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A determinant formula for the relative class number
of an imaginary abelian number field

Mikihito Hirabayashi

Abstract. We give a new formula for the relative class number of an imagi-
nary abelian number field K by means of determinant with elements being
integers of a cyclotomic field generated by the values of an odd Dirichlet
character associated to K. We prove it by a specialization of determinant
formula of Hasse.

1 Introduction
There are lots of formulas for the relative class number of an imaginary abelian
number field K by means of determinant (see [5] for bibliography). In this paper
we give such a new formula. We prove it by a specialization of the determinant
formula for generalized group matrix which appears in [2, § 13]. The key idea is
a transformation of generalized Bernoulli numbers and a transformation of their
product over the odd characters to one over the even characters. In our formula,
elements of the determinant are integers of a cyclotomic field generated by the
values of an odd Dirichlet character associated to K, whereas elements of the
determinants are rational numbers for known formulas. We may regard our formula
as an imaginary version of Hasse’s formula [2, § 16, (3)], which expresses the class
number of a real abelian number field by means of determinant with elements being
logarithms of cyclotomic units of its cyclic subfields.

2 Results
Let K be an imaginary abelian number field of degree n and with conductor f , and
let K0 be the maximal real subfield of K. Let H0 be the subgroup of the group
(Z/fZ)× of reduced residue classes modulo f corresponding to K0. Let X0 be the
set of Dirichlet characters associated to K0.
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We assume that the Dirichlet characters χ associated to K, which we call char-
acters of K for short, are primitive and that, as usual, χ(x) = 0 for an integer x
not relatively prime to the conductor f(χ) of χ.

We classify the group X0 by the following equivalence ∼: for characters χ,
ψ ∈ X0 let χ ∼ ψ if and only if there exists an integer m such that m is relatively
prime to nχ and that ψ = χm, where nχ is the order of χ. We call the classes classi-
fied by this equivalence Frobenius classes. Let {ψ0} be a system of representatives
of the Frobenius classes. For a representative ψ0 let tψ0 be an integer such that
the quotient group (Z/fZ)×/Hψ0 is generated by a class represented by tψ0 mod f ,
where Hψ0

= {xmod f ∈ (Z/fZ)× ; ψ0(x) = 1}.
We fix an odd character χ∗1 of K. As we will see, the elements of the determinant

of our formula are integers of the field generated by the values of the character χ∗1.
For an even character χ0 of K and for an element amod f of (Z/fZ)× let

uχ0(a) = −χ∗1(a)
f∑
x=1

(x,f)=1
χ0(x)=1

χ∗1(x)Rf (ax) ,

where Rf (a) is the least positive residue modulo f of a. Then we define a matrix U
by

U = (uψ0
(st−kψ0

))(smod f)H0 ;ψ0, 0≤k≤ϕ(nψ0
)−1 ,

where (smod f)H0 runs in the rows over the quotient group (Z/fZ)×/H0, which
is isomorphic to the Galois group G0 of K0; ψ0 and k run in the columns: {ψ0} is
a system defined above and ϕ is the Euler totient function. Here, t−kψ0

mod f is the

inverse of tkψ0
mod f , i.e., t−kψ0

is an integer satisfying t−kψ0
tkψ0
≡ 1 (mod f).

With the notation above we have the following

Theorem 1. For an imaginary abelian number field K of degree n and with con-
ductor f , we have

detU = ± (2f)n/2c g∗

Qw
h∗

where h∗ is the relative class number of K, Q is the Hasse unit index of K, w is
the number of roots of unity in K, and g∗ is defined by

g∗ =
∏
χ1

∏
p|f

(
1− χ1(p)

)
where the products

∏
χ1

and
∏
p|f are taken over the odd characters χ1 of K and

the prime numbers p dividing f , respectively, and c is a natural number expressed
by

c =
∏
p|n0

p
1
2

∑
pk|n0

(
q(
n0
pk

)−n0
pk

)
,

where the product
∏
p|n0

and the sum
∑
pµ|n0

are taken over prime numbers p
dividing n0 = n/2 and the powers of p dividing n0, respectively, and q(m) is the
number of solutions of xm = 1 in G0.
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We remark here that the elements uχ0
(a) and the matrix U depend on the

character χ∗1, as we see in the examples below, and that, in addition, U depends
on the choice of integers tψ0 . In fact, we have different U ’s for different tψ0 ’s in the
case of K = Q(ζ7), the 7th cyclotomic field. Moreover, we note that the matrix U
never coincides with any matrix in known formulas, because U always contains a
constant column corresponding to the principal character ψ0 = 1.

As seen by definition, the number g∗ may be zero and then remains a problem
of how to construct such a formula in Theorem 1 in case of g∗ = 0.

For the cyclotomic fields of prime power conductor we have the following corol-
laries.

Corollary 1. For the cyclotomic field K = Q(ζpρ) of conductor pρ (ρ ≥ 1), p an
odd prime, we have

detU = det
(
uψ0

(git−kψ0
)
)
0≤i≤ p

ρ−1(p−1)
2 −1 ;ψ0,0≤k≤ϕ(nψ0

)−1

= ±(2pρ)
pρ−1(p−1)

2 −1h∗,

where g is a primitive root modulo pρ.

For the field K = Q(ζpρ) we can take tψ0 = g for every ψ0 6= 1 and tψ0 = 1 for
ψ0 = 1.

Corollary 2. For the cyclotomic field K = Q(ζ2ρ) of conductor 2ρ (ρ ≥ 2) we have

detU =
(
uψ0

(5it−kψ0
)
)
0≤i≤2ρ−2−1 ;ψ0,0≤k≤ϕ(nψ0

)−1

= ± 2(ρ+1)2ρ−2−ρ h∗.

For the field K = Q(ζ2ρ) we can take tψ0
= 5 for every ψ0 6= 1 and tψ0

= 1 for
ψ0 = 1.

Here we give examples. We adopt the basic characters which Hasse used in [2].
For an odd prime p let χp be an odd character modulo p of order p − 1 and
ψpρ (ρ ≥ 2) an even character modulo pρ of order pρ−1; in addition ψppρ = ψpρ−1 .
For the prime 2 let χ4 be the odd character modulo 4 and ψ2ρ (ρ ≥ 3) an even
character modulo 2ρ of order 2ρ−2; in addition ψ2

2ρ = ψ2ρ−1 . The subscript of a
basic character denotes the conductor.

For the following calculation of the values of uχ0(a), we use the identity

f∑
x=1

(x,f)=1
χ0(x)=1

χ∗1(x)Rf (ax) =

[f/2]∑
x=1

(x,f)=1
χ0(x)=1

χ∗1(x)
(
2Rf (ax)− f

)
.

Example 1. Let K = Q(ζ5), i.e., p = 5, ρ = 1. Take g = 2 and χ∗1 = χ5. Then
{ψ0} = {1, χ2

5} and

u1(a) = −χ5(a)
(
2R5(a)− 5 + i

(
2R5(2a)− 5

))
,

uχ2
5
(a) = −χ5(a)

(
2R5(a)− 5

)
.
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Consequently

U =

(
u1(1) uχ2

5
(1)

u1(2) uχ2
5
(2)

)
=

(
3 + i 3
3 + i i

)
and hence detU = −2 · 5. Otherwise, by Corollary 1 and [2, Tafel II], detU =

±(2 · 5) 5−1
2 −1 · 1 = ±2 · 5.

Taking g = 2 and χ∗1 = χ3
5, we have

U =

(
3− i 3
3− i −i

)
and hence detU = −2 · 5.

Example 2. Let K = Q(ζ23), i.e., p = 2, ρ = 3. Take χ∗1 = χ4. Then {ψ0} =
{1, ψ23} and

u1(a) = −2χ4(a)
(
R23(a)−R23(3a)

)
,

uψ23
(a) = −2χ4(a)

(
R23(a)− 4

)
.

Consequently

U =

(
u1(1) uψ23

(1)
u1(5) uψ23

(5)

)
=

(
4 6
4 −2

)
and hence detU = −25. Otherwise, by Corollary 2 and [2, Tafel II], detU =

±2(3+1)23−2−3 · 1 = ±25.
Taking χ∗1 = χ4ψ8, we have

U =

(
8 6
8 2

)
and hence detU = −25.

Example 3. Let K = Q(
√
−3,
√
5). Take χ∗1 = χ3. Then {ψ0} = {1, χ2

5} and

u1(a) = −2χ3(a)
(
R15(a)−R15(2a) +R15(4a) +R15(7a)− 15

)
,

uχ2
5
(a) = −2χ3(a)

(
R15(a) +R15(4a)− 15

)
.

Consequently

U =

(
u1(1) uχ2

5
(1)

u1(2) uχ2
5
(2)

)
=

(
10 20
10 −10

)
and hence detU = −22 ·3 ·52. Otherwise, since c = 1, g∗ = 2, w = 2 ·3 and Q = 1,
which is obtained by [2, Tafel II], we have by Theorem 1

detU = ± (2f)n/2c g∗

Qw
h∗ = ± (2 · 15)2 · 1 · 2

1 · 2 · 3
· 1 = ±22 · 3 · 52.

Taking χ∗1 = χ3χ
2
5, we have

U =

(
30 20
30 10

)
and hence detU = −22 · 3 · 52.
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3 The determinant of a generalized group matrix
In the second chapter of the book [2] Hasse gave two transformations of the class
number formula for a real abelian number field; the first transformation is an
application of summations

∑
x χ(x)Af (x) to the group matrix, Af (x) an ordinary

distribution (cf. [2, p. 18] or [4, Lemma 12.15]), and the second transformation is
one for summations

∑
s χ(s)uχ(s) and for the matrix UG (see Lemma 1).

By the first transformation, replacing the distribution Af (x) in [2, p. 18] with

Af (x) = −
(
Rf (x)

f
− 1

2

)
,

we can obtain the formula of Girstmair [1] with Maillet determinant for the relative
class number of an imaginary abelian number field with conductor f .

For the proof of our formula we need the following lemmas. Let G be an abelian
group of order n and X the group of characters of G. For χ ∈ X let

Hχ = {x ∈ G;χ(x) = 1}.
For s ∈ G and χ ∈ X let uχ(s) be a complex-valued function satisfying the

following conditions:
(i) uχ(s) = uχν (s) for s ∈ G and ν ∈ Z relatively prime to the order nχ of χ.
(ii) uχ(s) = uχ(s

′) for s, s′ ∈ G with χ(s) = χ(s′).
We classify the group X by the Frobenius equivalence defined as in § 2. Let {ψ}

be a system of representatives of the Frobenius classes of X. For a character ψ let
tψ be a representative of a generator tψHψ of the cyclic group G/Hψ. Then we
define a matrix UG by

UG =
(
uψ(st

−k
ψ )
)
s∈G;ψ,0≤k≤ϕ(nψ)−1

,

where s runs in the rows, and ψ and k run in the columns.

Lemma 1. [2, §14] For the matrix UG we have

detUG = ± cG
∏
χ∈X

∑
smodHχ

χ(s)uχ(s),

where cG is a positive number defined by

cG = ± 1

det(χ(s))s∈G,χ∈X

∏
ψ

( n

nψ

)ϕ(nψ)
det
(
ψ(tψ)

ik
)

1≤i≤nψ
(i,nψ)=1

0≤k≤ϕ(nψ)−1


and smodHχ in the sum

∑
smodHχ

runs over the quotient group G/Hχ.

Lemma 2. [2, §14 and §15] For an abelian group G of order n the number cG is a
natural number and holds

cG =
∏
p|n

p
1
2

∑
pk|n

(
q( n
pk

)− n

pk

)
,

where the product and summation are taken over the prime numbers p dividing n
and over the powers of p dividing n, and q(m) is the number of solutions of xm = 1
in G. Therefore cG = 1 if and only if G is cyclic.
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4 Proof of Theorem 1
Proof of Theorem 1. We start with the arithmetic class number formula for h∗,

h∗ = Qw
∏
χ1

(
−1

2
B1,χ1

)
.

For any odd character χ1 of K we have

B1,χ1 =
1

f(χ1)

f(χ1)∑
a=1

χ1(a)a =
1

f

f∑
a=1

χ1(a)a

and like as [4, Lemma 8.7] we have

f∑
a=1

(a,f)=1

χ1(a)a =
∏
p|f

(
1− χ1(p)

)
·
f∑
a=1

χ1(a)a .

In fact, if p | f , we have χ(p)
∑f
a=1 χ(a)a =

∑f/p
b=1 χ(pb)(pb) and hence

∏
p|f

(1− χ1(p)) ·
f∑
a=1

χ1(a)a =

f∑
a=1

χ(a)a+
∑
d|f
d>1

(∑
d′|d
d′>1

µ(d′)
)
χ(d)d

=

f∑
a=1

χ(a)a−
∑
d|f
d>1

χ(d)d =

f∑
a=1

(a,f)=1

χ1(a)a ,

where µ(·) is the Möbius function.
Therefore, putting

S(χ1) =

f∑
a=1

(a,f)=1

χ1(a)a ,

we have by the arithmetic class number formula for h∗

(−2f)n/2g∗h∗

Qw
=
∏
χ1

S(χ1)

and hence our task is to show that the product of the right-hand side is ±c−1 detU .
Recall that χ∗1 is a fixed odd character of K. For an even character χ0 of K let

Hχ0 = {xmod f ∈ (Z/fZ)× : χ0(x) = 1} .

Choose a system of representatives smod f of (Z/fZ)×/Hχ0
. Then, for an odd

character χ1 = χ0χ
∗
1 of K we have

S(χ1) = S(χ0χ
∗
1) =

∑
smodHχ0

χ0(s)uχ0
(s) ,
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where

uχ0
(s) = χ∗1(s)

f∑
x=1

(x,f)=1
χ0(x)=1

χ∗1(x)Rf (sx) .

Therefore we have ∏
χ1

S(χ1) =
∏
χ0

∑
smodHχ0

χ0(s)uχ0
(s) ,

where the product
∏
χ0

is taken over the even characters χ0 of K.
Here we use Lemmas 1 and 2 by letting G be the group (Z/fZ)×/H0 and by

replacing n by n/2, χ by χ0, UG by U , cG by c, and uψ(s) by uψ0
(s).

To use Lemma 1, we need to check the uχ0(s) for meeting the conditions (i)
and (ii) in § 3. First let ν be an integer relatively prime to the order of χ0. Then
χν0(x) = 1 if and only if χ0(x) = 1. Hence

uχν0 (s) = χ∗1(s)

f∑
x=1

(x,f)=1
χν0 (x)=1

χ∗1(x)Rf (sx)

= uχ0(s).

Secondly let s, s′ be integers relatively prime to f satisfying χ0(s) = χ0(s
′). Hence

uχ0
(s′) = χ∗1(s

′)

f∑
x=1

(x,f)=1
χ0(x)=1

χ∗1(x)Rf (s
′x)

= χ∗1(s
′)

f∑
x=1

(x,f)=1
χ0(x)=1

χ∗1
(
s(s′)−1x

)
Rf
(
s′ · s(s′)−1x

)

= χ∗1(s
′)

f∑
x=1

(x,f)=1
χ0(x)=1

χ∗1(s)χ
∗
1(s
′)−1χ∗1(x)Rf (sx)

= χ∗1(s)

f∑
x=1

(x,f)=1
χ0(x)=1

χ∗1(x)Rf (sx)

= uχ0(s) .

Here (s′)−1 mod f is the inverse of s′mod f . Therefore we have checked the condi-
tions.
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Consequently, by Lemma 1 we obtain

(−2f)n/2g∗h∗

Qw
=
∏
χ1

S(χ1) =
1

±c
detU ,

that is,

detU = ± (2f)n/2c g∗

Qw
h∗

and by Lemma 2 we immediately obtain the expression of c. This completes the
proof.

Corollaries 1 and 2 are directly obtained by Theorem 1, because for the cyclo-
tomic fields K of prime power conductors we have g∗ = 1 by definition, c = 1 by
Lemma 2 and Q = 1 by [2, Satz 27].
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