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A note on the number of S-Diophantine quadruples

Florian Luca, Volker Ziegler

Abstract. Let (a1, . . . , am) be an m-tuple of positive, pairwise distinct in-
tegers. If for all 1 ≤ i < j ≤ m the prime divisors of aiaj + 1 come from
the same fixed set S, then we call the m-tuple S-Diophantine. In this note
we estimate the number of S-Diophantine quadruples in terms of |S| = r.

1 Introduction
There is a vast amount of papers concerning the problem of determining the number
of prime divisors of products of the form∏

a∈A, b∈B

(a+ b) and
∏

a∈A, b∈B

(ab+ 1),

where A and B are finite sets of positive integers. In particular, the first product has
been studied, first by Erdős and Turán [4] and their investigations were continued
in a series of papers by Sárközy and Stewart (see e.g. [12], [13]). The second product
was studied e.g. by Győry, Sárközy and Stewart [8], Sárközy and Stewart [14], and
others.

In their paper [8], Győry, Sárközy and Stewart conjectured that the largest
prime factor of

(ab+ 1)(ac+ 1)(bc+ 1) , 0 < a < b < c ,

goes to infinity as c does. This conjecture has been proved by Corvaja and Zan-
nier [3] and Hernandez and Luca [9], independently. Due to the application of
the Subspace theorem their results stay ineffective. The best approach to esti-
mate the growth rate of the largest prime factor of (ab+ 1)(ac+ 1)(bc+ 1) is due
to Luca [10], who proved that for every fixed finite set of primes S, there exist
ineffective constants CS and C ′S such that

((bc+ 1)(ac+ 1))S̄ > exp

(
CS

log c

log log c

)
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whenever a < b < c with c > C ′S , where (·)S̄ denotes the S-free part.
In case of quadruples effective results are known. For example, Stewart and

Tijdeman [15], proved that the largest prime factor of∏
a,b∈A, a 6=b

(ab+ 1)

with |A| ≥ 4, is at least C log log maxA, where C is an effective computable con-
stant.

Let S be a fixed, finite set of primes. In view of classical Diophantine m-tuples
we call anm-tuple (a1, . . . , am) of positive, pairwise distinct, integers S-Diophantine
if for all 1 ≤ i < j ≤ m the set of prime divisors of aiaj + 1 is contained in S.
The results of Corvaja, Zannier [3] and Hernandez, Luca [9] yield the finiteness of
S-Diophantine triples for fixed S. Although we are able to estimate the number
of S-Diophantine triples due to a result of Bugeaud and Luca [2], it is in principle
not possible to determine all triples with the methods currently available.

In contrast to the case of triples we can, in principle, effectively determine
all S-Diophantine quadruples for a given set S due to the result of Stewart and
Tijdeman [15]. Recently, Szalay and Ziegler [16], established an efficient algorithm
to determine all S-Diophantine quadruples for a given set S of primes, provided
|S| = 2. In particular, the results of Szalay and Ziegler [16], [17], [18], suggest that
for |S| = 2 no quadruple exists at all.

The aim of this note is to give upper bounds for the number of S-Diophantine
quadruples for fixed sets S of r primes. We need the following notations. Let Γ be
a multiplicative subgroup of Q∗ of rank r and denote by A(n, r) an upper bound
for the number of non-degenerate solutions (x1, . . . , xn) ∈ Γn to the linear S-unit
equation

a1x1 + · · ·+ anxn = 1 , ai ∈ Q∗. (1)

We call a solution to (1) non-degenerate if no subsum on the left hand side of
equation (1) vanishes. With this notation at hand our main result is:

Theorem 1. Let S be a set of r primes. Then there exist at most(
A(5, r) +A(2, r)2

)
A(3, r)

S-Diophantine quadruples. If r = 2 or 2 6∈ S, then there exist at most

A(5, r)A(3, r)

S-Diophantine quadruples.

Using the best estimates for A(n, r) currently available we obtain

Corollary 1. Let S be a set of r primes. Then there exist at most

exp(27398 + 5136r)

S-Diophantine quadruples.

In the next section we prove Theorem 1 and in the third section we discuss the
number of solutions to the S-unit equation (1) and establish Corollary 1.
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2 A system of S-unit equations
Assume that (a, b, c, d) is an S-Diophantine quadruple, with a < b < c < d. We
write,

ab+ 1 = s1 , ac+ 1 = s2 , ad+ 1 = s3 ,

bc+ 1 = s4 , bd+ 1 = s5 , cd+ 1 = s6 .

With these notations we have

abcd = s1s6 − s1 − s6 + 1

= s2s5 − s2 − s5 + 1

= s3s4 − s3 − s4 + 1

and obtain the following system of S-unit equations

s1s6 − s1 − s6 − s2s5 + s2 + s5 = 0 ,

s1s6 − s1 − s6 − s3s4 + s3 + s4 = 0 .
(2)

Let us consider the first equation more closely and write y1 = s1s6, y2 = s1,
y3 = s6, y4 = s2s5, y5 = s2 and y6 = s5. Then the first equation of system (2)
takes the form

y1 − y2 − y3 − y4 + y5 + y6 = 0

and has at most A(5, r) projective solutions in P5(Γ) such that no subsum vanishes,
where Γ ⊂ Q∗ is the multiplicative group generated by S. Note that each projective
solution yields at most one solution (s1, s2, s5, s6). Indeed, assume (s1, s2, s5, s6)
and (s′1, s

′
2, s
′
5, s
′
6) correspond to the same projective solution. Then there is a

rational number ρ 6= 0 such that s1 = ρs′1, s6 = ρs′6, s2 = ρs′2, s5 = ρs′5 and
s1s6 = ρs′1s

′
6. But this implies that s1s6 = ρ2s′1s

′
6 = ρs′1s

′
6, thus ρ = 1 and si = s′i

for i = 1, 2, 5, 6.
So we are left to count how many solutions exist with vanishing subsums. Of

course there exist no vanishing one-term subsums. Two-term vanishing subsums
imply either

• si = sj for i 6= j which is impossible, unless i, j ∈ {3, 4} which is excluded,
or

• si = s1s6 > abcd > cd + 1 ≥ s6 ≥ si for some i ∈ {1, 2, 5, 6} which is also
a contradiction, or

• si = s2s5 > abcd > cd + 1 ≥ s6 ≥ si for some i ∈ {1, 2, 5, 6} which is also
a contradiction, or

• s1s6 = s2s5, which implies ab + cd + 2 = s1 + s6 = s2 + s5 = ac + bd + 2;
hence, (c− b)(d− a) = 0; i.e., d = a or b = c, again a contradiction.

Therefore no two-term subsums vanish. Since four- and five-term vanishing sub-
sums imply the existence of two- and one-term vanishing subsums, respectively, we
are left with the case of three-term vanishing subsums.
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Without loss of generality we may assume that the vanishing three-term subsum
contains s1s6. Thus we distinguish whether s2s5 is contained in the vanishing
subsum or not. Let us consider the case that s2s5 is not contained. Then we have
an equation of the from s1s6 = ±si ± sj . Since s1 = ab+ 1 > 2 · 1 + 1 > 2 we have
s1s6 > 2s6 > si + sj and this case yields no solution.

Therefore both s1s6 and s2s5 are contained in the same vanishing three-term
subsum and we are left with four systems of S-unit equations namely

s1s6 − s5s2 = s1 and s6 = s5 + s2 ,

s1s6 − s5s2 = s6 and s1 = s5 + s2 ,

s1s6 − s5s2 = −s2 and s1 + s6 = s5 ,

s1s6 − s5s2 = −s5 and s1 + s6 = −s2 .

(3)

Note that only the first equation of (3) is possible since by assumption s1 < s2 <
s5 < s6. Let y1 = s1s6, y2 = s5s2 and y3 = s1. Then the S-unit equation

y1 − y2 = y3

has at most A(2, r) projective solutions (y1, y2, y3) ∈ P2(Γ). Note that all solutions
that yield S-Diophantine quadruples are non-degenerate, since a vanishing subsum
would imply either s1s6 = 0 or s2s5 = 0 or s1 = 0. Each projective solution yields
only one possibility for s6. Indeed, assume that (s1, s2, s5, s6) and (s′1, s

′
2, s
′
5, s
′
6)

yield the same projective solution. Then there exists ρ ∈ Q∗ such that s1s6 =
ρs′1s

′
6 = s1s

′
6, since s1 = ρs′1, i.e. s6 = s′6. We have now at most A(2, r) possible

values for s6; i.e., we are reduced to at most A(2, r) equations of the form

a = s5 + s2

with a = s6 6= 0 fixed. Thus, system (3) yields at most A(2, r)2 solutions.
In view of the second statement of Theorem 1 we note that any equation of

system (3) cannot have a solution if 2 6∈ S. Otherwise s6 is odd but s5 + s2 would
be even. In case of r = 2, this implies S = {2, p} and the equation s6 = s5 + s2

turns into

2α6pβ6 = 2α5pβ5 + 2α2pβ2 . (4)

Considering 2-adic and p-adic valuations, equation (4) reduces to the Diophantine
equation

2x − py = ±1 .

By Mihăilescu’s solution of Catalan’s equation [11], only p = 3 is possible. On the
other hand, Szalay and Ziegler [16] showed that no {2, 3}-Diophantine quadruple
exists.

Altogether, we have proved the following result.

Lemma 1. The first S-unit equation in (2) has at most A(5, r)+A(2, r)2 solutions.
If r = 2 or 2 6∈ S, then there exist at most A(5, r) solutions.
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Now, we turn to the second equation of system (2). By Lemma 1, the first
equation in (2) yields at most A(5, r)+A(2, r)2 or A(5, r) many possibilities for the
pair (s1, s6) respectively. Thus, we assume that the second equation of system (2)
is of the form

s3s4 − s3 − s4 = a with a ∈ Q fixed. (5)

But S-unit equation (5) has at most A(3, r) solutions provided a 6= 0. Indeed no
degenerate solution exists since a vanishing subsum on the left side of equation (5)
would imply either

• s3s4 = s3 and therefore s4 = 1, or

• s3s4 = s4 and therefore s3 = 1, or

• s3 + s4 = 0 and therefore s3s4 < 0.

Let us note that a = s6s1 − s6 − s1 > 2s6 − s6 − s1 > 0, and therefore we have
proved the following lemma.

Lemma 2. The Diophantine system (2) has at most (A(5, r) + A(2, r)2)A(3, r)
solutions. If r = 2 or 2 6∈ S, then there exist at most A(5, r)A(3, r) solutions.

In order to prove Theorem 1 it remains to prove that for fixed integers s1, . . . , s6

there exists at most one quadruple (a, b, c, d). Since

a =

√
(s1 − 1)(s2 − 1)

s4 − 1
, b =

√
(s1 − 1)(s4 − 1)

s2 − 1
,

c =

√
(s2 − 1)(s4 − 1)

s1 − 1
, d =

√
(s5 − 1)(s6 − 1)

s4 − 1
,

the proof of Theorem 1 is complete.

3 Proof of Corollary 1
A look through the vast literature on S-unit equations shows that for S-unit equa-
tions over the rationals the best result is due to Evertse [5] provided |S| = 2 and
due to Amoroso and Viada [1] in the general case. Therefore we may assume
A(2, r) = 3 · 73+2r and A(n, r) = (8n)4n4(n+r+1). A look at the proof of the bound
for A(n, r) in [1] shows that this bound is derived by the recursive relation

A(n, r) ≤ 2nA(n− 1, r)B(n, r + 1) ,

where B(n, r) = (8n)6n3(n+r). Note that this recursive estimate already appears
in [7]. However, recursively computing A(n, r) we obtain

A(3, r) ≤ 8 · 3 · 73+2r · 24162(4+r) < exp(2069 + 518.8r) .

Continuing these computations we arrive at

A(5, r) < exp(25329 + 4616.3r) .

With these numbers plugged into Theorem 1, we obtain Corollary 1.
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Remark 1. Let us note that directly applying the bounds due to Evertse [5] and
Amoroso and Viada [1] would yield the slightly worse bound exp(73801+15378r) for
the number of S-Diophantine quadruples. A closer inspection of the computation
of the quantity B(n, r) due to Amoroso and Viada [1] and Evertse et al. [7] would
further improve the bounds also in view of the new improvements of the Subspace
Theorem due to Evertse and Feretti [6]. But we are afraid that the gain is too
small for such an effort.
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