature of γ, and γ is

a) a geodesic if m = 1; then we get the well-known equation ∇γ′γ′ = 0;

b) a circle if m = 2 and k1 is a constant: then we have ∇γ′E1 = k1E2, ∇γ′E2 =

−k1E1;

c) a helix of order m if k1, . . . , km−1 are constants. The Frenet curve γ is called

non-geodesic if k1 > 0 everywhere on I and in dimension 3 it is called a gener-

alized helix if k2/k1 = const.

3. Slant and Legendre curves in Bianchi-Cartan-Vranceanu geometry

Let γ be a 3-Frenet curve in (M3
m, gl,m) for which we denote the Frenet frame as

usual (T = γ′, N,B) and let us consider the Frenet equations

(3.1) a) ∇TT = kN, b) ∇TN = −kT + τB, c) ∇TB = −τN,

where k denotes the curvature of the curve γ and τ is its torsion.

The main notion of this paper is introduced as follows:

Definition. The vertical angle of γ is the function θ : I → [0, π) given by:

(3.2) cos θ(s) = gl,m

(
T (s),

∂

∂z

)
= gl,m(T (s), E3).

The curve γ is called a slant curve (or more precisely θ-slant curve) if θ is a constant

function. In the particular case of θ = π/2 the curve γ is called a Legendre curve.

In the following we suppose that γ is non-geodesic, i.e., k > 0 and then γ cannot

be an integral curve of E3 which means θ 6= 0, π. Let γ′(s) = (γ′
1(s), γ

′
2(s), γ

′
3(s)) be

the general form of T (s) whose expression in the given frame

(3.3) T =
γ′
1

F
E1 +

γ′
2

F
E2 +

[ l(γ2γ′
1 − γ1γ

′
2)

2F
+ γ′

3

]
E3.

Now we are able to prove the first important result:
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Theorem 3.1. A non-geodesic curve γ in (M3, gl,m) is a θ-slant curve if and only

if its normal vector field N is gl,m-orthogonal to E3:

(3.4) ω3(N) = 0.

This yields the decomposition of E3 in the Frenet frame:

(3.5) E3 = cos θT + |sin θ|B.

Thus, a Legendre curve has B = E3.

P r o o f. From (3.3) and (2.6) we have

(3.6) ∇γ′E3 =
lγ′

2

2F
E1 −

lγ′
1

2F
E2.

We derive covariantly the relation (3.2):

(3.7) 0 = −θ′ sin θ = gl,m(kN,E3) + gl,m

(
T,

lγ′
2

2
E1 −

lγ′
1

2
E2

)

and then kω3(N) = 0. �

An important consequence of (3.5) is the expression of the Frenet frame with

respect to Ei:

(3.8) T as in (3.3), N =
±1

F |sin θ|
(−γ′

2E1 + γ′

1E2),

B = −
cos θ

F |sin θ|
(γ′

1E1 + γ′

2E2) + |sin θ|E3

where for obtaining the above formulae we use two other equations:

1) the θ-slant condition reads

(3.9)
l(γ2γ

′
1 − γ1γ

′
2)

2F
+ γ′

3 = cos θ

2) the unit length of γ′ yields via (3.3)

(3.10) (γ′

1)
2 + (γ′

2)
2 = F 2 sin2 θ.

The sign of N is fixed by the positivity of k and τ . In [18], page 155, the following

notion is introduced: a non-geodesic curve is called a slant helix if the principal

normal lines of γ make a constant angle with a fixed direction. Therefore, a slant

curve is a slant helix with E3 as the fixed direction. The second main result gives

the curvature and torsion of γ:
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Theorem 3.2. If γ : I → (M3, gl,m) is a θ-slant non-geodesic curve then its

curvature and torsion are

k =
1

F |sin θ|

∣∣∣γ
′
1γ

′′
2 − γ′

2γ
′′
1

F
− lγ′

3 sin
2 θ +

(γ2γ
′
1 − γ1γ

′
2)(4m− l2) sin2 θ

2

∣∣∣,(3.11)

τ =
∣∣∣ l
2
+
∣∣∣γ

′
1γ

′′
2 − γ′

2γ
′′
1

F 2 sin2 θ
−

lγ′
3

F
+

(γ2γ
′
1 − γ1γ

′
2)(4m− l2)

2F

∣∣∣ cos θ
∣∣∣.(3.12)

It follows that the Lancret invariant of slant curves in Bianchi-Cartan-Vranceanu

geometry is

(3.13) Lancret±(γ) =
2τ ± l

2k
.

A Legendre curve has

(3.14) k =
1

F

∣∣∣γ
′
1γ

′′
2 − γ′

2γ
′′
1

F
− lγ′

3 +
(γ2γ

′
1 − γ1γ

′
2)(4m− l2)

2

∣∣∣, τ =
|l|

2
.

P r o o f. We prove first that

(3.15) k = |δ sin θ|, τ =
∣∣∣ l
2
+ |δ| cos θ

∣∣∣,

where

(3.16) δ =
1

F sin2 θ
gl,m(∇γ′γ′,−γ′

2E1 + γ′

1E2).

From the first Frenet equation we have

(3.17) k = gl,m(∇γ′γ′, N)

and the expression (3.82) of N yields (3.151). By (3.5) we have

(3.18) B =
1

|sin θ|
E3 −

cos θ

|sin θ|
T

and then

(3.19) ∇γ′B =
1

|sin θ|
∇γ′E3 −

cos θ

|sin θ|
∇γ′T =

l

2F |sin θ|
[γ′

2E1 − γ′

1E2]−
cos θ

|sin θ|
kN,

which gives (3.152) by choosing + in (3.82). We deduce that cos θ/|sin θ| =

(τ ± l/2)/k, which gives the Lancret invariant.
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A long but straightforward computation yields

(3.20) δ =
1

F sin2 θ

(γ′
1γ

′′
2 − γ′

2γ
′′
1

F
− lγ′

3 sin
2 θ +

(γ2γ
′
1 − γ1γ

′
2)(4m− l2) sin2 θ

2

)

since

(3.21)





gl,m(∇γ′γ′,−γ′

2E1) = −
d

ds

(γ′
1γ

′
2

F

)
+

γ′
1γ

′′
2

F
+ γ′

2gl,m(γ′,∇γ′E1),

gl,m(∇γ′γ′, γ′

1E2) =
d

ds

(γ′
1γ

′
2

F

)
−

γ′
2γ

′′
1

F
− γ′

1gl,m(γ′,∇γ′E2).

We have

(3.22)





∇γ′E1 =
[ (8m− l2)(γ2γ

′
1 − γ1γ

′
2)

4F
−

lγ′
3

2

]
E2 −

lγ′
2

2F
E3,

∇γ′E2 =
[ (l2 − 8m)(γ2γ

′
1 − γ1γ

′
2)

4F
+

lγ′
3

2

]
E1 +

lγ′
1

2F
E3.

and hence we get the conclusion. �

Corollary. Suppose that l 6= 0. A θ-slant curve in (M3, gl,m) which is non-

geodesic and non-Legendre is a Bertrand curve.

P r o o f. Recall that γ is a Bertrand curve if there exists a, b ∈ R \ {0} such that

(3.23) ak + bτ = 1.

From (3.15) we get

|δ| =
k

|sin θ|
, ±τ =

l

2
+ |δ| cos θ.

Expressing |δ| from both the relations we have −k cos θ/sin θ + (±τ) = l/2, which

yields (3.23) with a = −2 cos θ/(l sin θ) and b = ±2/l. �

The case when the equations (3.9)–(3.10) are explicitly integrable is m = 0:

Theorem 3.3. Let γ be a non-geodesic θ-slant curve in (R3, gl,0). Then there

exists a unit-length parametrization ζ(s) = (cos u(s), sinu(s)) of the unit circle S1

such that γ = γu has the expression

(3.24) γu(s) =

(
|sin θ|

∫ s

0

ζ(t) dt, s cos θ −
l sin2 θ

2

[∫ s

0

(
cosu(t)

∫ t

0

sinu(̺) d̺

− sinu(t)

∫ t

0

cosu(̺) d̺
)
dt

])
.
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Its curvature, torsion and Lancret invariant are

(3.25)





k(s) = |u′(s)− l cos θ||sin θ| −
l2|sin θ|

2
(γ2(s)γ

′

1(s)− γ1(s)γ
′

2(s)),

τ(s) =
∣∣∣ l
2
+
(
|u′(s)− l cos θ| −

l2

2
(γ2(s)γ

′

1(s)− γ1(s)γ
′

2(s)
)
cos θ

∣∣∣,

Lancret(γ) =
2τ ± l

2k
.

In particular, a Legendre curve in (R3, gl,0) has the expression

(3.26) γL
u (s) =

(∫ s

0

ζ(t) dt,

−
l

2

[∫ s

0

(
cosu(t)

∫ t

0

sinu(̺) d̺− sinu(t)

∫ t

0

cosu(̺) d̺

)
dt

])
,

and its curvature and torsion are

(3.27) k(s) = |u′(s)| −
l2

2
(γ2(s)γ

′

1(s)− γ1(s)γ
′

2(s)), τ(s) =
|l|

2
.

P r o o f. Due to F = 1 the relation (3.10) implies the existence of ζ = ζ(s) such

that

γ′

1 = |sin θ| cosu(s), γ′

2 = |sin θ| sinu(s)

and the integration gives (3.24). A straightforward computation yields the conclu-

sion. �

The particular case u(s) = ps with p 6= 0 gives the corresponding θ-slant curve

(3.28) γp(s) =
( |sin θ|

p
(sin(ps), 1 − cos(ps)), s cos θ −

l sin2 θ

2p

( sin(ps)
p

− s
))

with

(3.29)





k(s) = |p− l cos θ||sin θ| −
l2|sin θ|3

2p
(cos(ps)− 1),

τ(s) =
∣∣∣ l
2
+
[
|p− l cos θ| −

l2 sin2 θ

2p
(cos(ps)− 1)

]
cos θ

∣∣∣

and the Legendre curve

(3.30) γL
p (s) =

1

p

(
sin(ps), 1− cos(ps),−

l

2

(sin(ps)
p

− s
))

952



with

(3.31) k(s) =
∣∣∣p− l2(cos(ps)− 1)

2p

∣∣∣, τ(s) =
|l|

2
.

Denote by h the second fundamental form of γ and by H its mean curvature field

(3.32) H = trace(h) = h(T, T ) = ∇TT.

Then γ is called a curve with proper mean curvature vector field if there exists

λ ∈ C∞(γ) such that

(3.33) ∆H = λH.

In particular, if λ = 0 then γ is known as a curve with harmonic mean curvature

vector field. Here the Laplace operator ∆ acts on the vector valued function H and

is given by

(3.34) ∆H = −∇T∇T∇TT.

Making use of Frenet equations, we can rewrite (3.33) as

(3.35) −3k′kT + (k′′ − k3 − kτ2)N + (2k′τ + kτ ′)B = −λkN.

It follows that both k and τ are constants, and the function λ becomes a constant

too, namely

(3.36) λ = κ2 + τ2

(see also Theorem 1.1 in [17]). In our framework we state the following result:

Theorem 3.4. A non-geodesic θ-slant curve γ in (M3, gl,m) has a proper mean

curvature vector field if and only if γ is a helix and then

(3.37) λ (:= λθ) = δ2 +
l2

4
+ l|δ| cos θ.

In particular, a helix Legendre curve satisfies

(3.38) λ (:= λLegendre) = δ2 +
l2

4
> 0.

P r o o f. We compute λ of (3.36) by using (3.15). �
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Since δ appears as a main expression in all computations above we are interested

in its other form. So, inspired by [6], we introduce the angle function β = β(s) given

by

(3.39) γ′

1 = F |sin θ| cosβ, γ′

2 = F |sin θ| sinβ.

Then one obtains

(3.40) δ = β′ + 2m sin θ(γ2 cosβ − γ1 sinβ)− l cos θ.

Using this expression we can characterize the θ-slant helices in Bianchi-Cartan-

Vranceanu manifolds. Namely, k and τ are constants if and only if δ is a constant

and this condition δ′ = 0 reads

(3.41)
β′′

β′
=

F ′

F

and then aβ′(s) = F (γ(s)) with a a positive number. Then we integrate (3.39):

Theorem 3.5. The θ-slant helices in (M3
m, gl,m) are given by

(3.42) γa(s) =

(
a|sin θ| sinβ(s) + c1,−a|sin θ| cosβ(s) + c2, s cos θ

+
l sin θ

2

[
as sin θ + c1

∫ s

0

sinβ(t) dt− c2

∫ s

0

cosβ(t) dt

])

where c1, c2 are real constants; here, β = β(s) is a solution of the ordinary differential

equation

(3.43) aβ′ = 1 +m[(a sin θ sinβ + c1)
2 + (−a sin θ cosβ + c2)

2]

which determines also the possible F ’s where (3.42) holds. For c1 = c2 = 0 we get

(3.44) γa(s) =
(
a|sin θ| sin

((1
a
+ma sin2 θ

)
s
)
,

− a|sin θ| cos
((1

a
+ma sin2 θ

)
s
)
,
(
cos θ +

la sin2 θ

2

)
s
)

with

(3.45) k =
∣∣∣
(1
a
−ma sin2 θ − l cos θ

)
sin θ

∣∣∣,

τ =

∣∣∣∣
l

2
+
∣∣∣1
a
−ma sin2 θ − l cos θ

∣∣∣ cos θ
∣∣∣∣ .
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The Legendre helices are

(3.46) γa(s) =
(
a sin

((1
a
+ma

)
s
)
,−a cos

((1
a
+ma

)
s
)
,
la

2
s
)

with

(3.47) k =
∣∣∣1
a
−ma

∣∣∣, τ =
|l|

2
, λLegendre =

(1
a
−ma

)2
+

l2

4
.

4. Examples

4.1. Euclidean geometry. E3 : m = l = 0. (3.24)–(3.25) become

(4.1) γu(s) =

(
|sin θ|

∫ s

0

ζ(t) dt, s cos θ

)

with

(4.2) k(s) = |u′(s)||sin θ| =
γ′
1γ

′′
2 − γ′

2γ
′′
1

|sin θ|
, τ(s) = |u′(s)| cos θ, Lancret(γ) =

τ

k
.

(3.26)–(3.27) become

(4.3) γL
u (s) =

(∫ s

0

ζ(t) dt, 0

)

with

(4.4) k(s) = |u′(s)| = γ′

1γ
′′

2 − γ′

2γ
′′

1 , τ(s) = 0.

It is a well known fact that the curvature of a unit-speed plane curve is k(s) =

γ′
1γ

′′
2 − γ′

2γ
′′
1 .

We get that γu from (4.1) is a helix if and only if u′ is a constant, say p. Then γu

is exactly γp given by (3.28) with l = 0 and then λθ = λLegendre = λu = (u′)2 = p2.

Another (equivalent) expression is given by (3.44):

(4.1 helices) γa(s) =
(
a|sin θ| sin

s

a
,−a|sin θ| cos

s

a
, s cos θ

)

with k = |sin θ|/a and τ = |cos θ|/a.
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4.2. The Heisenberg group. Nil3 : m = 0, l = −2. (3.24)–(3.25) become

(4.5) γu(s) =

(
|sin θ|

∫ s

0

ζ(t) dt, s cos θ

+ sin2 θ

[∫ s

0

(
cosu(t)

∫ t

0

sinu(̺) d̺− sinu(t)

∫ t

0

cosu(̺) d̺

)
dt

])

with

(4.6)





k(s) = (|u′(s) + 2 cos θ| − 2γ2(s)γ
′

1(s) + 2γ1(s)γ
′

2(s))|sin θ|,

τ(s) = |(|u′(s) + 2 cos θ| − 2γ2(s)γ
′

1(s) + 2γ1(s)γ
′

2(s)) cos θ − 1|,

Lancret(γ) = (τ ± 1)/k.

The above Lancret invariant was obtained for the general Sasakian 3-dimensional

geometry in [12], page 362.

(3.26)–(3.27) become

(4.7) γL
u (s) =

(∫ s

0

ζ(t) dt,

∫ s

0

(
cosu(t)

∫ t

0

sinu(̺) d̺− sinu(t)

∫ t

0

cosu(̺) d̺

)
dt

)

with

(4.8) k(s) = |u′(s)| − 2(γ2(s)γ
′

1(s)− γ1(s)γ
′

2(s)), τ(s) = 1.

(3.37)–(3.38) read

(4.9) λθ = δ2 + 1− 2|δ| cos θ, λLegendre = δ2 + 1

where, from (3.40), δ(s) = u′(s) + 2 cos θ.

The θ-slant helices (3.44) are

(4.9 helices) γa(s) =
(
a|sin θ| sin

s

a
,−a|sin θ| cos

s

a
, (cos θ − a sin2 θ)s

)

with k = |sin(2θ)|/a and τ =
∣∣|1/a− 2 cos θ| cos θ− 1

∣∣ while the Legendre helices are

(4.10 helices) γa(s) =
(
a sin

s

a
,−a cos

s

a
,−as

)
.

The proper biharmonic curve of [12], page 364, is a γu of (4.5) with u(s) = As+ a

while the non-helix slant curve of [12], page 365, corresponds to u(s) = ln s.
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4.3. The sphere. For 4m = l2 we have S3(m). In particular, m = 1, l = −2

gives S3. (3.11)–(3.12) become for S3

k(s) =
1

|sin θ|(1 + γ2
1 + γ2

2)

∣∣∣γ
′
1γ

′′
2 − γ′

2γ
′′
1

1 + γ2
1 + γ2

2

+ 2γ′

3 sin
2 θ

∣∣∣,(4.11)

τ(s) =

∣∣∣∣
∣∣∣ γ′

1γ
′′
2 − γ′

2γ
′′
1

sin2 θ(1 + γ2
1 + γ2

2)
+

γ′
3

1 + γ2
1 + γ2

2

∣∣∣ cos θ − 1

∣∣∣∣(4.12)

while (3.13) gives

(4.13) Lancret(γ) =
τ ± 1

k
.

Then a Legendre curve on S
3 satisfies

(4.14) k(s) =
1

1 + γ2
1 + γ2

2

∣∣∣γ
′
1γ

′′
2 − γ′

2γ
′′
1

1 + γ2
1 + γ2

2

+ 2γ′

3

∣∣∣, τ(s) = 1.

Now, recall that E3 is a Killing vector field; then our notion of a slant curve belongs

to the class of general helices introduced in [1], page 1505. For the case of S3 the

Lancret theorem from [1], page 1506, yields the same (Sasakian) Lancret invariant

(τ ± 1)/k.

4.4. For m > 0 and l = 0 we have Mm = S2(4m)× R.

4.5. If m < 0 and l = 0 then we have M3
m = H

2(4m) × R where H2(k) is the

hyperbolic plane of constant Gaussian curvature k < 0. For both the Cases 4.4 and

4.5 a slant curve has

k(s) =
1

F |sin θ|

∣∣∣γ
′
1γ

′′
2 − γ′

2γ
′′
1

F
+ 2m sin2(γ′

1γ2 − γ′

2γ1)
∣∣∣,(4.15)

τ(s) =
∣∣∣γ

′
1γ

′′
2 − γ′

2γ
′′
1

F 2 sin2 θ
+

2m(γ2γ
′
1 − γ1γ

′
2)

F

∣∣∣|cos θ|,(4.16)

which means that the Legendre curves in these ambient manifolds have vanishing

torsion.

4.6. If m > 0 and l 6= 0 we get SU(2)\{∞}. The Legendre curves of this manifold

have a constant non-null torsion. The general properties of the curves in SU(2) are

studied in [11].

4.7. If m < 0 and l 6= 0 we have S̃L(2,R). In the following, returning to the

general case we use along γ the cylindrical coordinates x(s) = r(s) cos β(s), y(s) =

r(s) sin β(s), z(s) = z(s) and then (3.10) becomes

(4.17) (r′)2 + r2(β′)2 = [1 +mr2]2 sin2 θ,
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which yields

(4.18) (β′)2 =
[1 +mr2]2 sin2 θ − (r′)2

r2
.

Now, we make the choice of a positive real constant r = r0 and then

(4.19) β(s) = ±
(1 +mr20) sin θ

r0
s.

We get the final expression of the curve for the positive sign in (4.19):

(4.20) γr0 =
(
r0 cos

( (1 +mr20) sin θ

r0
s
)
, r0 sin

((1 +mr20) sin θ

r0
s
)
,
(
cos θ +

lr0
2

)
s
)
.

This curve is a helix with

(4.21)

k =
∣∣∣ (1 +mr20) sin

2 θ

r0
− l sin θ cos θ

∣∣∣,

τ =

∣∣∣∣
l

2
+
∣∣∣(1 +mr20) sin θ

r0
− l cos θ

∣∣∣ cos θ
∣∣∣∣ .

For Examples 4.4 and 4.5 this yields helices with

(4.22) k =
(1 +mr20) sin

2 θ

r0
, τ =

(1 +mr20) sin θ cos θ

r0
.

We can use the relation (4.221) in order to obtain slant curves with a prescribed

curvature for the case 4.5.

Proposition 4.1. Let c > 0 be given and m = −m̃2 < 0. Then on H(−4m̃2)×R

the curve (4.17) with

(4.23) r0 =

√
c2 + 4m̃2 sin4 θ − c

2m̃2 sin2 θ

is a helix θ-slant curve with k = c and τ = c cos θ/sin θ.

P r o o f. The curve is

γr0 =
(
r0 cos

( cs

sin θ

)
, r0 sin

( cs

sin θ

)
, s cos θ

)

and a simple computation yields the conclusion. �
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[3] M. Belkhelfa, I. E. Hirică, R. Rosca, L. Verstraelen: On Legendre curves in Riemannian
and Lorentzian Sasaki spaces. Soochow J. Math. 28 (2002), 81–91.

[4] D. E. Blair: Riemannian Geometry of Contact and Symplectic Manifolds. Progress in
Mathematics 203, Birkhäuser, Boston, 2010.

[5] D. E. Blair, F. Dillen, L. Verstraelen, L. Vrancken: Deformations of Legendre curves.
Note Mat. 15 (1995), 99–110.

[6] R. Caddeo, S. Montaldo, C. Oniciuc, P. Piu: The classification of biharmonic curves
of Cartan-Vranceanu 3-dimensional spaces. Modern Trends in Geometry and Topol-
ogy. Proceedings of the 7th International Workshop on Differential Geometry and Its
Applications, Deva, Romania, 2005 (D.Andrica et al., eds.). Cluj University Press,
Cluj-Napoca, 2006, pp. 121–131.
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